

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Naïve Bayes

+

Generative vs. Discriminative

Matt Gormley & Henry Chai Lecture 17 Oct. 25, 2021

Reminders

- **Homework 6: Learning Theory / Generative Models**
	- **Out: Thu, Oct. 21**
	- **Due: Thu, Oct. 28 at 11:59pm**
	- **Same collaboration policy as Homework 3**
		- **Opt-in to homework groups on Piazza**
	- **IMPORTANT: you may only use 2 grace days on Homework 6**
		- **Last posible moment to submit HW6: Sat, Oct. 30 at 11:59pm**
- **Midterm Exam 2**
	- **Tue, Nov. 2, 6:30pm – 8:30pm**
- **Practice for Exam 2**
	- **Practice problems released on course website**
		- **(Tentatively) Out: Thu, Oct. 21**
	- **Mock Exam 2**
		- **(Tentatively) Out: Thu, Oct. 28**
		- **Due Sun, Oct. 31 at 11:59pm**

Q&A

Q: Why would we use Naïve Bayes? Isn't it too Naïve?

A: Naïve Bayes has one **key advantage** over methods like Perceptron, Logistic Regression, Neural Nets:

Training is lightning fast!

While other methods require slow iterative training procedures that might require hundreds of epochs, Naïve Bayes computes its parameters in closed form by counting.

NAÏVE BAYES

Flip weighted coin

Each red coin corresponds to an x_m

If TAILS, flip each blue coin

We can **generate** data in this fashion. Though in practice we never would since our data is **given**.

Instead, this provides an explanation of **how** the data was generated (albeit a terrible one).

What's wrong with the Naïve Bayes Assumption?

The features might not be independent!!

- Example 1:
	- If a document contains the word "Donald", it's extremely likely to contain the word "Trump"
	- These are not independent!
- Example 2:
	- If the petal width is very high, the petal length is also likely to be very high

Trump Spends Entire Classified National Security Briefing Asking About Egyptian **Mummies**

MORE ELECTION COVERAGE

* ELECTION 2016 *

NEWS IN BRIEF August 18, 2016 VOL 52 ISSUE 32 · Politics · Politicians · Election 2016 · Donald Trump

Recipe for Closed-form MLE

- 1. Assume data was generated i.i.d. from some model (i.e. write the generative story) x(i) ~ p(x|**θ**)
- 2. Write log-likelihood

$$
\tilde{\ell}(\boldsymbol{\theta}) = \log p(x^{(1)}|\boldsymbol{\theta}) + ... + \log p(x^{(N)}|\boldsymbol{\theta})
$$

3. Compute partial derivatives (i.e. gradient)

```
\partial \ell(\theta)/\partial \theta_1 = ...\partial \ell(\theta)/\partial \theta_2 = ...
```
… $\partial \ell(\theta)/\partial \theta_M = ...$

- 4. Set derivatives to zero and solve for **θ** $\partial \ell(\theta)/\partial \theta_m$ = 0 for all m $\in \{1, ..., M\}$ **θ**MLE **=** solution to system of M equations and M variables
- 5. Compute the second derivative and check that *l*(**θ**) is concave down at **θ**MLE

Naïve Bayes: Learning from Data

Whiteboard

- Data likelihood
- MLE for Naive Bayes
- Example: MLE for Naïve Bayes with Two Features
- MAP for Naive Bayes

BERNOULLI NAÏVE BAYES

Data: Binary feature vectors, Binary labels $\mathbf{x} \in \{0,1\}^M$ $y \in \{0,1\}$

Generative Story: Model:

 $y \sim$ Bernoulli (ϕ) $x_1 \sim \text{Bernoulli}(\theta_{y,1})$ $x_2 \sim$ Bernoulli $(\theta_{u,2})$

 $x_M \sim$ Bernoulli $(\theta_{y,M})$

$$
p_{\phi,\theta}(\boldsymbol{x},y) = p_{\phi,\theta}(x_1,\ldots,x_M,y)
$$

$$
= p_{\phi}(y) \prod_{m=1}^M p_{\theta}(x_m|y)
$$

$$
= \left[(\phi)^y (1-\phi)^{(1-y)} \right]
$$

$$
\prod_{m=1}^M (\theta_{y,m})^{x_m} (1-\theta_{y,m})^{(1-x_m)}
$$

Maximum Likelihood Estimation

Training: Find the **class-conditional** MLE parameters

 \overline{N} \overline{M} $\overline{M}_{\text{t}}(i)$ \overline{M}

 $\phi = \frac{N_{y=1}}{N}$

Count Variables:

$$
N_{y=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)
$$

$$
N_{y=0} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)
$$

$$
N_{y=0, x_m=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_m^{(i)} = 1)
$$

Maximum Likelihood Estimators: \ddotsc

$$
\varphi_N
$$

\n
$$
\theta_{0,m} = \frac{N_{y=0,x_m=1}}{N_{y=0}}
$$

\n
$$
\theta_{1,m} = \frac{N_{y=1,x_m=1}}{N_{y=1}}
$$

\n
$$
\forall m \in \{1,\ldots,M\}
$$

Maximum Likelihood Estimation

 $N_{u=1} = \sum^{N} \mathbb{I}(u^{(i)} = 1)$

Training: Find the **class-conditional** MLE parameters

Count Variables:

$$
N_{y=0} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)
$$

$$
N_{y=0, x_m=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_m^{(i)} = 1)
$$

Maximum Likelihood Estimators: . . .

$$
\phi = \frac{y}{N}
$$

$$
\theta_{0,m} = \frac{N_{y=0,x_m=1}}{N_{y=0}}
$$

$$
\theta_{1,m} = \frac{N_{y=1,x_m=1}}{N_{y=1}}
$$

$$
\forall m \in \{1,\dots,M\}
$$

 N_{u-1}

Data:

A When survey is active, respond at pollev.com/10301601polls

Lecture 17: In-Class Poll

 Co underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app

Maximum Likelihood Estimation

Training: Find the **class-conditional** MLE parameters

 $N_{u-1} = \sum_{i=1}^{N} \mathbb{I}(u^{(i)} = 1)$

Count Variables:

$$
N_{y=0} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)
$$

$$
N_{y=0, x_m=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_m^{(i)} = 1)
$$

Maximum Likelihood Estimators: \cdots

$$
\phi = \frac{y-1}{N}
$$
\n
$$
\theta_{0,m} = \frac{N_{y=0,x_m=1}}{N_{y=0}}
$$
\n
$$
\theta_{1,m} = \frac{N_{y=1,x_m=1}}{N_{y=1}}
$$
\n
$$
\forall m \in \{1,\dots,M\}
$$

 $N_{\alpha-1}$

Question 2: bxc. What is the ALE of $\theta_{0,1}$? (A) 0/6(B) 1/6(C) 2/6(D) 3/6 **(E)** 4/6 (F) 5/6 (G) 6/6 (H) $_{\textrm{\tiny{the above}}}$

Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app

Maximum Likelihood Estimation

 $N_{u=1} = \sum_{i=1}^{N} \mathbb{I}(u^{(i)} = 1)$

Training: Find the **class-conditional** MLE parameters

Count Variables:

$$
N_{y=0} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)
$$

$$
N_{y=0, x_m=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_m^{(i)} = 1)
$$

Maximum Likelihood Estimators:

$$
\phi = \frac{N_{y=1}}{N}
$$

$$
\theta_{0,m} = \frac{N_{y=0,x_m=1}}{N_{y=0}}
$$

$$
\theta_{1,m} = \frac{N_{y=1,x_m=1}}{N_{y=1}}
$$

$$
\forall m \in \{1, \dots, M\}
$$

MLE for Naïve Bayes is a splendid learning algorithm for when you have say billions of training examples and hundreds of millions of features!

You only need one pass through the data to perform some counting.

MAP ESTIMATION FOR BERNOULLI NAÏVE BAYES

MLE

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate **as much** probability mass **as possible** to the things we have observed…

…**at the expense** of the things we have **not** observed

A Shortcoming of MLE

For Naïve Bayes, suppose we **never** observe the word "unicorn" in a real news article.

In this case, what is the MLE of the following quantity?

$$
p(x_{\text{unicorn}} | y = real) = 0
$$

Recall:
$$
\theta_{k,0} = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_k^{(i)} = 1)}{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)}
$$

Now suppose we observe the word "unicorn" at test time. What is the posterior probability that the article was a real article?

$$
p(y = real | \mathbf{x}) = \frac{p(\mathbf{x}|y = real)p(y = real)}{p(\mathbf{x})}
$$

Recipe for Closed-form MAP Estimation

- 1. Assume data was generated i.i.d. from some model (i.e. write the generative story)
θ ~ p(**θ**) and then for all i: x⁽ⁱ⁾ ~ p(x|**θ**)
- 2. Write log-likelihood $\ell_{\text{MAP}}(\theta) = \log p(\theta) + \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$
- 3. Compute partial derivatives (i.e. gradient) $\partial \ell_{\text{MAP}}(\mathbf{\theta})/\partial \theta_1 = ...$

$$
\frac{\partial \ell_{\sf MAP}(\Theta)/\partial \Theta_2 = \dots}{\dots}
$$

 $\partial \ell_{\text{MAP}}(\theta)/\partial \theta_M = ...$

4. Set derivatives to zero and solve for **θ**

 $\partial \ell_{\text{MAP}}(\theta)/\partial \theta_{\text{m}} = 0$ for all m $\in \{1, ..., M\}$ **θ**MAP **=** solution to system of M equations and M variables

5. Compute the second derivative and check that *l*(**θ**) is concave down at **θ**MAP

Model 1: Bernoulli Naïve Bayes **MAP Estimation (Beta Prior)**

2. Likelihood:**1. Generative Story:** The parameters are drawn $\ell_{MAP}(\phi, \theta)$ $=$ log $[p(\phi, \theta | \alpha, \beta)p(\mathcal{D} | \phi, \theta)]$ once for the entire dataset.

Sw Uniform $[0,1]$ $\alpha = \beta = 10$

for $m \in \{1, \ldots, M\}$: $\mathcal{L} = \log \left[\left(\underbrace{p(\phi | \bullet \bullet)}_{m=1} \prod_{m=1}^{M} \underbrace{p(\theta_{0,m} | \alpha, \beta)}_{m=1} \right) \left(\prod_{i=1}^{N} p(\mathbf{x}^{(i)}, y^{(i)} | \phi, \boldsymbol{\theta}) \right) \right]$ for $y \in \{0,1\}$: $\theta_{m,y} \sim \text{Beta}(\alpha, \beta)$ **3. MAP Estimators:** $(\phi^{MAP}, \theta^{MAP}) = \argmax_{\phi, \theta} \ell_{MAP}(\phi, \theta)$ **for** $i \in \{1, \ldots, N\}$: ϕ, θ $y^{(i)} \sim$ Bernoulli (ϕ) Take derivatives, set to zero and solve… SVECOCOI for $m \in \{1, ..., M\}$: $\phi = \frac{N_{y=1}}{N}$ $x_m^{(i)} \sim \text{Bernoulli}(\theta_{u^{(i)},m})$ $\begin{cases} \theta_{0,m} = \dfrac{(\alpha-1)+N_{y=0,x_m=1}}{(\alpha-1)+(\beta-1)+N_{y=0}} \\ \theta_{1,m} = \dfrac{(\alpha-1)+N_{y=1,x_m=1}}{(\alpha-1)+(\beta-1)+N_{y=1}} \end{cases}$ \sqrt{N}

 $\forall m \in \{1, \ldots, M\}$

$$
N_{y=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)
$$

$$
N_{y=0} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)
$$

$$
N_{y=0, x_m=1} = \sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_m^{(i)} = 1)
$$

. . .

30

THE NAÏVE BAYES FRAMEWORK

Many NB Models

There are many Naïve Bayes models!

- **1. Bernoulli** Naïve Bayes:
	- for **binary features**
- **2. Multinomial** Naïve Bayes:
	- for **integer features**
- **3. Gaussian** Naïve Bayes:
	- for **continuous features**
- **4. Multi-class** Naïve Bayes:
	- for classification problems with > 2 classes
	- **event model** could be any of Bernoulli, Gaussian, Multinomial, depending on features

Model 2: Multinomial Naïve Bayes

Option 1: Integer vector (word IDs) **Support:**

$$
\mathbf{x} = [x_1, x_2, \dots, x_M]
$$
 where $x_m \in \{1, \dots, K\}$ a word id.

Generative Story:

$$
\begin{aligned}\n\text{for } i \in \{1, \dots, N\} \text{:} \\
\begin{aligned}\n&\longrightarrow y^{(i)} \sim \text{Bernoulli}(\phi) \\
\text{for } j \in \{1, \dots, M_i\} \text{:} \\
&\longrightarrow x_j^{(i)} \sim \text{Multinomial}(\theta_{y^{(i)}}, 1)\n\end{aligned}\n\end{aligned}
$$

Model:

$$
p_{\phi,\theta}(\boldsymbol{x},y) = p_{\phi}(y) \prod_{k=1}^{K} p_{\boldsymbol{\theta}_k}(x_k|y)
$$

$$
= (\phi)^y (1-\phi)^{(1-y)} \prod_{j=1}^{M_i} \theta_{y,x_j}
$$

Model 3: Gaussian Naïve Bayes
\nSupport:
\n
$$
x \in \mathbb{R}^{K}
$$
\nModel: Product of prior and the event model
\n
$$
p(x, y) = p(x_1, ..., x_K, y)
$$
\n
$$
= p(y) \prod_{k=1}^{K} p(x_k|y)
$$
\nGaussian Naive Bayes assumes that $p(x_k|y)$ is given by a Normal distribution.

Model 4: Multiclass Naïve Bayes

Model:

The only change is that we permit *y* to range over *C* classes.

$$
p(\boldsymbol{x}, y) = p(x_1, \dots, x_K, y)
$$

\n
$$
= p(y) \prod_{k=1}^K p(x_k|y)
$$

\nNow, $y \sim$ Multinomial($\phi, 1$) and we have a separate conditional distribution $p(x_k|y)$ for each of the C classes.

Generic Naïve Bayes Model

Support: Depends on the choice of **event model**, *P(Xk|Y)*

Model: Product of **prior** and the event model *K* Matt Listikus $\overline{\Pi}$ $P(X, Y) = P(Y)$ $P(X_k|Y)$ *k*=1

Training: Find the **class-conditional** MLE parameters

For *P(Y)*, we find the MLE using all the data. For each $P(X_k|Y)$ we condition on the data with the corresponding **Classification:** Find the class that maximizes the posterior $\hat{y} = \argmax_{y} p(y|\mathbf{x})$ *y*

Generic Naïve Bayes Model

Classification:

VISUALIZING GAUSSIAN NAÏVE BAYES

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

⁴⁴ Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Figure from William Cohen

Figure from William Cohen

48

Classification with Naive Bayes

z-axis is the difference of the posterior probabilities: $p(y=1 | x) - p(y=0 | x)$

Figures from William Cohen

variance learned for each class and the so-

Classification with Naive Bayes

variance learned for each class \blacksquare

Classification with Naive Bayes

variance = 1 \vert 54

Classification with Naive Bayes

variance learned for each class $\frac{1}{55}$

One Pocket

variance learned for each class $\frac{1}{57}$

variance learned for each class \blacksquare

Summary

- 1. Naïve Bayes provides a framework for **generative modeling**
- 2. Choose $p(x_m | y)$ appropriate to the data (e.g. Bernoulli for binary features, Gaussian for continuous features)
- 3. Train by **MLE** or **MAP**
- 4. Classify by maximizing the posterior

Learning Objectives

Naïve Bayes

You should be able to…

- 1. Write the generative story for Naive Bayes
- 2. Create a new Naive Bayes classifier using your favorite probability distribution as the event model
- 3. Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of Bernoulli Naive Bayes
- 4. Motivate the need for MAP estimation through the deficiencies of MLE
- 5. Apply the principle of maximum a posteriori (MAP) estimation to learn the parameters of Bernoulli Naive Bayes
- 6. Select a suitable prior for a model parameter
- 7. Describe the tradeoffs of generative vs. discriminative models
- 8. Implement Bernoulli Naives Bayes
- 9. Employ the method of Lagrange multipliers to find the MLE parameters of Multinomial Naive Bayes
- 10. Describe how the variance affects whether a Gaussian Naive Bayes model will have a linear or nonlinear decision boundary

DISCRIMINATIVE AND GENERATIVE CLASSIFIERS

Generative vs. Discriminative

• **Generative Classifiers:**

- Example: Naïve Bayes
- Define a joint model of the observations **x** and the labels y: *p*(*x, y*)
- Learning maximizes (joint) likelihood
- Use Bayes' Rule to classify based on the posterior: $p(y|\mathbf{x}) = p(\mathbf{x}|y)p(y)/p(\mathbf{x})$
- **Discriminative Classifiers:**
	- Example: Logistic Regression
	- $-$ Directly model the conditional: $p(y|\mathbf{x})$
	- Learning maximizes conditional likelihood

Generative vs. Discriminative Disc. Gen. $y^{(i)}|\boldsymbol{\theta})$ $p(\mathbf{x}^{(i)},$ **MLE** $\left(i\right)$ $, \boldsymbol{\theta}$ $\mathbf{x}^{(i)}, \boldsymbol{\theta}$ $\left. \left\langle \prod p(\mathbf{x}^{(i)},y^{(i)}|\boldsymbol{\theta}\right)\!\! \left\langle \right. \right\rangle p(\boldsymbol{\theta}) \right\}$ $p(\boldsymbol{\theta})$ $\overline{\mathcal{C}}$ **MAP** foiot (hub) Concitoral

Generative vs. Discriminative

Whiteboard

– MAP Estimation and Regularization

Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002) [Assume that we are learning from a finite training dataset]

If model assumptions are correct: Naive Bayes is a more efficient learner (requires fewer samples) than Logistic Sample Complexity Regression

If model assumptions are incorrect: Logistic Regression has lower asymptotic error, and does better than Naïve Bayes

Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters

"On Discriminative vs Generative Classifiers: …." Andrew Ng and Michael Jordan, NIPS 2001.

Naïve Bayes vs. Logistic Reg.

Features

Naïve Bayes:

Features *x* are assumed to be conditionally independent given *y*. (i.e. Naïve Bayes Assumption)

Logistic Regression:

No assumptions are made about the form of the features *x*. They can be dependent and correlated in any fashion.

Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naïve Bayes:

Parameters are probabilities \rightarrow Beta prior (usually) pushes probabilities away from zero / one extremes

Logistic Regression: Parameters are not probabilities \rightarrow Gaussian prior encourages parameters to be close to zero (effectively pushes the probabilities away from zero / one extremes)

 $B = d = 10$

Generative vs. Discriminative

Learning (Parameter Estimation)

Naïve Bayes: Parameters are decoupled \rightarrow Closed form solution for MLE
 $\frac{\partial L}{\partial \phi} = f(\phi)$

Logistic Regression:

Parameters are coupled \rightarrow No closed form solution – must use iterative optimization techniques instead