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Reminders

Lecture on Friday!

Homework 6: Learning Theory | Generative Models
— Out: Thu, Oct. 21
— Due: Thu, Oct. 28 at 11:59pm

— Same collaboration policy as Homework 3
* Opt-in to homework groups on Piazza

Midterm Exam 2
— Tue, Now. 2, 6:30pm - 8:30pm
Practice for Exam 2

— Practice problems released on course website
 (Tentatively) Out: Thu, Oct. 21

— Mock Exam 2
 (Tentatively) Out: Thu, Oct. 28
* Due Sun, Oct. 31 at 11:59pm



MIDTERM EXAM LOGISTICS



Midterm Exam

 Time/Location
— Time: Tue, Nov. 2, 6:30pm — 8:30pm

— Location & Seats: You have all been split across multiple rooms.
Everyone has an assigned seat in one of these room. Please watch
Piazza carefully for announcements.

* Logistics
— Covered material: Lecture 9 — Lecture 17
— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You z;re allowed to bring one 8% x 11 sheet of notes (front and
back



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Review prior year’s exam and solutions
(we’ll post them)

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section
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Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something

— Don’t leave any answer blank!
— If you make an assumption, write it down
— If you look at a question and don’t know the
answer:
* we probably haven’t told you the answer

* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it




Topics for Midterm 1

 Foundations e (lassification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization -
* Regression

* Important Concepts — Linear Regression

— Overfitting
— Experimental Design



Topics for Midterm 2

* (lassification * Learning Theory
— Binary Logistic — PAC Learning
Regression * Generative Models
* Important Concepts — Generative vs.
— Stochastic Gradient Discriminative
Descent — MLE /| MAP
— Regularization — Naive Bayes

— Feature Engineering
* Feature Learning
— Neural Networks
— Basic NN Architectures
— Backpropagation



SAMPLE QUESTIONS



Sample Questions

3.2 Logistic regression

Given a training set {(z;,v:),i = 1,...,n} where z; € R? is a feature vector and y; € {0,1}
is a binary label, we want to find the parameters w that maximize the likelihood for the
training set, assuming a parametric model of the form

1
1+ exp(—wTz)

p(y = 1llz;w) =

The conditional log likelihood of the training set is

l(w) = Zyi log p(yi, |75 w) + (1 — i) log(1 — p(yi, |75 w)),
i=1

and the gradient is

n

Vi(w) = Z(?h — p(yilTs; w)) ;.

=1

(b) [5 pts.] What is the form of the classifier output by logistic regression?

X) R olyIR)>
- O’;
['(-)‘()-:i*fﬁlwo( E(\’\X - \ ‘p ( “"x)
(c) [2 pts.] Extra Credi® Consider'the case with 'gry featu&",t:.g’w{\{(), 1}4 C RY,

where feature x; is raré and happens to appear in the training set with only label 1.

What is w7 Is the gradient ever zero for any finite w? Why is it important to include
a regularization term to control the norm of w?
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Samples Questions
" ples Q

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D"*" and tested on a separate
test set D', You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to O.

1. [4 pts] Which of the following is expected to help? Select all that apply.
o

(a) Increase the training data size.
(b) Decrease the training data size.

(c) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth).

‘/ (d) Decrease model complexity.

(e) Train on a combination of D"" and D*** and test on D'

(H—Cenelude-that Machine [earning does not work.
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Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D"*" and tested on a separate
test set D', You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to O.

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
of the following two plots is your plot expected to look like?
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Sample Questions

5 Learning Theory [20 pts.]

(a) [3 pts.] T or@ It is possible to label 4 points in R? in all possible 2* ways via linear
e . LR
\i\\ \kt)\‘o Q

s%égors in R=. 0 o 74
4

® o
(d) [3 pts.] T or(F) The VC dimension of a concept cldss with infinite size is also infinite.

—D

v 7
(f) [3 pts.] @r F: Given a realizable concept. class and a set of training instances, a
consistent learner will output a concept that achieves 0 error on the training instances.
L\— asg\'ol.w

gvof W
o addr —

o
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Sample Questions




Sample Questions

1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed Xi, ..., X,, ~ Bernoulli(#).
We are going to derive the MLE for 6. Recall that a Bernoulli random variable X takes

values in {0, 1} and has probability mass function given by

P(X;0) =6%(1 —0)" .

(a) [2 pts.] Derive the likelihood, L(6; X1, ..., X,).

~ 1
(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: 6 = — (37" | X,).
n



Sample Questions

1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your

answer:

(a) [2 pts.@r F: In the limit, as n (the number of samples) increases, the MAP and
MLE e ates become the same.



Sample Questions




QL\I_\Ia'l've Bayes vs. Logistic Regression
Question:

You just started working at a
new company that manufactures
comically large pennies. Your
manager asks you to build a
binary classifier that takes an
image of a penny (on the factory
assembly line) and predicts
whether or not it has a defect.

Answer:

What follow-up questions would
you pose to your manager in
order to decide between using a
Naive Bayes classifier and a
Logistic Regression classifier?



Question 4

Join by Web

€) Goto PollEv.com

€) Enter10301601POLLS

a Respond to activity

@ Instructions not active. Log in to activate

SEart the pwesentation 10 see bve content. For screen share software, shave the entir soreen. Get help at pollev.comapp

.



MOTIVATION: STRUCTURED
PREDICTION



Structured Prediction

* Most of the models we’ve seen so far were
for classification
— Given observations: X = (X}, X5 vun, Xg)
— Predict a (binary) label: y

* Many real-world problems require
structured prediction
— Given observations: X = (X}, X5 oo, Xg)
— Predict a structure: Y=0,Y .0, V)

* Some classification problems benefit from
latent structure



Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {.’B(”), y") N
Sample 1: ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
0 6 6 0 ©
Sample 3 ‘ ‘ @ ‘ ‘
© O 6 ©
Sample 4: ‘ ‘ ‘ ‘ ‘




Dataset for Supervised
Handwriting Recognition

pata: D = {x™, yMN_

Q@Q@@QQ@Q@ F

ANEGEEEEEN |-
00000000 -
DL HAADL [CR

0000000 } o

II<O¢@EI

Figures from (Chatzis & Demiris, 201

Sample 1

Sample 2:

Sample 2




Dataset for Supervised
Phoneme (Speech) Recognition

Data: D = {z™, y"N_

@ CCQ‘CQC‘
-

Figures from (Jansen & Niyogi, 2013)



Word Alignment / Phrase Extraction

* Variables (boolean):
— For each (Chinese phrase,
English phrase) pair,
are they linked?

 Interactions:
— Word fertilities
— Few “jumps” (discontinuities)

— Syntactic reorderings

— “ITG contraint” on alignment

— Phrases are disjoint (?)

32



Congressional Voting

* Variables:
— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

 Interactions: o

— Words used by ¢
representative and their
vote

— Pairs of representatives
and their local context —




Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



|
{

Case Study: Object Recognition

X

leopard

Data consists of images x and labels y.

[lama

} Y&

35



Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches” e

* Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at

: : leopard
train or test time



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time
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Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess data into
“patches”

* Posit alatent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical «f ‘
model with these BE gt
latent variables in » e

. i { + B ~
mind i

e zisnotobserved at

train or test time

el vy Taih SEPTEERS W WESSR VTR
%é 1
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Structured Prediction




Machine Learning




Machine Learning

l"‘/’h ZANBERY



BACKGROUND



Background: Chain Rule
of Probability




Background:
Conditional Independence

Random variables A and B are conditionally
independent given C' if:

== !

P(A,B|C) = P(A|C)P(B|C) (1)
— \)

or equivalently:

)P<AB,0>:P<@ G)

We write this as:

All B|C Later we will also
write: I<A, {C}, B>



HIDDEN MARKOV MODEL (HMM)



From Mixture Model to HMM

“Nalve Bayes”:

SO
\77\\;‘.

L

P(X,Y)
HMM:

Y

\

=PY1)(

\h—

215 %

HP Xi[Yo)p(¥y)

t=

1=

1

t=1

Xg‘/ XT i /X
P(Xt|Yt)) (Hp(nm_l)

t=2

)



HIDDEN MARKOV MODEL (HMM)



HMM Outline

Motivation
— Time Series Data

Hidden Markov Model (HMM)

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— Background: Markov Models
— From Mixture Model to HMM
— History of HMMs

— Higher-order HMMs

Training HMMs
— (Supervised) Likelihood for HMM
— Maximum Likelihood Estimation (MLE) for HMM
— EM for HMM (aka. Baum-Welch algorithm)

Forward-Backward Algorithm
— Three Inference Problems for HMM
— Great Ideas in ML: Message Passing
— Example: Forward-Backward on 3-word Sentence
— Derivation of Forward Algorithm
— Forward-Backward Algorithm
— Viterbi algorithm



Markov Models

Whiteboard

— Example: Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions

49



SQUIRREL
HILL SOUTH




Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (travel time).

p(0.5,5,0,C,2m,3m, 18m,9m.27m) = (8% .2%.1%.03%...)
N
S
O|.8
S S
S

@(\(t\\ﬁ Q
5 : S 8 5
E L\E.' g . 2m 3m E L\E.I 0% @
A @3 O|.1].2
01.02/.03 S |.01/.020
o/0|0 Clojo|o
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states [ travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,8,0,C,2m, 3m, 18m, 9m, 27m) = (.8 *.08* 2% 7% .03 %...)

gy —e
o(8) I .(;’08 02

2
- n
-

(

g 88
—| A0 ™
O|.1].2].3 @
S.o1.0733&
iIClo|o0|0 N
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From Mixture Model to HMM

“Naive Bayes”: HP X:|Ye)p(Y2)

t=1

=

X, X,

X it 3J/ T o
o = es) (T



From Mixture Model to HMM

T
“Naive Bayes H (X¢|Ye)p

T

T
P(X,Y|Yp) = | | P(X:|Yo)p(Yi|Yi-1)

t=1




SUPERVISED LEARNING FOR
HMMS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model HM
(i.e. write the generative story) M

x(0) ~ p(x|0)
Write log-likelihood

40) =log p(x"[0) + ... +log p(x(N]|0)
Compute partial derivatives

0((0)/00, = ...

0((0)/00, = ...

0((0)/00,, = ...
Set derivatives to zero and solve for 6
0((0)/06,, =0 forallme{y,..., M}

OMLE =

Compute the second derivative and check that {0) is concave down
at eMLE



MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M -sided (weighted) die NV times. That is, we have data

D= {zW}N, J vechor

where z() € {1,..., M} and z¥) ~ Categorical(¢).

2. Arandom variable is Categorical written X ~ Categorical(¢)
iff
P(X =z) =p(z;¢) =
wherez € {1,..., M} and Zm 1 Om = 1. The log-likelihood

of the data becomes e QS,AZ O

M

Zlogqu(;) s.t. Z ¢m =1

m=1

Sy,

S— ——

3. Solving this constrained optimization problem yields the maxi-
mum likelihood estimator (MLE):

N QA!LE Nz=m _ Zf\;l H(l'(i) =m)
m N N

65



Hidden Markov Model
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Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Supervised Learning for HMMs

Learning an Daks . D- GO 7&))3“ x X, .., %]
HMM maERag b T
decomposes Sl
into solving two L (A,BC)- 2_ /(J F(x“,/(‘)MBC)
(independent) g o
Mixture Models ng(\/m Z P(/t fer (f*")? g )I
v‘+ l “ravrgon eWuss iovi
MLE:

,&)‘%,a = QT)M“K /Q(ABC)

= A jmax Z /J F(\/l )('3 3
= Cen solve n
____________________ ' B = 5"")‘ Z. Z,Io P(/t )Ii- , \) ) clowd p""Ml

Z

--------- =1 ='). which \/'.€\<-\$--~

. 1 «
i @ i A = anrjwmx L%_I tz;ll?jf) })’ ) A) /
<, 1l=r(‘/'U= D ik
| : 2 N\
L 1\g)l(. = ( ek od \ﬂ»n- ) o t>,3,
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y; = j) = Ak, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, Vt, k

Assumption: y, = START : 3

Generative Story:

For notational
convenience, we fold the

th o~ MUItinomial(BYt_l ) Vit initial probabilities C into
. . the transition matrix B by
X ~ MultlnomlaI(Ayt) vVt our assumption.

T E



Hidden Markov Model




Supervised Learning for HMMs

Learning an : F(3® 3@
HMM D" x / )jl. ¢

N
decomposes . _ 1 €) -G
into solving two Libeilood /[A/B> B ?T ks p& )’7 )

independent _ NT o 91 @
e ol =z [ 1op 4 1, pEHEAT

_,L-E: /2 = AYyw<x I(A EB
A? = QX [é /.7 f(x( )y"A)I
e S e 2 [ oyttt
() | &m sohe w0 clowd D o sl
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