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Reminders

* Homework 6: Learning Theory [ Generative Models
— Out: Thu, Oct. 21
— Due: Thu, Oct. 28 at 11:59pm

— Same collaboration policy as Homework 3
* Opt-in to homework groups on Piazza

e Midterm Exam 2
— Tue, Nov. 2, 6:30pm - 8:30pm
 Practice for Exam 2

— Practice problems released on course website
* (Tentatively) Out: Thu, Oct. 21

— Mock Exam 2
* (Tentatively) Out: Thu, Oct. 28
* Due Sun, Oct. 31 at 11:59pm




SUPERVISED LEARNING FOR
HMMS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(0) ~ p(x|0)
Write log-likelihood

40) =log p(x"[0) + ... +log p(x(N]|0)
Compute partial derivatives

0((0)/00, = ...

0((0)/00, = ...

0((0)/00,, = ...
Set derivatives to zero and solve for 6
0((0)/06,, =0 forallme{y,..., M}

OMLE =

Compute the second derivative and check that {0) is concave down
at eMLE



MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M -sided (weighted) die NV times. That is, we have data

D= {x(i)}fl\;l
where () € {1,..., M} and (") ~ Categorical(¢).

2. Arandom variable is Categorical written X ~ Categorical(¢)
iff
P(X =z) =p(z;¢) =
wherez € {1,..., M} and Zm , ®m = 1. The log-likelihood
of the data becomes

M

Zlogqu(;) s.t. Z ¢m =1

m=1

3. Solving this constrained optimization problem yields the maxi-
mum likelihood estimator (MLE):

N i
QA!LE Nz—m _ Zi:l H(l'( = m)
m N N
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Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Supervised Learning for HMMs
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y; = j) = Ak, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, Vt, k

Assumption: y, = START : 3

Generative Story:

For notational
convenience, we fold the

th o~ MUItinomial(BYt_l ) Vit initial probabilities C into
. . the transition matrix B by
X ~ MultlnomlaI(Ayt) vVt our assumption.

T E
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Supervised Learning for HMMs

Learning an : F(3® 3@
HMM D" x / )jl. ¢

N
decomposes . _ 1 €) -G
into solving two Libeilood /[A/B> B ?T ks p& )’7 )

independent _ NT o 91 @
e ol =z [ 1op 4 1, pEHEAT

_,L-E: /2 = AYyw<x I(A EB
A? = QX [é /.7 f(x( )y"A)I
e S e 2 [ oyttt
() | &m sohe w0 clowd D o sl
| : A .,
(5 k= #Gek ~ 89)
_________ **(y“"'ﬂ*)




TO HMMS AND BEYOND...



Unsupervised Learning for HMMs

Unlike discriminative models p(y|x), generative models p(x,y)
can maximize the likelihood of the data D = {x(, x(), ..., x(N)}
where we don’t observe any y’s.

This unsupervised learning setting can be achieved by finding
parameters that maximize the marginal likelihood

We optimize using the Expectation-Maximization algorithm

Since we don’t observe y, we define the marginal probability:

po(x) = > _ po(x,y)

yey
The log-likelihood of the data is thus:

N
¢(0) = log [ [ po(x®)
=1

(4

N
— Zlog Z po(x'",y)
1=1

yeYy




HMMs: History

« Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
« Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on |[E from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA

16
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Higher-order HMMs

* 15t-order HMM (i.e. bigram HMM)

REERE

« 2" order HMM (i.e. trlgram Hl\/\l\/\)




Higher-order HMMs

* 1t-order HMM (i.e. bigram HMM)

wiﬁ

Hidden HMM (i.e. trlgram HIV\IV\)

18



BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers




Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

only sek
my incoming

messages
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Great Ideas in ML: Message Passing
Count the soldiers

I
1
\7)&/< 1 \)j/<
|
Sonly sek R
my incoming
messages

5% o -
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree




Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree




Great Ideas in ML: Message Passing
Each soldier recetves reports from all branches of tree
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Great Ideas in ML: Message Passing
Each soldier recetves reports from all branches of tree

/7
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INFERENCE FOR HMMS



Inference

Question:

True or False: The joint probability of the observations
and the hidden states in an HMM is given by:

T T-1
H Ayt,wt H Byt,yt+1
t=1

t=1

PX=xY=y)=0C,

Recall:

Emission matrix, A, where P(X; = k|Y; = j) = A, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = Bj , Vt, k
Initial probs, C, where P(Y; = k) = Ck, Vk



Inference

Question:

True or False: The probability of the observations
in an HMM is given by:

Recall:

Emission matrix, A, where P(X; = k|Y; = j) = A, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = Bj , Vt, k
Initial probs, C, where P(Y; = k) = Ck, Vk



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



THE SEARCH SPACE FOR
FORWARD-BACKWARD



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {.’B(”), y") N
Sample 1: ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
0 6 6 0 ©
Sample 3 ‘ ‘ @ ‘ ‘
© O 6 ©
Sample 4: ‘ ‘ ‘ ‘ ‘

34



Example: HMM for POS Tagging

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

= (3*.8%*2% 5% )

p(n, vV, p, d, n, time, flies, like, an, arrow)

<START>

W |~ | time

L [NV | time
S |n || flies
W NN | like

i
f

35



Example: HMM for POS Tagging

Could be verb or noun Could be adjective or verb  Could be noun or verb

36



Inference for HMMs

Whiteboard

— Brute Force Evaluation
— Forward-backward search space



THE FORWARD-BACKWARD
ALGORITHM



Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb

40



Forward-Backward Algorithm

ANaAwa




Forward-Backward Algorithm

(&) Gy (&

* Let’s show the possible values for each variable



Forward-Backward Algorithm

* Let’s show the possible values for each variable



Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment



Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
45



Forward-Backward Algorithm

V nn a
v i1|6]|4
n| 8 4 /0.1
. al0.1/8]|o0 v v
N
[ ]
START n n \ n
O e 0
cl 0O
v 3|53
n 4|52
a |0.10.2(0.1

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
46



Viterbi Algorithm: Most Probable Assignment

) A A A
%\%@@ % B !
! A (a,END)
: ‘ A \ Wtajs,n)

A(pref., a)

* Sop(van)=(1/7) * product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product



Viterbi Algorithm: Most Probable Assignment

s A A A
2T, KAy s
A (a,END)

A(pref., a)

* Sop(van)=(l/Z) * product weight of one path

48



Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/Z) * total weight of A 49



Forward-Backward Algorithm: Finds Marginals

: AN T\
A Vs :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, =n)
= (1/Z) * total weight of A 50



Forward-Backward Algorithm: Finds Marginals

LD
A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = v)
= (1/Z) * total weight of A 3



Forward-Backward Algorithm: Finds Marginals

: AN T\
A Vs :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, =n)
= (1/Z) * total weight of A 52



Forward-Backward Algorithm: Finds Marginals

- = total we}ght of these

path prefixes

(found by dynamic programming: matrix-vector products) >



Forward-Backward Algorithm: Finds Marginals

Ba(m) = total weight of these
path suffixes

(found by dynamic programming: matrix-vector products) o



Forward-Backward Algorithm: Finds Marginals

- = total We)i‘ght of these - = total weight of these

path prefixes (2 + b+ ¢) path suffixes (x +y +z)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

. % o
4 Alpref, n)

total weight of o/l paths through A
= o) Apref,m) fy(m)

56



Forward-Backward Algorithm: Finds Marginals

A “belief that Y, =v”’
% “belief that ¥, =n"

/
A(pref., v)

total weight of A

= o,(v) A(pref,v) B,(v)

57



Forward-Backward Algorithm: Finds Marginals

“belief that Y, =v”’

N “belief that ¥, =n"
B

“belief that ¥, =3a”

sum=272
A(pret., a) (total weight

of all paths)
total weight of A
= o,(a) A(pref,a) B,(a)

58



Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb

59



Forward-Backward Algorithm

‘D&Ww oét(k) éP(x""V’(tz}’t’k\ Asw y‘,:ST/’rﬂT
Fé () 2 ‘)’(xén) -y X1 \Yt =k\ Y'm = END
© Tuhlae oo(SHD =1 & (k)=0 ¥&+START

B+ (EnD) =1 Br(k) -0 ¥kdEND }

/ ] [ T ‘,:'l}'u
lohes 'M'-‘OL’- “AL WS e ?(b\qﬁ /
@ ];' ‘é'= ') ey l : ‘}SL: :F&:\ m“'\i)‘r Haw 4 Q?Gmklz
i k"-- l’ o-y K :

| &
=t (k> ) F (Xt | L k) %| Xt (‘3) P(Yt =k ’)’f-/"‘ﬁ

@ For £=T,...,T :
For k=1, ..., /(K
Fe(k)= Ji_' f(’%ﬂ\Y&u‘D Ft*'()) F(Y*"'::} lyb-:k\
D Congute \>(R)—— o, (WD) ) Eveluato)

© Cople plyesk |R) = W) Bel)  THayoals]
p(x)

61



