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Reminders
• Homework 6: Learning Theory / Generative Models

– Out: Thu, Oct. 21
– Due: Thu, Oct. 28 at 11:59pm
– Same collaboration policy as Homework 3

• Opt-in to homework groups on Piazza 
– IMPORTANT: you may only use 2 grace days on Homework 6

• Last posible moment to submit HW6: Sat, Oct. 30 at 11:59pm

• Midterm Exam 2
– Tue, Nov. 2, 6:30pm – 8:30pm

• Practice for Exam 2
– Practice problems released on course website

• (Tentatively) Out: Thu, Oct. 21
– Mock Exam 2

• (Tentatively) Out: Thu, Oct. 28
• Due Sun, Oct. 31 at 11:59pm
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SUPERVISED LEARNING FOR 
HMMS
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Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
!l(θ)/!θ1 = …
!l(θ)/!θ2 = …
…
!l(θ)/!θM = …

4. Set derivatives to zero and solve for θ
!l(θ)/!θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE
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MLE of Categorical Distribution
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HMM Parameters:

Hidden Markov Model
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Training HMMs

Whiteboard
– (Supervised) Likelihood for an HMM
– Maximum Likelihood Estimation (MLE) for HMM
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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HMM Parameters:

Assumption:
Generative Story: 

Hidden Markov Model
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y0 = START
For notational 

convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



Joint Distribution: 

Hidden Markov Model
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Supervised Learning for HMMs
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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TO HMMS AND BEYOND…
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Unsupervised Learning for HMMs
• Unlike discriminative models p(y|x), generative models p(x,y) 

can maximize the likelihood of the data D = {x(1), x(2), …, x(N)} 
where we don’t observe any y’s. 

• This unsupervised learning setting can be achieved by finding 
parameters that maximize the marginal likelihood

• We optimize using the Expectation-Maximization algorithm
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Beyond the scope of 

today’s lecture!



HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion

• Used in Shannon’s work on information theory (1948)

• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.

• Late 80’s and 90’s: David Haussler  (major player in 
learning theory in 80’s) began to use HMMs for 
modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum

– Freitag thesis with Tom Mitchell on IE from Web 
using logic programs, grammar induction, etc.

– McCallum:  multinomial Naïve Bayes for text

– With McCallum, IE using HMMs on CORA

• …
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Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM
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Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM
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BACKGROUND: MESSAGE PASSING
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Great Ideas in ML: Message Passing
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Great Ideas in ML: Message Passing

3 
behind 
you

2 
before
you

there's
1 of me

Belief:
Must be
2 + 1 + 3 = 6 of 
us

only see
my incoming
messages

2 31

Count the soldiers
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Great Ideas in ML: Message Passing
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Must be
2 + 1 + 3 = 6 of 
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Belief:
Must be
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Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

1 of me

Each soldier receives reports from all branches of  tree
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adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

3 here

3 here

7 here
(= 3+3+1)

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing

7 here

3 here

3 here

Belief:
Must be
14 of us

Each soldier receives reports from all branches of  tree
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Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of  tree

7 here

3 here

3 here

Belief:
Must be
14 of us

wouldn't work correctly

with a 'loopy' (cyclic) graph
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INFERENCE FOR HMMS
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Inference
Question:
True or False: The joint probability of the observations 
and the hidden states in an HMM is given by:
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Recall:



Inference
Question:
True or False: The probability of the observations 
in an HMM is given by:
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Recall:



Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given 
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of 
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a 
hidden state, given a sequence of observations
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THE SEARCH SPACE FOR 
FORWARD-BACKWARD
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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time flies like an arrow

n v p d n<START>

Example: HMM for POS Tagging
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
sentence/tags with an assumption of dependence between adjacent tags.
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X3X2X1

Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Example: HMM for POS Tagging



Inference for HMMs

Whiteboard
– Brute Force Evaluation
– Forward-backward search space
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THE FORWARD-BACKWARD 
ALGORITHM
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X3X2X1

Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Forward-Backward Algorithm
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm
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• One possible assignment
• And what the 7 factors think of it …



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm
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Y2 Y3Y1
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find preferred tags
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Y2 Y3Y1
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find preferred tags
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• One possible assignment
• And what the 7 transition / emission factors think of it …
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Y2 Y3Y1

X3X2X1
find preferred tags
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …
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Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment
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• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product
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Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment
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• So p(v a n) = (1/Z) * product weight of one path

B(START,v)

B (v,a)

B(a,n)

B(a,END)
A(find,v)

A(pref., a)
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Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)

= (1/Z) * total weight of all paths through v



Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)
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Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags
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α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Forward-Backward Algorithm: Finds Marginals
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b2(n)
(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Y2 Y3Y1

X3X2X1
find preferred tags
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path 
through a state also 

includes a weight at that 
state.

So α(n)·β(n) isn’t enough.

The extra weight is the 
opinion of the emission 

probability at this variable.
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Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1
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find preferred tags
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

a

α2(a) A(pref., a) b2(a)

n

v

“belief that Y2 = n”
α2(a) b2(a)

“belief that Y2 = v”

A(pref., a)

a “belief that Y2 = a”

sum = Z
(total weight
of all paths)

v 0.1

n 0
a 0.4

v 0.2

n 0
a 0.8

divide 
by Z=0.5 

to get 
marginal 

probs



X3X2X1

Y2 Y3Y1
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Forward-Backward Algorithm
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