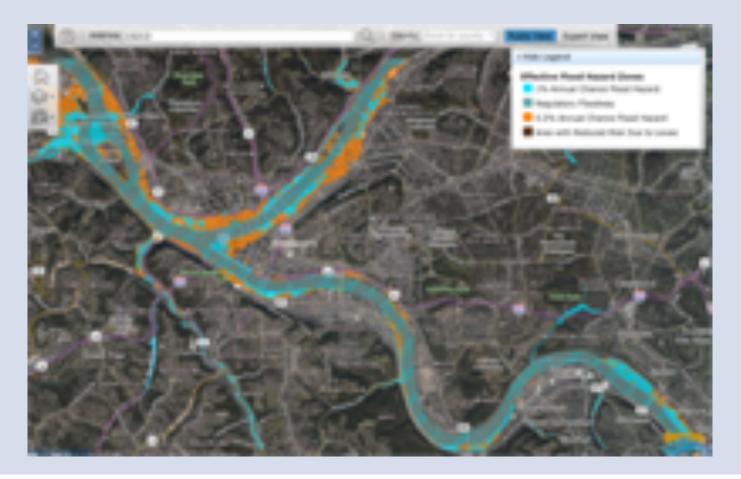


10-301/601 Introduction to Machine Learning


Machine Learning Department School of Computer Science Carnegie Mellon University

Decision Trees (Part I)

Matt Gormley & Henry Chai Lecture 2 Sep. 1, 2021

Q&A

- **Q:** Is my home here in Pittsburgh going to be washed away in a flood?
- A: Probably not, unless you live down by the river. You can explore flood risk information at <u>https://pafloodrisk.psu.edu/?address=15213</u>

Q: In Lecture 1, why did we use the term **experience** instead of just **data**?

A: Because our concern isn't just the data itself, but also where the data comes from (e.g. an agent interacting with the world vs. knowledge from a book).

As well, the word *experience* better aligns with the notion of what humans require in order to learn.

Q&A

- **Q:** Who is the single person that will most ensure that this course runs smoothly this semester?
- **A:** Okay... it's actually two people: Joshmin Ray and Fatima Kizilkaya

Q&A

Q: Are we using Canvas?

A: No.

Q&A

Q: Can we have the handwritten notes from lectures?

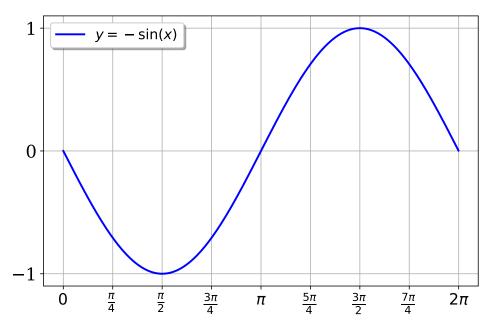
A: Okay fine...

https://idrv.ms/u/s!Aqk9RupCw3gqixxHH34qLcj5uJTQ?e=E9OYu7

... but just be warned that lots of education research suggests that taking your own notes is the best way to learn!

Reminders

- Homework 1: Background
 - Out: Wed, Sep 1 (2nd lecture)
 - Due: Wed, Sep 8 at 11:59pm
 - Two parts:
 - 1. written part to Gradescope
 - 2. programming part to Gradescope
 - unique policy for this assignment:
 - **1. two submissions** for written (see writeup for details)
 - 2. unlimited submissions for programming (i.e. keep submitting until you get 100%)
 - unique policy for this assignment: we will grant (essentially) any and all extension requests


Big Ideas

- 1. How to formalize a learning problem
- 2. How to learn an expert system (i.e. Decision Tree)
- 3. Importance of inductive bias for generalization
- 4. Overfitting

FUNCTION APPROXIMATION

Function Approximation

Quiz: Implement a simple function which returns -sin(x).

A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- 3. You only need to evaluate it for x in [0, 2*pi]

SUPERVISED MACHINE LEARNING

Medical Diagnosis

- Setting:
 - Doctor must decide whether or not patient is sick
 - Looks at attributes of a patient to make a medical diagnosis
 - (Prescribes treatment if diagnosis is positive)
- Key problem area for Machine Learning
- Potential to reshape health care

Medical Diagnosis

Interview Transcript

Date: Aug. 15, 2021 **Parties:** Matt Gormley and Doctor S. **Topic:** Medical decision making

- Matt: Welcome. Thanks for interviewing with me today.
- Dr. S: Interviewing...?
- Matt: Yes. For the record, what type of doctor are you?
- Dr. S: Who said I'm a doctor?
- Matt: I thought when we set up this interview you said—
- Dr. S: I'm a preschooler.
- Matt: Good enough. Today, I'd like to learn how you would determine whether or not your little brother is allergic to cats given his symptoms.
- Dr. S: He's not allergic.
- Matt: We haven't started yet. Now, suppose he is sneezing. Does he have allergies to cats?
- Dr. S: Well, we don't even have a cat, so that doesn't make any sense.
- Matt: What if he is itchy; Does he have allergies?
- Dr. S: No, that's just a mosquito.
- [Editor's note: preschoolers unilaterally agree that itchiness is always caused by mosquitos, regardless of whether mosquitos were/are present.]

- Matt: What if he's both sneezing and itchy?
- Dr. S: Then he's allergic.
- Matt: Got it. What if your little brother is sneezing and itchy, plus he's a doctor.
- Dr. S: Then, thumbs down, he's not allergic.
- Matt: How do you know?
- Dr. S: Doctors don't get allergies.
- Matt: What if he is not sneezing, but is itchy, and he is a fox....
- Matt: ... and the fox is in the bottle where the tweetle beetles battle with their paddles in a puddle on a noodle-eating poodle.
- Dr. S: Then he is must be a tweetle beetle noodle poodle bottled paddled muddled duddled fuddled wuddled fox in socks, sir. That means he's definitely allergic.
- Matt: Got it. Can I use this conversation in my lecture?
- Dr. S: Yes

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient x_1, x_1, \dots, x_M

	У	X ₁	X ₂	X ₃	x ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	Ν	Ν	Ν

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient x_1, x_1, \dots, x_M

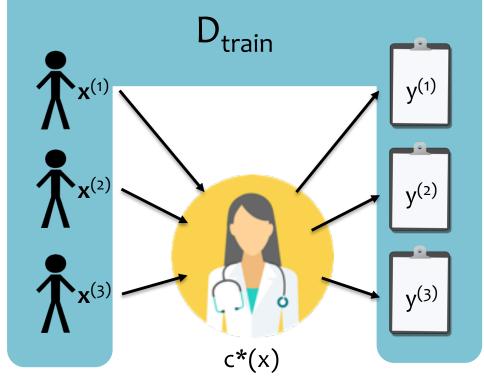
	У	X ₁	X ₂	x ₃	x ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	Ν	Ν	Ν
2	-	Ν	Y	Ν	Ν
3	+	Y	Y	Ν	Ν
4	-	Y	Ν	Y	Y
5	+	N	Y	Y	Ν

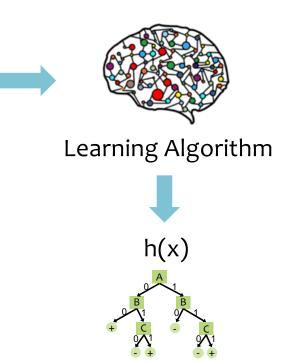
Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient x_1, x_1, \dots, x_M

	у	X ₁	X ₂	x ₃	x ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	y ⁽¹⁾ -	x ₁ ⁽¹⁾ Y	X ₂ ⁽¹⁾ N	x ₃ ⁽¹⁾ N	x ₄ ⁽¹⁾ N
2	y ⁽²⁾ -	X ₁ ⁽²⁾ N	x ₂ ⁽²⁾ Y	x ₃ ⁽²⁾ N	x ₄ ⁽²⁾ N
3	y ⁽³⁾ +	x ₁ ⁽³⁾ Y	x ₂ ⁽³⁾ Y	x ₃ ⁽³⁾ N	x ₄ ⁽³⁾ N
4	y ⁽⁴⁾ -	x ₁ ⁽³⁾ Y	x ₂ ⁽³⁾ N	x ₃ ⁽³⁾ Y	x ₄ ⁽³⁾ Y
5	y ⁽⁵⁾ +	x ₁ ⁽⁴⁾ N	x ₂ ⁽⁴⁾ Y	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ N

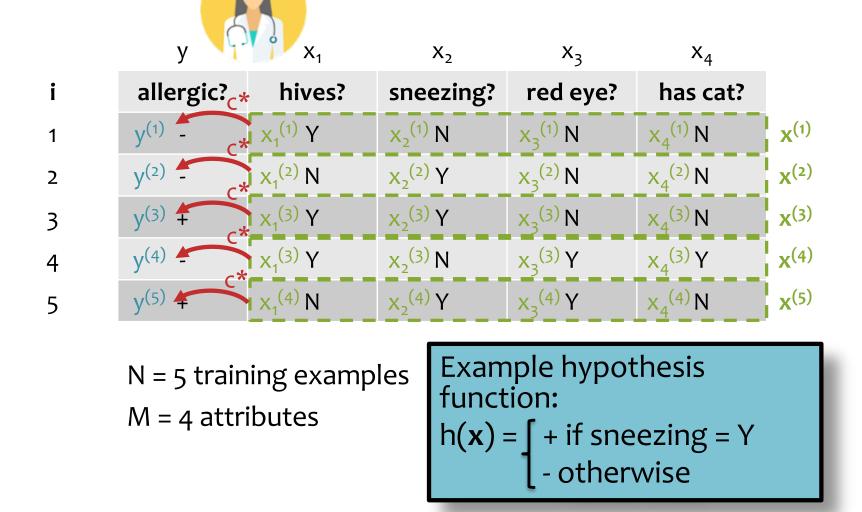
Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient x_1, x_1, \dots, x_M

	У	X ₁	X ₂	x ₃	x ₄	
i	allergic?	hives?	sneezing?	red eye?	has cat?	
1	y ⁽¹⁾ -	x ₁ ⁽¹⁾ Y	x ₂ ⁽¹⁾ N	x ₃ ⁽¹⁾ N	x ₄ ⁽¹⁾ N	X ⁽¹⁾
2	y ⁽²⁾ -	x ₁ ⁽²⁾ N	x ₂ ⁽²⁾ Y	x ₃ ⁽²⁾ N	x ₄ ⁽²⁾ N	x ⁽²⁾
3	y ⁽³⁾ +	X ₁ ⁽³⁾ Y	x ₂ ⁽³⁾ Y	x ₃ ⁽³⁾ N	x ₄ ⁽³⁾ N	х (3)
4	y ⁽⁴⁾ -	X ₁ ⁽³⁾ Y	x ₂ ⁽³⁾ N	x ₃ ⁽³⁾ Y	x ₄ ⁽³⁾ Y	x ⁽⁴⁾
5	y ⁽⁵⁾ +	x ₁ ⁽⁴⁾ N	x ₂ ⁽⁴⁾ Y	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ N	х ⁽⁵⁾


N = 5 training examples M = 4 attributes


ML as Function Approximation

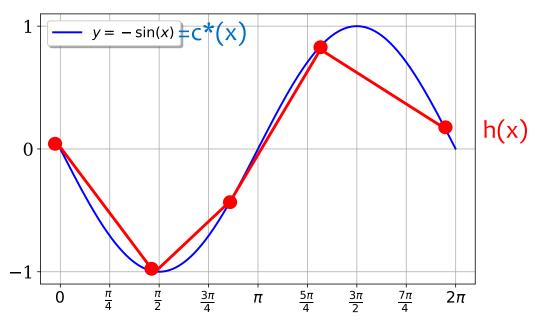
Chalkboard


- ML as Function Approximation
 - Problem setting
 - Input space
 - Output space
 - Unknown target function
 - Hypothesis space
 - Training examples
 - Goal of Learning

Supervised Machine Learning

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributos of the patient x_1, x_2, \dots, x_M

Supervised Machine Learning


- Problem Setting
 - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients)
 - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
 - Exists an unknown target function, c* : $X \rightarrow Y$ (the doctor's brain)
 - Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible decision trees)
- Learner is given N training examples D = {(x⁽¹⁾, y⁽¹⁾), (x⁽²⁾, y⁽²⁾), ..., (x^(N), y^(N))} where y⁽ⁱ⁾ = c*(x⁽ⁱ⁾) (history of patients and their diagnoses)
- Learner produces a hypothesis function, ŷ = h(x), that best approximates unknown target function y = c*(x) on the training data

Supervised Machine Learning

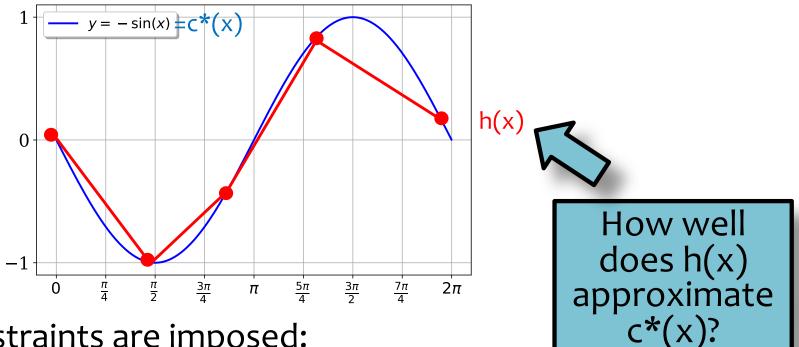
- Problem Setting
 - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients)
 - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
 - Exists an unique value of the doctor's basis of the doctor's ba
 - Set, H, of candid (all possible decident) and the important settings we'll
 Consider:
- Learner is given N $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(2)}, y^{(2)}), (x^{(2)}, y^{(2)}), (x^{(2)}, y^{(2)}, y^{(2)}), (x^{(2)}, y^$
- Learner produces that best approxin c*(x) on the traini
- **Classification**: the possible outputs are **discrete**
- **Regression:** the possible outputs are **real-valued**

Function Approximation

Quiz: Implement a simple function which returns -sin(x).

A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- 3. You only need to evaluate it for x in [0, 2*pi]

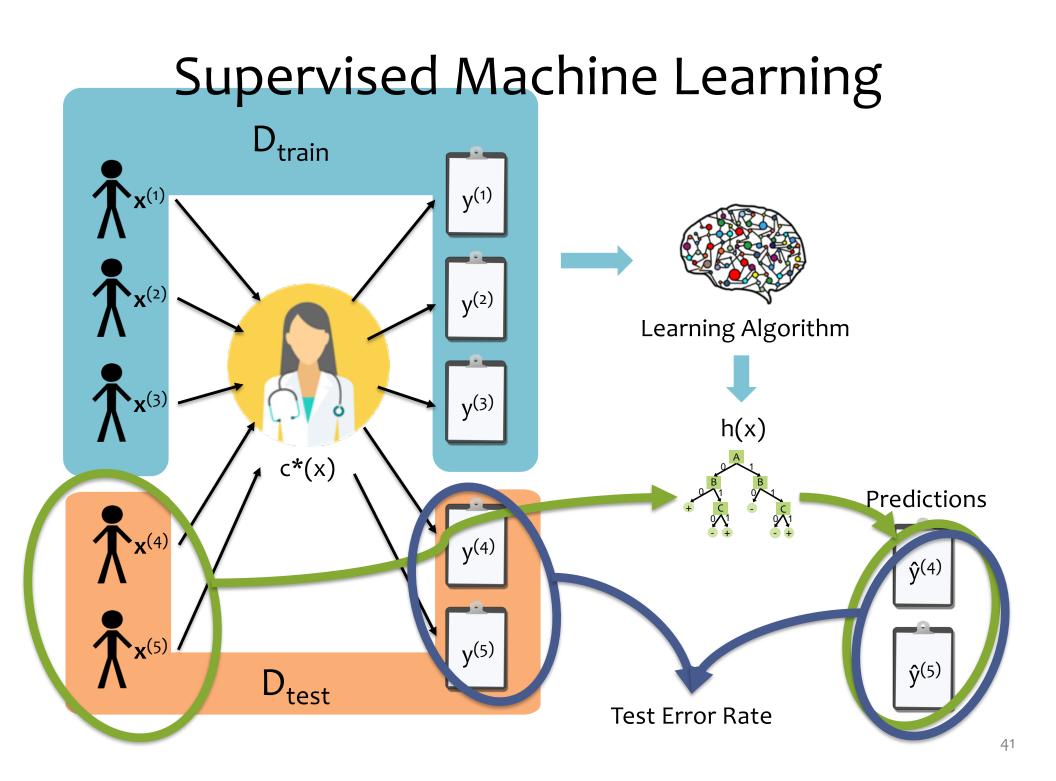

Supervised Machine Learning

- Problem Setting
 - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all values in [0, 2*pi])
 - Set of possible outputs, $y \in \mathcal{Y}$ (all values in [-1,1])
 - Exists an unknown target function, $c^* : \mathcal{X} \to \mathcal{Y}$ ($c^*(x) = sin(x)$)
 - Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible piecewise linear functions)
- Learner is given N training examples
 D = {(x⁽¹⁾, y⁽¹⁾), (x⁽²⁾, y⁽²⁾), ..., (x^(N), y^(N))}
 where y⁽ⁱ⁾ = c*(x⁽ⁱ⁾)
 (true values of sin(x) for a few random x's)
- Learner produces a hypothesis function, ŷ = h(x), that best approximates unknown target function y = c*(x) on the training data

EVALUATION OF MACHINE LEARNING ALGORITHM

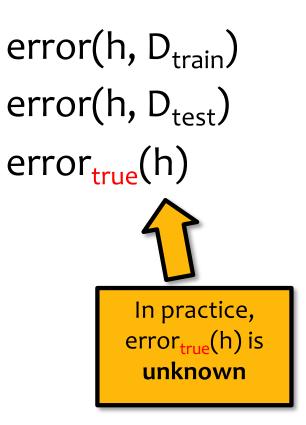
Function Approximation

Quiz: Implement a simple function which returns -sin(x).


A few constraints are imposed:

- You can't call any other trigonometric functions 1.
- You can call an existing implementation of sin(x) a few times 2. (e.g. 100) to test your solution
- You only need to evaluate it for x in [0, 2*pi] 3.

Evaluation of ML Algorithms


Chalkboard

- How to evaluate an ML algorithm?
- Definition: Loss function
 - Example for regression
 - Example for classification
- Definition: Error Rate
- Test dataset
- "Training" vs. "Testing"

Error Rate

Consider a hypothesis h its...
 ... error rate over all training data:
 ... error rate over all test data:
 ... true error over all data:

LEARNING ALGORITHMS FOR SUPERVISED CLASSIFICATION

ML as Function Approximation

Chalkboard

- Algorithm o: Memorizer
- Aside: Does memorization = learning?
- Algorithm 1: Majority Vote

Majority Vote Classifier Example

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

In-Class Exercise

What is the **training error** (i.e. *error rate on the training data*) of the **majority vote classifier** on this dataset?

Choose one of: {0/8, 1/8, 2/8, ..., 8/8}

ML as Function Approximation

Chalkboard

- Algorithm 2: Decision Stump
- Algorithm 3 (preview): Decision Tree