

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

HMMs

Bayesian Networks

Matt Gormley & Henry Chai Lecture 20 Nov. 01, 2021

Reminders

- Midterm Exam 2
 - Tue, Nov. 2, 6:30pm 8:30pm

- Homework 7: HMMs
 - Out: Wed, Nov. 3
 - Due: Fri, Nov. 12 at 11:59pm

THE FORWARD-BACKWARD ALGORITHM

Forward-Backward Algorithm

Define:
$$\alpha_{t}(k) \triangleq p(x_{1},...,x_{t},y_{t}=k)$$
 $\beta_{t}(k) \triangleq p(x_{t+1},...,x_{t}|y_{t}=k)$
 $\beta_{t}(k) \triangleq p(x_{t+1},...,x_{t}|y_{t}=k)$
 $\gamma_{t+1} = END$

Define: $\alpha_{t}(k) \triangleq p(x_{t+1},...,x_{t}|y_{t}=k)$
 $\gamma_{t+1} = END$

Define: $\gamma_{t+1} = \gamma_{t+1} = \gamma_{t} = \gamma_{t}$
 $\gamma_{t+1} = \gamma_{t+1} = \gamma_{t+1} = \gamma_{t}$
 $\gamma_{t+1} = \gamma_{t+1} = \gamma_{t+1} = \gamma_{t} = \gamma_{t}$

Inference for HMMs

Whiteboard

- Forward-backward algorithm (edge weights version)
- Viterbi algorithm(edge weights version)

Forward-Backward Algorithm

Define:
$$\alpha_{t}(k) \triangleq p(x_{1},...,x_{t},y_{t}=k)$$
 $\beta_{t}(k) \triangleq p(x_{t+1},...,x_{t}|y_{t}=k)$
 $\beta_{t}(k) \triangleq p(x_{t+1},...,x_{t}|y_{t}=k)$
 $\gamma_{t+1} = END$

Define: $\alpha_{t}(k) \triangleq p(x_{t+1},...,x_{t}|y_{t}=k)$
 $\gamma_{t+1} = END$

Define: $\gamma_{t+1} = \gamma_{t+1} = \gamma_{t} = \gamma_{t}$
 $\gamma_{t+1} = \gamma_{t+1} = \gamma_{t+1} = \gamma_{t}$
 $\gamma_{t+1} = \gamma_{t+1} = \gamma_{t+1} = \gamma_{t} = \gamma_{t}$

Derivation of Forward Algorithm

THE VITERBI ALGORITHM

Viterbi Algorithm

Define:
$$\omega_{t}(k) \triangleq \max_{y_{1}, \dots, y_{t-1}, y_{t-1}, y_{t}=k} p(x_{1}, \dots, x_{t}, y_{1}, \dots, y_{t-1}, y_{t}=k)$$

"bulk points"

b $_{t}(k) \triangleq \alpha_{y_{1}, \dots, y_{t-1}} p(x_{1}, \dots, x_{t}, y_{1}, \dots, y_{t-1}, y_{t}=k)$

Assume $y_{0} = START$

① Initialize $\omega_{0}(START) = 1$ $\omega_{0}(k) = 0$ $\forall k \neq START$

② For $t = 1, \dots, T$:

For $k = 1, \dots, K$:

 $\omega_{t}(k) = \max_{j \in \{1, \dots, K\}} p(x_{t}|y_{t}=k)$ $\omega_{k-1}(j) p(y_{t}=k|y_{t-1}=j)$

b $_{t}(k) = \max_{j \in \{1, \dots, K\}} p(x_{t}|y_{t}=k)$ $\omega_{k-1}(j) p(y_{t}=k|y_{t-1}=j)$

③ Compute Most Probable Assignment

 $\hat{y}_{T} = b_{T+1}(END)$

For $t = T-1, \dots, 1$
 $\hat{y}_{t} = b_{t+1}(\hat{y}_{t+1})$

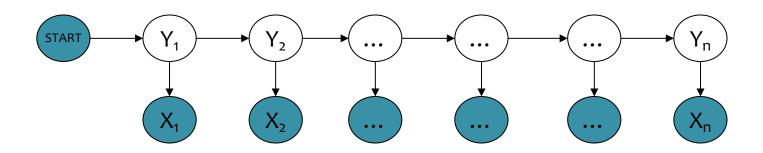
Think pointes"

Inference in HMMs

What is the **computational complexity** of inference for HMMs?

- The naïve (brute force) computations for Evaluation, Decoding, and Marginals take exponential time, O(K^T)
- The forward-backward algorithm and Viterbi algorithm run in polynomial time, O(T*K²)
 - Thanks to dynamic programming!

Shortcomings of Hidden Markov Models



- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (nonlocal) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

MBR DECODING

Inference for HMMs

- Three Inference Problems for an HMM
 - Evaluation: Compute the probability of a given sequence of observations
 - 2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
 - Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations
 - 4. MBR Decoding: Find the lowest loss sequence of hidden states, given a sequence of observations (Viterbi decoding is a special case)

Minimum Bayes Risk Decoding

- Suppose we given a loss function l(y', y) and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum **expected** loss under the model's distribution

$$h_{m{ heta}}(m{x}) = \underset{\hat{m{y}}}{\operatorname{argmin}} \ \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})]$$

$$= \underset{\hat{m{y}}}{\operatorname{argmin}} \ \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}}, m{y})$$

Minimum Bayes Risk Decoding

$$h_{m{ heta}}(m{x}) = \mathop{\mathrm{argmin}}_{\hat{m{y}}} \; \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})]$$

Consider some example loss functions:

The θ -1 loss function returns 1 only if the two assignments are identical and θ otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) (1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y}))$$
$$= \underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})$$

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

$$h_{m{ heta}}(m{x}) = \mathop{\mathrm{argmin}}_{\hat{m{y}}} \; \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})]$$

Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{V} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

Learning Objectives

Hidden Markov Models

You should be able to...

- Show that structured prediction problems yield high-computation inference problems
- 2. Define the first order Markov assumption
- 3. Draw a Finite State Machine depicting a first order Markov assumption
- 4. Derive the MLE parameters of an HMM
- 5. Define the three key problems for an HMM: evaluation, decoding, and marginal computation
- 6. Derive a dynamic programming algorithm for computing the marginal probabilities of an HMM
- 7. Interpret the forward-backward algorithm as a message passing algorithm
- 8. Implement supervised learning for an HMM
- 9. Implement the forward-backward algorithm for an HMM
- 10. Implement the Viterbi algorithm for an HMM
- 11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM

Bayes Nets Outline

Motivation

Structured Prediction

Background

- Conditional Independence
- Chain Rule of Probability

Directed Graphical Models

- Writing Joint Distributions
- Definition: Bayesian Network
- Qualitative Specification
- Quantitative Specification
- Familiar Models as Bayes Nets

Conditional Independence in Bayes Nets

- Three case studies
- D-separation
- Markov blanket

Learning

- Fully Observed Bayes Net
- (Partially Observed Bayes Net)

Inference

- Background: Marginal Probability
- Sampling directly from the joint distribution
- Gibbs Sampling

Bayesian Networks

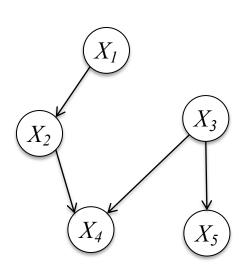
DIRECTED GRAPHICAL MODELS

Directed Graphical Models (Bayes Nets)

Whiteboard

- Example: Why is Henry tired?
- Writing Joint Distributions
 - Idea #1: Giant Table
 - Idea #2: Rewrite using chain rule
 - Idea #3: Assume full independence
 - Idea #4: Drop variables from RHS of conditionals
- Definition: Bayesian Network

Bayesian Network



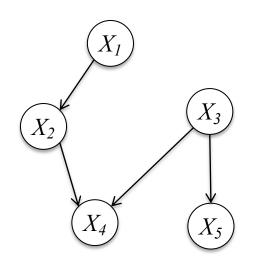
$$p(X_1, X_2, X_3, X_4, X_5) =$$

$$p(X_5|X_3)p(X_4|X_2, X_3)$$

$$p(X_3)p(X_2|X_1)p(X_1)$$

Bayesian Network

Definition:



$$P(X_1...X_n) = \prod_{i=1}^n P(X_i \mid parents(X_i))$$

- A Bayesian Network is a directed graphical model
- It consists of a graph G and the conditional probabilities P
- These two parts full specify the distribution:
 - Qualitative Specification: G
 - Quantitative Specification: P

Qualitative Specification

 Where does the qualitative specification come from?

- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data (i.e. structure learning)
- We simply prefer a certain architecture (e.g. a layered graph)

— ...

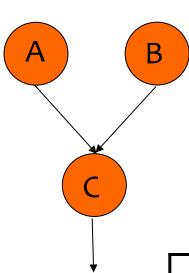
Quantitative Specification

Example: Conditional probability tables (CPTs) for discrete random variables

a^0	0.75
a ¹	0.25

b ⁰	0.33
b ¹	0.67

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)



	a^0b^0	a ⁰ b ¹	a ¹ b ⁰	a¹b¹
\mathbf{c}_0	0.45	1	0.9	0.7
c ¹	0.55	0	0.1	0.3

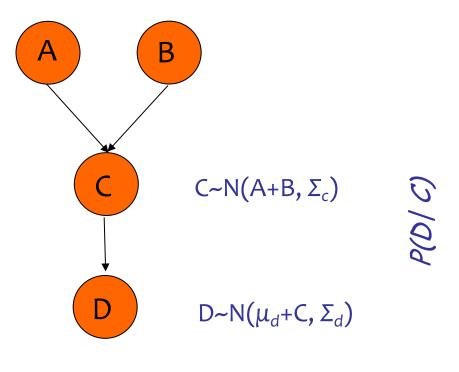
	\mathbf{c}_0	c ¹
d^0	0.3	0.5
d ¹	07	0.5

Quantitative Specification

Example: Conditional probability density functions (CPDs) for continuous random variables

$$A \sim N(\mu_a, \Sigma_a)$$
 $B \sim N(\mu_b, \Sigma_b)$

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

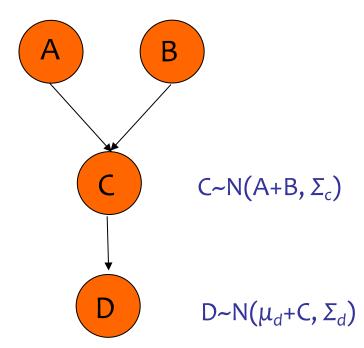


Quantitative Specification

Example: Combination of CPTs and CPDs for a mix of discrete and continuous variables

a^0	0.75
a ¹	0.25

b ⁰	0.33
b ¹	0.67

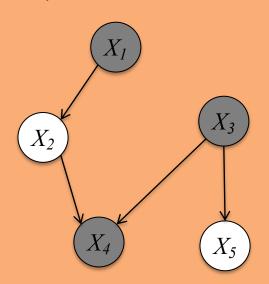


Observed Variables

• In a graphical model, **shaded nodes** are "**observed**", i.e. their values are given

Example:

$$P(X_2, X_5 \mid X_1 = 0, X_3 = 1, X_4 = 1)$$



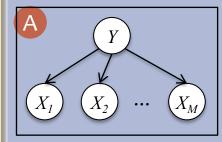
Familiar Models as Bayesian Networks

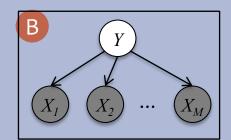
Question:

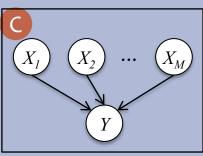
Match the model name to the corresponding Bayesian Network

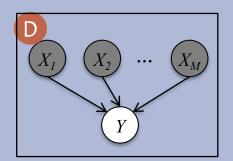
- 1. Logistic Regression
- 2. Linear Regression
- 3. Bernoulli Naïve Bayes
- 4. Gaussian Naïve Bayes
- 5. 1D Gaussian

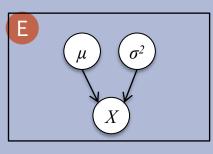
Answer:

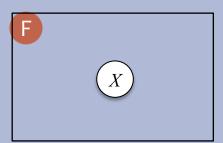












Α	
В	
С	
D	
E	
F	
G	

Α	
В	
С	
D	
E	
F	
G	

Α	
В	
С	
D	
Е	
F	
G	

Α	
В	
С	
D	
E	
F	
G	

Α	
В	
С	
D	
Е	
F	
G	