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Reminders

* Midterm Exam 2
— Tue, Nov. 2, 6:30pm - 8:30pm

* Homework 7: HMMs
— Out: Wed, Nov. 3
— Due: Fri, Nov. 12 at 11:59pm



THE FORWARD-BACKWARD
ALGORITHM



Forward-Backward Algorithm
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Inference for HMMs

Whiteboard

— Forward-backward algorithm
(edge weights version)

— Viterbi algorithm
(edge weights version)
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Derivation of Forward Algorithm
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THE VITERBI ALGORITHM



Viterbi Algorithm
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Inference in HMMs

What is the computational complexity of
inference for HMMs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi
algorithm run in , O(T*K?)
— Thanks to dynamic programming!



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its

corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white

space, etc.
Mismatch between learning objective function and prediction objective

function
— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 14



MBR DECODING



Inference for HMMs

o
— 'I/'hfélnference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)
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Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder /(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

A

he(x) = argmin By p0 (2 [€(Y, Y)]
Yy

argmin » pe(y | ©)0(Y, y)
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Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




Learning Objectives

Hidden Markov Models
You should be able to...

1. Show that structured prediction problems yield high-computation inference
problems

2.  Define the first order Markov assumption

3.  Draw a Finite State Machine depicting a first order Markov assumption

4. Derive the MLE parameters of an HMM

5.  Define the three key problems for an HMM: evaluation, decoding, and

marginal computation

6. Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

7.  Interpret the forward-backward algorithm as a message passing algorithm

8. Implement supervised learning for an HMM

9. Implement the forward-backward algorithm for an HMM

10. Implement the Viterbi algorithm for an HMM

11.  Implement a minimum Bayes risk decoder with Hamming loss for an HMM



Bayes Nets Outline

Motivation

—  Structured Prediction
Background

— Conditional Independence

—  Chain Rule of Probability
Directed Graphical Models

—  Writing Joint Distributions

— Definition: Bayesian Network

— Qualitative Specification

— Quantitative Specification

— Familiar Models as Bayes Nets
Conditional Independence in Bayes Nets

— Three case studies

— D-separation

— Markov blanket
Learning

— Fully Observed Bayes Net

— (Partially Observed Bayes Net)
Inference

— Background: Marginal Probability

— Sampling directly from the joint distribution

— Gibbs Sampling



DIRECTED GRAPHICAL MODELS



Directed Graphical Models

(Bayes Nets)
Whiteboard
— Example: Why is Henry tired?
— Writing Joint Distributions
* Idea #1: Giant Table
* |dea #2: Rewrite using chain rule

* Idea #3: Assume full independence
* Idea #4: Drop variables from RHS of conditionals

— Definition: Bayesian Network



Bayesian Network

@ @ p(X17X27X37X47X5) —
2 p(X5| X3)p(X4| Xo, X3)

x) (%) p(X3)p(Xa| X1)p(Xy)



Bayesian Network

Definition:

(x)
(x) (%) P(X,..X )= ﬁP(Xl. | parents(X,))

* A Bayesian Network is a directed graphical model
* It consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P



Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a
layered graph)



Example: Conditional probability tables (CPTs)
for discrete random variables

a0

0.75

bO

0.33

al

0.25

b1

0.67

Quantitative Specification

P(a)P(b)P(ca,b)P(d|c)

P(a,b,c.d) =

a’%b0 a’%b? a'b? a'b?
cO 0.45 1 0.9 0.7
c’ 0.55 0 0.1 0.3
cO c
0.3 |05
07 0.5

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
A-N(Ue Zo)  B~N(up, Zp) P(a)P(b)P(c|a,b)P(d|c)

C~N(A+B, %)

PO/ &)

‘ D~N(uq+C, Z4)
D

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0

0.75

bO

0.33 P(a)P(b)P(c|a,b)P(d|c)

al

0.25

b1

P(a,b,c.d) =

0.67

|
o

C~N(A+B, %)

D”N(McﬂfC, Zd)

© Eric Xing @ CMU, 2006-2011
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Observed Variables

* In a graphical model, shaded nodes are
“observed”, i.e. their values are given




Familiar Models as Bayesian
Networks

Question:
Match the model name to

the corresponding Bayesian

Network

1.

I

Logistic Regression
Linear Regression
Bernoulli Naive Bayes
Gaussian Naive Bayes
1D Gaussian

Answer:
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