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Reminders

* Homework 7: HMMs
— Out: Wed, Nov. 03
— Due: Fri, Nov. 12 at 11:59pm



Q&A

Lecture: Would you be so kind as to end lecture on time?




Q&A

Q: Lecture: The larger-than-life in-class demonstrations are
* absolutely amazing. Could you do more of them?

A. Honestly, as the core material becomes increasingly
* complex it will be quite difficult, but we sure can try!

Q: Lecture: The larger-than-life in-class demonstrations
are really boring and take up a lot of time. Could
you do less of them?

A. Honestly, that would make our lives a lot easier, so
we sure can try!




Q&A

. Lectures: Could you upload the slides a day ahead of
Q: time?

A: Yes, we can do that.

(Just a heads up that the slides might change
slightly after that first upload.)

Q, Homework: Some of the multiple choice homework questions
* are ambiguous or you end up changing the questions later

A. We are trying to improve our own testing to try to
" catch these sorts of bugs early. They tend to come
up specifically in these heavily constrained multiple
choice problems.



Q&A

Q, Recitation: Some of the TAs handwriting is even worse than
* yours (some is much better), could you all work on that?

A: Ah. We hadn’t thought of that - sorry! We’ve just
" instituted some digital handwriting practice for
those who haven’t had much. (We used to use

chalkboards, but don’t have those this semester.)

Q: Recitation: It’d be great if recitations left more time
for students to solve the problems.

A: Sorry about that. We’ve been trying to pack more
and more in and rushing a bit through the
interactive-problem-solving parts as a result.



GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES



What Independencies does a Bayes Net Model?

In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

* This follows from P(X,...X,) = HP(XZ. | parents(X,))
i=1

-l [Peix,...x.)
i=1

* But what else does it imply?

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...




What Independencies does a Bayes Net Model?

Three cases of interest...




Proof of
conditional
independence

Whiteboard

(The other two
cases can be
shown just as
easily.)
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The “Burglar Alarm” example

. h itch I
Your housg as a twitc y burglar Earthquake
alarm that is also sometimes
triggered by earthquakes.

* Earth arguably doesn’t care w
whether your house is currently
Phone Call

being burgled

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

Slide from William Cohen



o @ When poll is active, respond at pollev.com/10301601polls

Question 1

Start the presentation bo see bve Content, For screen share software, share the enire streen. Get belp ot poliev.com app



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.




Markov Blanket

Def: the co-parents of a node Example: The Markov
are the parents of its children Blanket of X is

Def: the Markov Blanket of a W3 Xy X5 Xy Ko X0}

node is the set containing the
node’s parents, children, and
co-parents.




Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.

Theorem: a node is
conditionally independent of
every other node in the graph
given its Markov blanket

Example: The Markov
Blanket of X is
{X3 Xy X5 X Xo, X0}

Parents
®_ @& o ®
=/
XIZ

Co-parents

Childre



D-Separation

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

(variables that are observed) iff every path from X to Z is “blocked”.

A pathis “blocked” whenever:
1. 3Yonpaths.t.Y€EEandYisa ‘“common parent”

ey YoSo

2. 3dYonpathst.YEEandYisina “cascade”

3. 3Y on paths.t. {Y, descendants(Y)} € Eand Yisin a “v-structure”

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E
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D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does

not exist a path between X and Z in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3.  Undirected graph: convert all directed edges to undirected
: delete any nodesin E

Example Query: A Il B|{D, E}
Original: Moral: Undirected:

@ O © © © O O e
= not d-separated
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SUPERVISED LEARNING FOR
BAYES NETS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

X ~ p(x|0)
Write log-likelihood

40) = log p(x™"]0) + ... + log p(xN)]©)
Compute partial derivatives

00(0)/08, = ...

00(0)/08, = ...

00(0)/06, = ...
Set derivatives to zero and solve for ©
00(0)/06,, = o forallme{y, ..., M}

@MLE =

Compute the second derivative and check that {0) is concave down
at OMLE



Machine Learning




Machine Learning

l"‘l’h ARRRLN



Learning Fully Observed BNs

@ @ p(X17X27X37X47X5) —
2 p(X5|X3)p(Xa| X2, X3)

X)) () p(X3)p(X2| X1)p(X1)



Learning Fully Observed BNs

@ @ p(X17X27X37X47X5) —
2 p(X5|X3)p(X4| X2, X3)

x)  (x) p(X3)p(Xa| X1 )p(X1)



Learning Fully Observed BNs

@ @ p(X17X27X37X47X5) —
& p(X5|X3)p(X4| X2, X3)
x)  (x) p(X3)p(Xa| X1)p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?



Learning Fully Observed BNs

Learning this fully observed
Bayesia% Network s P(Xa, Xo, X, Xy, X5) =
equivalent to learning five P(X5 | X5)p(Xa] Xz, X)
(small / simple) independent p(X3)p(X2| X1)p(X1)
networks from the same data

___________




Learning Fully Observed BNs

How do we learn these
conditional and marginal *
distributions for a Bayes Net? 0" = arginax log p(X1, XQ, Xg, X4, X5)
0

— argmax logp(X5|X37 95) + logp(Xll‘XQa X37 04)
0

@ +log p(X3|03) 4 log p(X2| X1, 02)
@ @ +log p(X1]61)

07 = argmax log p(X1|61)

01
@ @ 0, = argmaxlogp(Xngl,Hg)

02

05 = argmax log p(X3|63)
03

0, = argmaxlog p(X4|Xo, X3,04)
04

5 = argmaxlog p(X5| X3, 05)

05 33



Example: Tornado Alarms

1.

Imagine that
you work at the
911 call center
in Dallas

You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off
What do you
conclude?
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Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. Imagine that
With Emergency Sirens, Officials Say you work at the
R i, 911 call center
i——— in Dallas
N 2. You receive six
| | calls informing
you that the
Emergency

Weather Si
g . g ff
; ., 3. What do you
i } P
Waming sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding C O n C I u d e ?
around 11:40 p.m. Friday, and were not shut off until 1:20 am. | o

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Learning Fully Observed BNs

EX . —ITDFMAJO /(LFV‘S Mch
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INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.

How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

How do we compute marginal probabilities?

P(A) = ...
<:I Can we

How do we draw samples from a conditional distribution?

t,h,a~P(T,H, A|C=c) use
samples
How do we compute conditional marginal probabilities? >

PH|C=0)=...




Gibbs Sampling

p(x)




Gibbs Sampling




Gibbs Sampling




Gibbs Sampling

Question:
How do we draw samples from a conditional distribution?
Yis Yos eeen Y5 p(yv Yo eeer Yy I ASTRASTRITERAS )

(Approximate) Solution:
— Initialize y,(9), y,(©), ..., y,(©) to arbitrary values
— Fort=1,2,...:
v~ py, [ V.9, ooy 0, %, X, o0y X))
Y, ~ p(y, l ys(+, Y3(t)’ ey YOO, Xy Xgy ey X))
Y30 ~ plys [y, v, y, 0,y 0, X, X5, 00, X))

yJ(t+1) ~ p(yJ l y1(t+1): yz(t+1)) ceey yJ-1(t+1)? Kis Kps oeey Xy )

Properties:
— This will eventually yield samples from
P(Yn y27 seey yJ l Xy Xyy eeey X )

— But it might take a long time -- just like other Markov Chain Monte Carlo
methods

47



Gibbs Sampling

Full conditionals
only need to

condition on the
Markov Blanket

* Must be “easy” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)




Learning Objectives

Bayesian Networks

You should be able to...

1.

W

b4

11.

|dentify the conditional independence assumptions given by a generative
story or a specification of a joint distribution

Draw a Bayesian network given a set of conditional independence
assumptions

Define the joint distribution specified by a Bayesian network

User domain knowledge to construct a (simple) Bayesian network for a real-
world modeling problem

Depict familiar models as Bayesian networks

Use d-separation to prove the existence of conditional indenpendencies in a
Bayesian network

Employ a Markov blanket to identify conditional independence assumptions
of a graphical model

Develop a supervised learning algorithm for a Bayesian network

Use samples from a joint distribution to compute marginal probabilities
Sample from the joint distribution specified by a generative story
Implement a Gibbs sampler for a Bayesian network



Reinforcement
Learning




Learning

Paradigms

* Supervised Learning

* Training data is (input, output)

* Variants: active learning and online learning

* Unsupervised Learning

* Training data is (input)

* Reinforcement Learning

* Training data is (input, action, reward)

66



Reinforcement

Learning (RL)

Source: https://www.xkcd.com/242/
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https://www.xkcd.com/242/
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N

Challenges

* The algorithm has to gather its own training data

* The outcome of taking some action is often
stochastic or unknown until after the fact

- Decisions can have a delayed effect on future
outcomes (exploration-exploitation tradeoff)

70



N

Outline

* Problem formulation

* Time discounted cumulative reward

* Markov decision processes (MDPs)

* Algorithms:

* Value iteration and policy iteration
(dynamic programming)

- (Deep) Q-learning (temporal difference
learning)

71



RL:

Components

* State space, S
* Action space, A
* Reward function, R: § XA - R

» Transition probabilities, p(s' | s, a)

* Deterministic transitions:
(s’ | s,a) = {1 if6(s,a) =s

0 otherwise
where §(s, a) is a transition function

* Policy, m:§ - A

* Value function, V™:§ - R

- Measures the expected total payoff of starting
in some state s and executing policy

72



RL: Toy
Example

S = allempty
squares in the

grid

A ={up,
down, left,
right}

Example courtesy of Eric Xing, CMU MLD
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RL: Poll Q2

Is this policy
optimal?

Example courtesy of Eric Xing, CMU MLD
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o @ When poll is active, respond at pollev.com/10301601polls

Question 2

Start the presentation bo see bve Content, For screen share software, share the enire streen. Get belp ot poliev.com app



Justify your answer to the previous
question

Join by Web

€) Goto PollEv.com

€) Enter 10301601POLLS

e Respond to activity

@ Instructions not active. Log in to activate

Start the presentation to see bve (ortent, For screen share software, share the entre sireen. Get belp at peliev.com fepp



RL: Toy
Example

Optimal policy
given reward of
-2 for each step

Example courtesy of Eric Xing, CMU MLD
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RL: Toy
Example

Optimal policy
given reward of

-0.1 for each step

Example courtesy of Eric Xing, CMU MLD
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RL: Objective

Function

* Find a policy m* = argmax,; V™(s) Vs €S

* V™ (s) = E[discounted total reward of starting in state

s and executing policy m forever]
= [Ep(s’ |s, Q) [R(SO =S, TL'(SO))

+ onS(Sl’n(Sl)) + VZR(SZJT’:(SZ)) + ]

— 2 ytIEp(S’ |S, Q) [R(St, T[(St))]
t=0

where 0 < ¥ < 1is some discount factor for future
rewards
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* InRL, the model for our data is an MDP:
1. Startin some initial state s

2. Fortime step t:
1. Agent observes state s;

Markov 2. Agent takes action a; = m(s;)
Decision 3. Agentreceives reward r; = R(s, ag)
Processes 4. Agenttransitions to state s;,1 ~ p(s’ | s¢, ar)

(MDP)

3. Totalrewardis Y52y r;

- Makes the same Markov assumption we used for
HMMs! The next state only depends on the current
state and action.

8o



