
Reinforcement Learning: 
Value Iteration &
Policy Iteration
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Reminders

• Homework 7: HMMs
– Out: Wed, Nov. 03
– Due: Fri, Nov. 12 at 11:59pm

• Homework 8: RL
– Out: Fri, Nov. 12
– Due: Sun, Nov. 21 at 11:59pm
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Markov 
Decision 
Processes 
(MDPs)

� In RL, the model for our data is an MDP:

1. Start in some initial state !!

2. For time step ":
1. Agent observes state !"
2. Agent takes action $" = & !"
3. Agent receives reward '" = ( !", $"
4. Agent transitions to state !"#$ ∼ + !% !", $")

3. Total reward is ∑"&!' ."'"

� Makes the same Markov assumption we used for 
HMMs! The next state only depends on the current 
state and action.
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MDP Example: 
Multi-armed bandit

� Single state: 
/ = 1

� Three actions: 
1 = 1, 2, 3

� Rewards are stochastic
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MDP 
Example: 
Multi-armed 
bandit

Bandit 1 Bandit 2 Bandit 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 2 2

0 0 1

1 2 4

1 0 0

1 2 3

1 0 3

0 0 1
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RL: Value 
Function

� !! " = $[discounted total reward of starting in state 
" and executing policy % forever]

� !! " = $[' "", % ""

� + *' "#, % "# + *$' "$, % "$ +⋯ "" = "

� !! " = ' ", % "

� + *$[' "#, % "# + *' "$, % "$ +⋯| "" = "]

� !! " = ' ", % "

+ * .
%!∈ '

/ "# | ", % " 0

1

' "#, % "#

+ *$ ' "$, % "$ +⋯ "#]
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RL: Value 
Function
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!! s = ' ", % " + * .
%!∈ '

/ "# | ", % " !! "#

� !! " = $[discounted total reward of starting in state 
" and executing policy % forever]

� !! " = $[' "", % ""

� + *' "#, % "# + *$' "$, % "$ +⋯ "" = "

� !! " = ' ", % "

� + *$[' "#, % "# + *' "$, % "$ +⋯| "" = "]

� !! " = ' ", % "

+ * .
%!∈ '

/ "# | ", % " 0

1

' "#, % "#

+ *$ ' "$, % "$ +⋯ "#]

Bellman equations



RL: Value 
Function 
Example
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7

3

-2

( !, $ =

−2 if entering state 0 safety
3 if entering state 5 Aield goal
7 if entering state 6 (touch down)
0 otherwise

0

5

61 2 3 4

. = 0.9



RL: Value 
Function 
Example
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7

3

-2

-2 -1.8 2.7 3 0

0

0

( !, $ =

−2 if entering state 0 safety
3 if entering state 5 Aield goal
7 if entering state 6 (touch down)
0 otherwise

. = 0.9



RL: Value 
Function 
Example
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7

3

-2

5.103 5.67 6.3 7 0

0

0

( !, $ =

−2 if entering state 0 safety
3 if entering state 5 Aield goal
7 if entering state 6 (touch down)
0 otherwise

. = 0.9



RL: Optimal 
Value 
Function & 
Policy

� Optimal value function:

!∗ " = max
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = !∗ "+

� System of > equations and > variables

� Optimal policy:

%∗ " = argmax
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = !∗ "+
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Immediate 
reward

(Discounted) 
Future reward



Fixed 
Point 
Iteration

� Iterative method for solving a system of equations

� Given some equations and initial values

A# = B# A#, … , A,
⋮

A, = B, A#, … , A,

A#
" , … , A,

"

� While not converged, do

A#
-.# ← B# A#

- , … , A,
-

⋮
A,
-.# ← B, A#

- , … , A,
-
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Fixed 
Point Iteration:
Example

A# = A#A$ +
1
2 A$= −

3A#
2

A#
" = A$

" = 0

A# =
1
3 , A$ = −

1
2

16

G A#
- A$

-

0 0 0
1 0.5 0
2 0.5 -0.75
3 0.125 -0.75
4 0.4063 -0.1875
5 0.4238 -0.6094
6 0.2417 -0.6357
7 0.3463 -0.3626
8 0.3744 -0.5195
9 0.3055 -0.5616

10 0.3284 -0.4582
11 0.3495 -0.4926
12 0.3278 -0.5243
13 0.3281 -0.4917
14 0.3386 -0.4922
15 0.3333 -0.5080



Value 
Iteration

� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize ! " " = 0 ∀ " ∈ > (or randomly) and set G = 0

� While not converged, do:
� For " ∈ >

! -.# " ← max
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = ! - "+

� G = G + 1

� For " ∈ >
%∗ " ← argmax

) ∈*
' ", = + * .

%"∈ '
/ "+ | ", = ! - "+

� Return %∗
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M ", =



Synchronous
Value 
Iteration
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� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize ! " " = 0 ∀ " ∈ > (or randomly) and set G = 0

� While not converged, do:
� For " ∈ >

� For = ∈ N

M ", = = ' ", = + * .
%"∈ '

/ "+ | ", = ! - "+

� ! -.# " ← max
) ∈*

M ", =

� G = G + 1

� For " ∈ >

%∗ " ← argmax
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = ! - "+

� Return %∗



Asynchronous
Value 
Iteration
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� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize ! " = 0 ∀ " ∈ > (or randomly) 

� While not converged, do:
� For " ∈ >

� For = ∈ N

M ", = = ' ", = + * .
%"∈ '

/ "+ | ", = ! "+

� ! " ← max
) ∈*

M ", =

� For " ∈ >
%∗ " ← argmax

) ∈*
' ", = + * .

%"∈ '
/ "+ | ", = ! "+

� Return %∗



Poll Q1: How 
much 
computation 
does one 
iteration require?

A.  ! " #
B.  ! " O #
C.  Toxic 
D.  ! " # O

E.  ! " O # O
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� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize ! " = 0 ∀ " ∈ > (or randomly) 

� While not converged, do:
� For " ∈ >

� For = ∈ N

M ", = = ' ", = + * .
%"∈ '

/ "+ | ", = ! "+

� ! " ← max
) ∈*

M ", =

� For " ∈ >
%∗ " ← argmax

) ∈*
' ", = + * .

%"∈ '
/ "+ | ", = ! "+

� Return %∗
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� Theorem 1: Value function convergence

! will converge to !∗ if each state is “visited” 

infinitely often (Bertsekas, 1989)

� Theorem 2: Convergence criterion 

if max
% ∈ '

! -.# " − ! - " < Q, then

max
% ∈ '

! -.# " − !∗ " < $/0
#10 (Williams & Baird, 1993) 

� Theorem 3: Policy convergence

The “greedy” policy, % " = argmax
) ∈*

M ", = , converges to 

the optimal %∗in a finite number of iterations, often before 

the value function has converged! (Bertsekas, 1987) 
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Value 
Iteration:
Theory



� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize % randomly 

� While not converged, do:
� Solve the Bellman equations defined by policy %

V! s = ' ", % " + * .
%"∈ '

/ "+ | ", % " !! "+

� Update %

− % " ← argmax
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = !! "+

� Return %
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Policy 
Iteration



Policy 
Iteration:
Theory

� Poll Q2: Given finite state and action spaces, how many 
possible policies are there?

A. > + N
B. > N
C. Toxic

D. > *

E. N '
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Policy 
Iteration:
Theory

� Poll Q2: Given finite state and action spaces, how many 
possible policies are there?

A. > + N
B. > N
C. Toxic

D. > *

E. N '

� In policy iteration, the policy improves in each iteration. 
Thus, the number of iterations needed to converge is 
bounded!

� Value iteration takes S > $ N time / iteration

� Policy iteration takes S > $ N + > 2 time / iteration
� However, empirically policy iteration requires fewer 

iterations to converge
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RL Learning 
Goals: 
Value & 
Policy 
Iteration

a. Compare the reinforcement learning paradigm to other 
learning paradigms 

b. Cast a real-world problem as a Markov Decision Process 

c. Depict the exploration vs. exploitation tradeoff via MDP 
examples 

d. Explain how to solve a system of equations using fixed point 
iteration 

e. Define the Bellman equations 

f. Show how to compute the optimal policy in terms of the 
optimal value function 

g. Explain the relationship between a value function mapping 
states to expected rewards and a value function mapping 
state-action pairs to expected rewards 

h. Implement value iteration 

i. Implement policy iteration 

j. Contrast the computational complexity and empirical 
convergence of value iteration vs. policy iteration 

k. Identify the conditions under which the value iteration 
algorithm will converge to the true value function 

l. Describe properties of the policy iteration algorithm
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Q:
What can we do if we don’t know the reward 
function / transition probabilities?
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