

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Reinforcement Learning: Value Iteration & Policy Iteration

Matt Gormley & Henry Chai Lecture 22 Nov. 10, 2021

Reminders

- **Homework 7: HMMs**
	- **Out: Wed, Nov. 03**
	- **Due: Fri, Nov. 12 at 11:59pm**
- **Homework 8: RL**
	- **Out: Fri, Nov. 12**
	- **Due: Sun, Nov. 21 at 11:59pm**

Markov Decision Processes (MDPs)

- \cdot In RL, the model for our data is an MDP:
- **1.** Start in some initial state s_0
- 2. For time step t :
	- 1. Agent observes state s_t
	- 2. Agent takes action $a_t = \pi(s_t)$
	- 3. Agent receives reward $r_t = R(s_t, a_t)$
	- 4. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$
- 3. Total reward is $\sum_{t=0}^{\infty} \gamma^t r_t$
- Makes the same Markov assumption we used for HMMs! The next state only depends on the current state and action.

MDP Example: Multi -armed bandit

- Single state: $|\mathcal{S}| = 1$
- Three actions: $A = \{1, 2, 3\}$
- Rewards are stochastic

MDP Example: Multi -armed bandit

s and executing policy π forever] $\sigma^{(3)}$
 $\gamma^{(4)}$ + $\gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]$ $= R(s, \pi(s))$ + $\gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \cdots | s_0 = s]$ $= R(s, \pi(s))$ + $\gamma \sum_{1} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)))$ + $\gamma \mathbb{E} [R(s_2, \pi(s_2)) + \cdots | s_1]$

• $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state}]$

• $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state}]$ s and executing policy π forever] $= \mathbb{E}[R(s_0, \pi(s_0))]$ + $\gamma R(s_1, \pi(s_1))$ + $\gamma^2 R(s_2, \pi(s_2))$ + … $|s_0 = s]$ $= R(s, \pi(s))$ + $\gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \cdots | s_0 = s]$ $= R(s, \pi(s))$ + $\gamma \sum_{s_1 \in S} p(s_1 \mid s, \pi(s)) (R(s_1, \pi(s_1)))$ + $\gamma \mathbb{E}[R(s_2, \pi(s_2)) + \cdots | s_1]$

- $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state}]$ s and executing policy π forever]
	- $= \mathbb{E}[R(s_0, \pi(s_0))]$
	- + $\gamma R(s_1, \pi(s_1))$ + $\gamma^2 R(s_2, \pi(s_2))$ + … $|s_0 = s]$ $= R(s, \pi(s))$
		- + $\gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \cdots | s_0 = s]$
	- $= R(s, \pi(s))$ + $\gamma \sum p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)))$ $s_1 \in \mathcal{S}$ + $\gamma \mathbb{E}[R(s_2, \pi(s_2)) + \cdots | s_1]$

• $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state}]$ s and executing policy π forever] $= \mathbb{E}[R(s_0, \pi(s_0))]$ + $\gamma R(s_1, \pi(s_1))$ + $\gamma^2 R(s_2, \pi(s_2))$ + ... $|s_0 = s]$ $=$ $R(s, \pi(s))$ + $\gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \cdots | s_0 = s]$ $= R(s, \pi(s))$ $\sum p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)))$ $+\gamma$ $s_1 \in \mathcal{S}$ + $\gamma \mathbb{E}[R(s_2, \pi(s_2)) + \cdots | s_1]$

 $V^{\pi}(s) = R(s, \pi(s)) + \gamma$ $s_1 \in \mathcal{S}$ $p(s_1 \mid s, \pi(s)) V^{\pi}(s_1$ \cdot $V^{\pi}(s) =$ E[discounted total reward of starting in state s and *executing* policy π forever] $= \mathbb{E}[R(s_0, \pi(s_0))]$ + $\gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]$ $= R(s, \pi(s))$ + $\gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \cdots | s_0 = s]$ $= R(s, \pi(s))$ $+\gamma$ $\sum p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)))$ $s_1 \in \mathcal{S}$ $+ \gamma \mathbb{E} \big[R(s_2, \pi(s_2)) + \cdots \big| s_1] \big)$

Bellman equations

RL: Value **Function** Example

$$
\begin{array}{c|c|c}\n & 5 & 3 \\
0 & -2 & 4\n\end{array}
$$

 $R(s, a) =$ −2 if entering state 0 (safety 3 if entering state 5 (field goal 7 if entering state 6 (touch down) 0 otherwise

$$
\gamma = 0.9
$$

RL: Value Function Example

3+ (0.9)(0)

RL: Value **Function** Example

2	3				
$R(s, a) =$	\begin{cases}	-2 if entering state 0 (safety) 3 if entering state 5 (field goal) 7 if entering state 6 (touch down) 0 otherwise			
$\gamma = 0.9$	$\sqrt{\pi}(s)$	\neq	$\mathbb{R}(s, a)$		
0	5.103	5.67	6.3	7	0

$$
O+0.9(7) - 7 + (6.9)(0)
$$

RL: Optimal Value Function & **Policy**

 Optimal value function: $V^*(s) = \max$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' | s, a)V^*(s')$ • System of $|S|$ equations and $|S|$ variables • Optimal policy: $\pi^*(s)$ = argmax $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \overline{\in} \overline{s}$ $p(s' | s, a)V^*(s')$ Immediate reward (Discounted) Future reward

Fixed Point Iteration

- Iterative method for solving a system of equations
- Given some equations and initial values

 $x_1 = f_1(x_1, ..., x_n)$ $\ddot{\cdot}$ $x_n = f_n(x_1, ..., x_n)$ $x_1^{(0)}, \ldots, x_n^{(0)}$

While not converged, do

$$
x_1^{(t+1)} \leftarrow f_1\left(x_1^{(t)}, \dots, x_n^{(t)}\right) \\
\vdots \\
x_n^{(t+1)} \leftarrow f_n\left(x_1^{(t)}, \dots, x_n^{(t)}\right)
$$

 (f)

 $x_1 =$ $\frac{1}{3}$, $x_2 = \frac{1}{2}$

16

Value Iteration

transition probabilities
$$
p(s' | s, a)
$$

\n• Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$
\n• While not converged, do:
\n• For $s \in S$
\n
$$
\frac{V^{(t+1)}(s)}{I(s)} \leftarrow \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) \frac{V^{(t)}(s')}{I(s')}
$$
\n
$$
\sum_{s' \in S} \sum_{s' \in S} \sum_{s' \in S} p(s' | s, a) \frac{V^{(t)}(s')}{I(s)}
$$
\n• For $s \in S$
\n $\pi^*(s) \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) \frac{V^{(t)}(s')}{I(s')}$
\n• Return π^*

 $\bar{\epsilon}$

• Inputs: reward function $R(s, a)$,

Value Iteration

transition probabilities $p(s' | s, a)$ • Initialize $V^{(0)}(s) = 0 \forall s \in \mathcal{S}$ (or randomly) and set $t = 0$ While not converged, do: \cdot For $s \in S$ \cdot For $a \in \mathcal{A}$ $Q(s, a) = R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, a) V^{(t)}(s')$ \cdot $V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$ $t = t + 1$ \cdot For $s \in S$ $\pi^*(s) \leftarrow \text{argmax}$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p($ s' | s, a) $V^{(t)}($ s' • Return π^*

• Inputs: reward function $R(s, a)$,

Asynchronous Value **Iteration**

• Inputs: reward function $R(s, a)$,

transition probabilities $p(s' | s, a)$

- Initialize $V(s) = 0 \forall s \in S$ (or randomly)
- While not converged, do:
	- \cdot For $s \in S$
		- \cdot For $a \in \mathcal{A}$

$$
Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a)V(s')
$$

 $\cdot V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$

```
\cdot For s \in S\pi^*(s) \leftarrow \text{argmax}a \in \mathcal{A}R(s, a) + \gammas' \in \mathcal{S}p(s' | s, a)V(s')
```
• Return π^*

Poll Q₁: How much computation does one iteration require? • Inputs: reward function $R(s, a)$, transition probabilities $p(s' | s, a)$ • Initialize $V(s) = 0 \forall s \in S$ (or randomly) While not converged, do: • For $s \in S$
• For $a \in A$ • For $a \in \mathcal{A}$ $Q(s, a) = R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' | s, a)V(s')$ $\cdot V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$ \cdot For $s \in S$ $\pi^*(s) \leftarrow \text{argmax}$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' | s, a)V(s')$

@ When poll is active, respond at pollev.com/10301601polls

Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app

Value Iteration: Theory

- **Theorem 1**: Value function convergence V will converge to V^* if each state is "visited" infinitely often (Bertsekas, 1989)
- **Theorem 2**: Convergence criterion if max $s \in \mathcal{S}$ $|V^{(t+1)}(s)-V^{(t)}(s)|<\epsilon,$ then max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^*(s)| < \frac{2\epsilon\gamma}{1-\gamma}$ (Williams & Baird, 1993)

Theorem 3: Policy convergence

The "greedy" policy, $\pi(s) = \text{argmax} Q(s, a)$, converges to $a \in A$ the optimal π^* in a finite number of iterations, often before the value function has converged! (Bertsekas, 1987)

Policy Iteration

• Inputs: reward function $R(s, a)$, transition probabilities $p(s' | s, a)$ • Initialize π randomly While not converged, do: Solve the Bellman equations defined by policy π $V^{\pi}(s) = R(s, \pi(s)) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, \pi(s))V^{\pi}(s')$ • Update π $\int \pi(s) \leftarrow \text{argmax}$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, a) V^{\bar{\pi}}(s')$ • Return π

Policy Iteration: **Theory**

 Poll Q2: Given finite state and action spaces, how many possible policies are there?

@ When poll is active, respond at pollev.com/10301601polls

Question 2

Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app

Policy Iteration: Theory

- Poll Q2: Given finite state and action spaces, how many possible policies are there? $|A| \cdot |A|$... $|A| = |A|^{ |S|}$
- In policy iteration, the policy improves in each iteration. Thus, the number of iterations needed to converge is bounded!
- Value iteration takes $O(|\mathcal{S}|^2|\mathcal{A}|)$ time / iteration
- Policy iteration takes $O(|\mathcal{S}|^2|\mathcal{A}| + |\mathcal{S}|^3)$ time / iteration
	- However, empirically policy iteration requires fewer iterations to converge

RL Learning Goals: Value & **Policy** Iteration

- a. Compare the reinforcement learning paradigm to other learning paradigms
- b. Cast a real-world problem as a Markov Decision Process
- c. Depict the exploration vs. exploitation tradeoff via MDP examples
- d. Explain how to solve a system of equations using fixed point *iteration*
- e. Define the Bellman equations
- f. Show how to compute the optimal policy in terms of the optimal value function
- g. Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
- h. Implement value iteration
- i. Implement policy iteration
- j. Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
- k. Identify the conditions under which the value iteration algorithm will converge to the true value function
- l. Describe properties of the policy iteration algorithm

What can we do if we don't know the reward function / transition probabilities?