
Reinforcement Learning:
Value Iteration &
Policy Iteration

1

10-301/601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 22

Nov. 10, 2021

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 7: HMMs
– Out: Wed, Nov. 03
– Due: Fri, Nov. 12 at 11:59pm

• Homework 8: RL
– Out: Fri, Nov. 12
– Due: Sun, Nov. 21 at 11:59pm

2

Markov
Decision
Processes
(MDPs)

� In RL, the model for our data is an MDP:

1. Start in some initial state !!

2. For time step ":
1. Agent observes state !"
2. Agent takes action $" = & !"
3. Agent receives reward '" = (!", $"
4. Agent transitions to state !"#$ ∼ + !% !", $")

3. Total reward is ∑"&!' ."'"

� Makes the same Markov assumption we used for
HMMs! The next state only depends on the current
state and action.

3

MDP Example:
Multi-armed bandit

� Single state:
/ = 1

� Three actions:
1 = 1, 2, 3

� Rewards are stochastic

4

MDP
Example:
Multi-armed
bandit

Bandit 1 Bandit 2 Bandit 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 2 2

0 0 1

1 2 4

1 0 0

1 2 3

1 0 3

0 0 1

5

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

??? ???

???

???

RL: Value
Function

� !! " = $[discounted total reward of starting in state
" and executing policy % forever]

� !! " = $[' "", % ""

� + *' "#, % "# + *$' "$, % "$ +⋯ "" = "

� !! " = ' ", % "

� + *$[' "#, % "# + *' "$, % "$ +⋯| "" = "]

� !! " = ' ", % "

+ * .
%!∈ '

/ "# | ", % " 0

1

' "#, % "#

+ *$ ' "$, % "$ +⋯ "#]

6

RL: Value
Function

� !! " = $[discounted total reward of starting in state
" and executing policy % forever]

� !! " = $[' "", % ""

� + *' "#, % "# + *$' "$, % "$ +⋯ "" = "

� !! " = ' ", % "

� + *$[' "#, % "# + *' "$, % "$ +⋯| "" = "]

� !! " = ' ", % "

+ * .
%!∈ '

/ "# | ", % " 0

1

' "#, % "#

+ *$ ' "$, % "$ +⋯ "#]

7

RL: Value
Function

� !! " = $[discounted total reward of starting in state
" and executing policy % forever]

� !! " = $[' "", % ""

� + *' "#, % "# + *$' "$, % "$ +⋯ "" = "

� !! " = ' ", % "

� + *$[' "#, % "# + *' "$, % "$ +⋯| "" = "]

� !! " = ' ", % "

+ * .
%!∈ '

/ "# | ", % " 0

1

' "#, % "#

+ *$ ' "$, % "$ +⋯ "#]

8

RL: Value
Function

� !! " = $[discounted total reward of starting in state
" and executing policy % forever]

� !! " = $[' "", % ""

� + *' "#, % "# + *$' "$, % "$ +⋯ "" = "

� !! " = ' ", % "

� + *$[' "#, % "# + *' "$, % "$ +⋯| "" = "]

� !! " = ' ", % "

+ * .
%!∈ '

/ "# | ", % " 0

1

' "#, % "#

+ *$ ' "$, % "$ +⋯ "#]

9

RL: Value
Function

10

!! s = ' ", % " + * .
%!∈ '

/ "# | ", % " !! "#

� !! " = $[discounted total reward of starting in state
" and executing policy % forever]

� !! " = $[' "", % ""

� + *' "#, % "# + *$' "$, % "$ +⋯ "" = "

� !! " = ' ", % "

� + *$[' "#, % "# + *' "$, % "$ +⋯| "" = "]

� !! " = ' ", % "

+ * .
%!∈ '

/ "# | ", % " 0

1

' "#, % "#

+ *$ ' "$, % "$ +⋯ "#]

Bellman equations

RL: Value
Function
Example

11

7

3

-2

(!, $ =

−2 if entering state 0 safety
3 if entering state 5 Aield goal
7 if entering state 6 (touch down)
0 otherwise

0

5

61 2 3 4

. = 0.9

RL: Value
Function
Example

12

7

3

-2

-2 -1.8 2.7 3 0

0

0

(!, $ =

−2 if entering state 0 safety
3 if entering state 5 Aield goal
7 if entering state 6 (touch down)
0 otherwise

. = 0.9

RL: Value
Function
Example

13

7

3

-2

5.103 5.67 6.3 7 0

0

0

(!, $ =

−2 if entering state 0 safety
3 if entering state 5 Aield goal
7 if entering state 6 (touch down)
0 otherwise

. = 0.9

RL: Optimal
Value
Function &
Policy

� Optimal value function:

!∗ " = max
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = !∗ "+

� System of > equations and > variables

� Optimal policy:

%∗ " = argmax
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = !∗ "+

14

Immediate
reward

(Discounted)
Future reward

Fixed
Point
Iteration

� Iterative method for solving a system of equations

� Given some equations and initial values

A# = B# A#, … , A,
⋮

A, = B, A#, … , A,

A#
" , … , A,

"

� While not converged, do

A#
-.# ← B# A#

- , … , A,
-

⋮
A,
-.# ← B, A#

- , … , A,
-

15

Fixed
Point Iteration:
Example

A# = A#A$ +
1
2 A$= −

3A#
2

A#
" = A$

" = 0

A# =
1
3 , A$ = −

1
2

16

G A#
- A$

-

0 0 0
1 0.5 0
2 0.5 -0.75
3 0.125 -0.75
4 0.4063 -0.1875
5 0.4238 -0.6094
6 0.2417 -0.6357
7 0.3463 -0.3626
8 0.3744 -0.5195
9 0.3055 -0.5616

10 0.3284 -0.4582
11 0.3495 -0.4926
12 0.3278 -0.5243
13 0.3281 -0.4917
14 0.3386 -0.4922
15 0.3333 -0.5080

Value
Iteration

� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize ! " " = 0 ∀ " ∈ > (or randomly) and set G = 0

� While not converged, do:
� For " ∈ >

! -.# " ← max
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = ! - "+

� G = G + 1

� For " ∈ >
%∗ " ← argmax

) ∈*
' ", = + * .

%"∈ '
/ "+ | ", = ! - "+

� Return %∗

17

M ", =

Synchronous
Value
Iteration

18

� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize ! " " = 0 ∀ " ∈ > (or randomly) and set G = 0

� While not converged, do:
� For " ∈ >

� For = ∈ N

M ", = = ' ", = + * .
%"∈ '

/ "+ | ", = ! - "+

� ! -.# " ← max
) ∈*

M ", =

� G = G + 1

� For " ∈ >

%∗ " ← argmax
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = ! - "+

� Return %∗

Asynchronous
Value
Iteration

19

� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize ! " = 0 ∀ " ∈ > (or randomly)

� While not converged, do:
� For " ∈ >

� For = ∈ N

M ", = = ' ", = + * .
%"∈ '

/ "+ | ", = ! "+

� ! " ← max
) ∈*

M ", =

� For " ∈ >
%∗ " ← argmax

) ∈*
' ", = + * .

%"∈ '
/ "+ | ", = ! "+

� Return %∗

Poll Q1: How
much
computation
does one
iteration require?

A. ! " #
B. ! " O #
C. Toxic
D. ! " # O

E. ! " O # O

20

� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize ! " = 0 ∀ " ∈ > (or randomly)

� While not converged, do:
� For " ∈ >

� For = ∈ N

M ", = = ' ", = + * .
%"∈ '

/ "+ | ", = ! "+

� ! " ← max
) ∈*

M ", =

� For " ∈ >
%∗ " ← argmax

) ∈*
' ", = + * .

%"∈ '
/ "+ | ", = ! "+

� Return %∗

22

� Theorem 1: Value function convergence

! will converge to !∗ if each state is “visited”

infinitely often (Bertsekas, 1989)

� Theorem 2: Convergence criterion

if max
% ∈ '

! -.# " − ! - " < Q, then

max
% ∈ '

! -.# " − !∗ " < $/0
#10 (Williams & Baird, 1993)

� Theorem 3: Policy convergence

The “greedy” policy, % " = argmax
) ∈*

M ", = , converges to

the optimal %∗in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

23

Value
Iteration:
Theory

� Inputs: reward function ' ", = ,

� transition probabilities /("’ | ", =)

� Initialize % randomly

� While not converged, do:
� Solve the Bellman equations defined by policy %

V! s = ' ", % " + * .
%"∈ '

/ "+ | ", % " !! "+

� Update %

− % " ← argmax
) ∈*

' ", = + * .
%"∈ '

/ "+ | ", = !! "+

� Return %

24

Policy
Iteration

Policy
Iteration:
Theory

� Poll Q2: Given finite state and action spaces, how many
possible policies are there?

A. > + N
B. > N
C. Toxic

D. > *

E. N '

25

26

Policy
Iteration:
Theory

� Poll Q2: Given finite state and action spaces, how many
possible policies are there?

A. > + N
B. > N
C. Toxic

D. > *

E. N '

� In policy iteration, the policy improves in each iteration.
Thus, the number of iterations needed to converge is
bounded!

� Value iteration takes S > $ N time / iteration

� Policy iteration takes S > $ N + > 2 time / iteration
� However, empirically policy iteration requires fewer

iterations to converge

27

RL Learning
Goals:
Value &
Policy
Iteration

a. Compare the reinforcement learning paradigm to other
learning paradigms

b. Cast a real-world problem as a Markov Decision Process

c. Depict the exploration vs. exploitation tradeoff via MDP
examples

d. Explain how to solve a system of equations using fixed point
iteration

e. Define the Bellman equations

f. Show how to compute the optimal policy in terms of the
optimal value function

g. Explain the relationship between a value function mapping
states to expected rewards and a value function mapping
state-action pairs to expected rewards

h. Implement value iteration

i. Implement policy iteration

j. Contrast the computational complexity and empirical
convergence of value iteration vs. policy iteration

k. Identify the conditions under which the value iteration
algorithm will converge to the true value function

l. Describe properties of the policy iteration algorithm

28

Q:
What can we do if we don’t know the reward
function / transition probabilities?

29

