
Reinforcement Learning:
Q-Learning

1

10-301/601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 23

Nov. 12, 2021

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 7: HMMs
– Out: Wed, Nov. 03
– Due: Fri, Nov. 12 at 11:59pm

• Homework 8: RL
– Out: Fri, Nov. 12
– Due: Sun, Nov. 21 at 11:59pm

2

Today’s
lecture is
brought to
you by the
letter Q

4Source: https://en.wikipedia.org/wiki/Avenue_Q#/media/File:Image-AvenueQlogo.png

Today’s
lecture is
brought to
you by the
letter Q

5Source: https://en.wikipedia.org/wiki/San_Jose_Earthquakes#/media/File:Q_at_Galaxy_at_Earthquakes_2010-08-21_1.JPG

Today’s
lecture is
brought to
you by the
letter Q

6Source: https://vignette1.wikia.nocookie.net/jamesbond/images/9/9a/The_Four_Qs_-_Profile_(2).png/revision/latest?cb=20121102195112

Today’s
lecture is
brought to
you by the
letter Q

7

� Inputs: reward function ! ", $,

� transition probabilities %("’ | ", $)

� Initialize * " = 0 ∀ " ∈ / (or randomly)

� While not converged, do:
� For " ∈ /

� For $ ∈ 0

1 ", $ = ! ", $ + 3 4
!!∈ #

% "$ | ", $ * "$

� * " ← max
% ∈&

1 ", $

� For " ∈ /

9∗ " ← argmax
% ∈&

! ", $ + 3 4
!!∈ #

% "$ | ", $ * "$

� Return 9∗

Key
questions for
today

1. What can we do if the reward function and/or
transition probabilities are unknown?

2. How can we handle infinite (or just very large)
state/action spaces?

8

!∗(#, %)

� 1∗ ", $ = <[total discounted reward of taking action $ in
state ", assuming all future actions are optimal]

1∗ ", $ = ! ", $ + 3 4
!!∈ #

% "$ | ", $ *∗ "$

� *∗ "$ = max
%! ∈&

1∗ "$, $$

1∗ ", $ = ! ", $ + 3 4
!!∈ #

% "$ | ", $ max
%! ∈&

1∗ "$, $$

9∗ " = argmax
% ∈&

1∗ ", $

� Insight: if we know 1∗, we can compute an optimal policy 9∗!

9

!∗(#, %)w/
deterministic
transitions

10

� 1∗ ", $ = <[total discounted reward of taking action $ in
state ", assuming all future actions are optimal]

1∗ = ! ", $ + 3*∗ = ", $

� *∗ = ", $ = max
%! ∈&

1∗ = ", $, $$

1∗ ", $ = ! ", $ + 3 max
%! ∈&

1∗ = ", $, $$

9∗ " = argmax
% ∈&

1∗ ", $

� Insight: if we know 1∗, we can compute an optimal policy 9∗!

Learning
!∗(#, %)w/
deterministic
transitions

11

� Algorithm 1: Online learning of 1∗ (table form)
� Inputs: discount factor 3,

an initial state "

� Initialize 1 ", $ = 0 ∀ " ∈ /, $ ∈ 0
(1 is a / × 0 table or array)

� While TRUE, do

� Take a random action $

� Receive some reward ? = ! ", $

� Observe the new state "$ = = ", $

� Update 1 and "
1 ", $ ← ? + 3max

%!
1 "$, $$

" ← "$

Online
gathering of
training
sample
(", $, ?, "’)

Learning
!∗(#, %)w/
deterministic
transitions

12

� Algorithm 2: @-greedy online learning of 1∗ (table form)
� Inputs: discount factor 3,

an initial state ",

greediness parameter @ ∈ 0, 1

� Initialize 1 ", $ = 0 ∀ " ∈ /, $ ∈ 0
(1 is a / × 0 table or array)

� While TRUE, do

� With probability @, take the greedy action

$ = argmax
%! ∈&

1 ", $$. Otherwise (with

probability 1 − @), take a random action $

� Receive reward ? = ! ", $

� Observe the new state "$ = = ", $

� Update 1 and "
1 ", $ ← ? + 3max

%!
1 "$, $$

" ← "$

Learning
!∗(#, %)

13

� Algorithm 3: @-greedy online learning of 1∗ (table form)
� Inputs: discount factor 3,

an initial state ",

greediness parameter @ ∈ 0, 1 ,

learning rate C ∈ 0, 1 (“mistrust parameter”)

� Initialize 1 ", $ = 0 ∀ " ∈ /, $ ∈ 0
(1 is a / × 0 table or array)

� While TRUE, do

� With probability @, take the greedy action

$ = argmax
%! ∈&

1 ", $$. Otherwise (with probability

1 − @), take a random action $

� Receive reward ? = ! ", $

� Observe the new state "$ ∼ % E$ ", $)

� Update 1 and "
1 ", $ ← 1 − C 1 ", $ + C ? + 3max

%!
1 "$, $$

" ← "$
Current value Update w/

deterministic transitions

Learning
!∗(#, %) via
temporal
difference
learning

14

� Algorithm 3: @-greedy online learning of 1∗ (table form)
� Inputs: discount factor 3,

an initial state ",

greediness parameter @ ∈ 0, 1 ,

learning rate C ∈ 0, 1 (“mistrust parameter”)

� Initialize 1 ", $ = 0 ∀ " ∈ /, $ ∈ 0
(1 is a / × 0 table or array)

� While TRUE, do

� With probability @, take the greedy action

$ = argmax
%! ∈&

1 ", $$. Otherwise (with probability

1 − @), take a random action $

� Receive reward ? = ! ", $

� Observe the new state "$ ∼ % E$ ", $)

� Update 1 and "
1 ", $ ← 1 ", $ + C ? + 3max

%!
1 "$, $$ − 1 ", $

" ← "$
Current value Temporal difference

target

Temporal
difference

Learning
!∗(#, %):
Example

15

7

3

-2

! ", $ =

−2 if entering state 0 safety
3 if entering state 5 5ield goal
7 if entering state 6 (touch down)
0 otherwise

0

5

61 2 3 4

3 = 0.9

16

0

5

61 2 3 40

0

0

0

0

0
7

3

-2

0

0 0

! ", $ represented by

3 = 0.9

Learning
!∗(#, %):
Example

17

0

5

61 2 3 40

0

0

0

0

0
7

3

-2

0

0 0

Poll Q1:
Which set of
blue arrows
(roughly)
corresponds
to !∗(#, %)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3
7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3
7

3

-2

0

0 0

0 61

0 61

A.

B. Toxic

C.

D.

5.10

5.10

3 = 0.9

19

20

Poll Q1:
Which set of
blue arrows
corresponds
to !∗(#, %)?

1∗ ", $ = ! ", $ + 3*∗ = ", $

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3
7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3
7

3

-2

0

0 0

61

61

C.

D.

5.10

5.10

*∗ " shown in green

21

6

Learning
!∗(#, %):
Example 1(", $) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0

! ", $ represented by

3 = 0.9

0 1

22

6

Learning
!∗(#, %):
Example 1(", $) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0

! ", $ represented by

3 = 0.9

0 1

1 3,→ ← 0 + 0.9 max
%!∈ →,←,↑,↻

1 4, $$ = 0

23

6

Learning
!∗(#, %):
Example

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0

! ", $ represented by

3 = 0.9

0 1

1(", $) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

24

6

Learning
!∗(#, %):
Example

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0

! ", $ represented by

3 = 0.9

0 1

1 4, ↑ ← 3 + 0.9 max
%!∈ →,←,↑,↻

1 5, $$ = 3

1(", $) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

25

6

Learning
!∗(#, %):
Example 1(", $) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0

! ", $ represented by

3 = 0.9

0 1

1 3,→ ← 0 + 0.9 max
%!∈ →,←,↑,↻

1 4, $$ = 2.7

26

6

Learning
!∗(#, %):
Example

5

62 3 40

0

0

0

0

0
7

3

-2

0

0 0

! ", $ represented by

3 = 0.9

0 1

1 3,→ ← 0 + 0.9 max
%!∈ →,←,↑,↻

1 4, $$ = 2.7

1(", $) → ← ↑ ↻

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

Learning
!∗(#, %):
Convergence

27

� For Algorithms 1 & 2 (deterministic transitions),
A converges toA∗ if

1. Every valid state-action pair is visited
infinitely often

� Q-learning is exploration-insensitive:
any visitation strategy that satisfies this
property will work!

2. 0 ≤ C < 1
3. ! ", $ < F ∀ " ∈ I, $ ∈ J
4. Initial A values are finite

Learning
!∗(#, %):
Convergence

28

� For Algorithm 3 (temporal difference learning),
A converges toA∗ if

1. Every valid state-action pair is visited
infinitely often

� Q-learning is exploration-insensitive:
any visitation strategy that satisfies this
property will work!

2. 0 ≤ C < 1
3. ! ", $ < F ∀ " ∈ I, $ ∈ J
4. Initial A values are finite

5. Learning rate K" follows some “schedule”
s.t. ∑"#$% K" = ∞ and ∑"#$% K"& = 0
� e.g., C- = ⁄. -/.

Playing Go
� 19-by-19 board

� Players alternate
placing black and
white stones

� The goal is claim
more territory than
the opponent

29

AlphaGo (Black) vs. Lee Sedol (White) - Game 2
Final position (AlphaGo wins in 211 moves)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

Playing Go
� 19-by-19 board

� Players alternate
placing black and
white stones

� The goal is claim
more territory than
the opponent

30

Poll Q2: Which of the following is the closest
approximation to the number of legal board

states in a game of Go?

A. Toxic
B. Number of stars in the universe ~1024

C. Number of atoms in the universe ~1080

D. A googol = 10100

E. Number of possible games of chess ~10120

F. A googolplex = 10googol

The number of legal Go board states is ~10170

(https://en.wikipedia.org/wiki/Go_and_
mathematics)

https://en.wikipedia.org/wiki/Go_and_mathematics

31

Deep
Q-learning

� How can we handle infinite (or just very large)
lstate/action spaces?

� Just throw a neural network at it

� Use a parametric function A ", $; Θ to
lapproximateA∗ ", $

� Learn the parameters using stochastic
gradient descent

� Training data "", $", P", "" gathered online
by the agent / learning algorithm

32

Deep
Q-learning:
Model

33

""

$"
Θ A "", $"; Θ

"" Θ

A "", $'; Θ

A "", $&; Θ

A "", $(; Θ

⋮

Model 1:

Model 2:

R = J

� Represent states using some feature vector "" ∈ ℝ)
e.g., "" = 1, 0, 0, … , 1 *

� Define a neural network

Deep
Q-learning:
Model

34

� Represent states using some feature vector "" ∈ ℝ)
e.g., "" = 1, 0, 0, … , 1 *

� Define a neural network a bunch of linear regressors
(technically still neural networks…), one for each
action (letR = J)

A "⃗, $+; Θ = V+
*
"⃗ where Θ =

V'
V&
⋮
V(

∈ ℝ(×)

� Goal: R ×X ≪ I → computational tractability!

� Gradients are easy: ∇-! A "⃗, $+; Θ = \0 if] ≠ _
"⃗ if] = _

Deep
Q-learning:
Model

� Represent states using some feature vector "" ∈ ℝ)
e.g., "" = 1, 0, 0, … , 1 *

� Define a neural network a bunch of linear regressors
(technically still neural networks…), one for each
action (letR = J)

A "⃗, $+; Θ = V+
*
"⃗ where Θ =

V'
V&
⋮
V(

∈ ℝ(×)

� Goal: R ×X ≪ I → computational tractability!

� Gradients are easy: ∇. A "⃗, $+; Θ =

0
0
⋮
"⃗
⋮
0

35

Row Q

Deep
Q-learning:
Loss
Function

36

� “True” loss

ℓ Θ = a
/ ∈ 1

a
2 ∈3

A∗ ", $ − A ", $; Θ
&

1. Use stochastic gradient descent: just consider
one state-action pair in each iteration

2. Use temporal difference learning:
� Given current parameters Θ 4 the

(temporal difference) target is

A∗ ", $ ≈ P + Cmax
2"

A "5, $5; Θ " ≡ g

� Set the parameters in the next iteration
Θ 46' such that A ", $; Θ 46' ≈ g

ℓ Θ 4 , Θ "6' = g − A ", $; Θ 46' &

1. I too big to compute this sum

2. Don’t know A∗

Deep
Q-learning

37

� Algorithm 4: Online learning of 1∗ (parametric form)
� Inputs: discount factor 3,

an initial state "0,

learning rate C

� Initialize parameters Θ 0

� For S = 0, 1, 2, …

� Gather training sample "- , $- , ?- , "-/.
� Update Θ - by taking a step opposite the

gradient
Θ -/. ← Θ - − C∇1 "#$ ℓ Θ - , Θ -/.

where
∇1 "#$ ℓ Θ - , Θ -/.

= 2 V − 1 ", $; Θ -/. ∇1 "#$ 1 ", $; Θ -/.

Deep
Q-learning:
Experience
Replay

38

� SGD assumes i.i.d. training samples but in RL,
samples are highly correlated

� Idea: keep a “replay memory”h = {j1, j2, … , j4}
of l most recent experiences j5 = "5, $", P", ""6'
(Lin, 1992)

� Also keeps the agent from “forgetting” about
recent experiences

� Alternate between:
1. Sampling some j6 uniformly at random

from h and applying a Q-learning update
(repeat m times)

2. Adding a new experience to h

� Can also sample experiences from h according to
some distribution that prioritizes experiences
with high error (Schaul et al., 2016)

RL Learning
Goals:
Q-Leaning
and Deep RL

a. Apply Q-Learning to a real-world
environment

b. Implement Q-learning

c. Identify the conditions under which the Q-
learning algorithm will converge to the true
value function

d. Adapt Q-learning to Deep Q-learning by
employing a neural network approximation
to the Q function

e. Describe the connection between Deep Q-
Learning and regression

39

Bonus:
Playing Atari
games

40Source: https://www.youtube.com/watch?v=V1eYniJ0Rnk&t=2s&ab_channel=TwoMinutePapers

Bonus:
Playing Atari
games

41

B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders

Random 354 1.2 0 �20.4 157 110 179
Sarsa [3] 996 5.2 129 �19 614 665 271
Contingency [4] 1743 6 159 �17 960 723 268
DQN 4092 168 470 20 1952 1705 581

Human 7456 31 368 �3 18900 28010 3690

HNeat Best [8] 3616 52 106 19 1800 920 1720

HNeat Pixel [8] 1332 4 91 �16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an ✏-greedy policy with ✏ = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an ✏-greedy policy with ✏ = 0.05.

types of objects on the Atari screen. The HNeat Pixel score is obtained by using the special 8 color
channel representation of the Atari emulator that represents an object label map at each channel.
This method relies heavily on finding a deterministic sequence of states that represents a successful
exploit. It is unlikely that strategies learnt in this way will generalize to random perturbations;
therefore the algorithm was only evaluated on the highest scoring single episode. In contrast, our
algorithm is evaluated on ✏-greedy control sequences, and must therefore generalize across a wide
variety of possible situations. Nevertheless, we show that on all the games, except Space Invaders,
not only our max evaluation results (row 8), but also our average results (row 4) achieve better
performance.

Finally, we show that our method achieves better performance than an expert human player on
Breakout, Enduro and Pong and it achieves close to human performance on Beam Rider. The games
Q*bert, Seaquest, Space Invaders, on which we are far from human performance, are more chal-
lenging because they require the network to find a strategy that extends over long time scales.

6 Conclusion

This paper introduced a new deep learning model for reinforcement learning, and demonstrated its
ability to master difficult control policies for Atari 2600 computer games, using only raw pixels
as input. We also presented a variant of online Q-learning that combines stochastic minibatch up-
dates with experience replay memory to ease the training of deep networks for RL. Our approach
gave state-of-the-art results in six of the seven games it was tested on, with no adjustment of the
architecture or hyperparameters.

References

[1] Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the 12th International Conference on Machine Learning (ICML 1995), pages
30–37. Morgan Kaufmann, 1995.

[2] Marc Bellemare, Joel Veness, and Michael Bowling. Sketch-based linear value function ap-
proximation. In Advances in Neural Information Processing Systems 25, pages 2222–2230,
2012.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[4] Marc G Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness
using atari 2600 games. In AAAI, 2012.

[5] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively fac-
tored environments. In Proceedings of the Thirtieth International Conference on Machine
Learning (ICML 2013), pages 1211–1219, 2013.

8

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

an experience replay mechanism [13] which randomly samples previous transitions, and thereby
smooths the training distribution over many past behaviors.

We apply our approach to a range of Atari 2600 games implemented in The Arcade Learning Envi-
ronment (ALE) [3]. Atari 2600 is a challenging RL testbed that presents agents with a high dimen-
sional visual input (210 ⇥ 160 RGB video at 60Hz) and a diverse and interesting set of tasks that
were designed to be difficult for humans players. Our goal is to create a single neural network agent
that is able to successfully learn to play as many of the games as possible. The network was not pro-
vided with any game-specific information or hand-designed visual features, and was not privy to the
internal state of the emulator; it learned from nothing but the video input, the reward and terminal
signals, and the set of possible actions—just as a human player would. Furthermore the network ar-
chitecture and all hyperparameters used for training were kept constant across the games. So far the
network has outperformed all previous RL algorithms on six of the seven games we have attempted
and surpassed an expert human player on three of them. Figure 1 provides sample screenshots from
five of the games used for training.

2 Background

We consider tasks in which an agent interacts with an environment E , in this case the Atari emulator,
in a sequence of actions, observations and rewards. At each time-step the agent selects an action
at from the set of legal game actions, A = {1, . . . ,K}. The action is passed to the emulator and
modifies its internal state and the game score. In general E may be stochastic. The emulator’s
internal state is not observed by the agent; instead it observes an image xt 2 Rd from the emulator,
which is a vector of raw pixel values representing the current screen. In addition it receives a reward
rt representing the change in game score. Note that in general the game score may depend on the
whole prior sequence of actions and observations; feedback about an action may only be received
after many thousands of time-steps have elapsed.

Since the agent only observes images of the current screen, the task is partially observed and many
emulator states are perceptually aliased, i.e. it is impossible to fully understand the current situation
from only the current screen xt. We therefore consider sequences of actions and observations, st =
x1, a1, x2, ..., at�1, xt, and learn game strategies that depend upon these sequences. All sequences
in the emulator are assumed to terminate in a finite number of time-steps. This formalism gives
rise to a large but finite Markov decision process (MDP) in which each sequence is a distinct state.
As a result, we can apply standard reinforcement learning methods for MDPs, simply by using the
complete sequence st as the state representation at time t.

The goal of the agent is to interact with the emulator by selecting actions in a way that maximises
future rewards. We make the standard assumption that future rewards are discounted by a factor of
� per time-step, and define the future discounted return at time t as Rt =

PT
t0=t �

t0�trt0 , where T
is the time-step at which the game terminates. We define the optimal action-value function Q⇤(s, a)
as the maximum expected return achievable by following any strategy, after seeing some sequence
s and then taking some action a, Q⇤(s, a) = max⇡ E [Rt|st = s, at = a,⇡], where ⇡ is a policy
mapping sequences to actions (or distributions over actions).

The optimal action-value function obeys an important identity known as the Bellman equation. This
is based on the following intuition: if the optimal value Q⇤(s0, a0) of the sequence s0 at the next
time-step was known for all possible actions a0, then the optimal strategy is to select the action a0

2

Source: https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

