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Q&A
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Q: I’ve had such a great experience with this class, especially 
with your excellent TAs: how can I be more like them and 
contribute to future iterations of this class? 

A: You can apply to be TA for this course next semester (S22)! 

Matt  wants
601 TA

https://www.ml.cmu.edu/academics/ta.html

https://www.ml.cmu.edu/academics/ta.html


Q&A
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Q: I’ve had such a great experience with this class, especially 
with the ML content: what courses should I take next 
given my specific interests in ML?

A: Well instead of asking us old fogeys (who have never 
taken any of these courses), why not see what some 
fellow students have to say on the subject, courtesy of 
your aforementioned excellent TAs:

https://piazza.com/class/ksg77m9s2cx3d6?cid=1780
(Latest pinned post on Piazza) 

https://piazza.com/class/ksg77m9s2cx3d6?cid=1780


Q&A
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Q: I’ve seen the term Markov boundary used before: is that 
related to a Markov blanket?

A: In a BayesNet, the Markov blanket for X is any set S s.t. X is 
conditionally independent of all other variables when 
conditioned on S.

The Markov boundary for X is the smallest possible 
Markov blanket, which happens to be the children, 
parents and co-parents of X (note this is the definition of a 
Markov blanket we presented) 

Every Markov boundary is a Markov blanket but not vice 
versa. 



Deep 
Q-learning

� Algorithm 4: Online learning of !∗ (parametric form)
� Inputs: discount factor #, 

an initial state $%,

learning rate &
� Initialize parameters Θ %

� For ( = 0, 1, 2, …

� Gather training sample $., /., 0., $.12
� Update Θ . by taking a step opposite the 

gradient
Θ .12 ← Θ . − &∇6 789 ℓ Θ . , Θ .12

where
∇6 789 ℓ Θ . , Θ .12

= 2 ; − ! $, /; Θ .12 ∇6 789 ! $, /; Θ .12
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Deep 
Q-learning:
Experience
Replay

� SGD assumes i.i.d. training samples but in RL, 
samples are highly correlated

� Idea: keep a “replay memory”! = {$1, $2, … , $)}
of )most recent experiences $+ = ,+, -., /., ,.01
(Lin, 1992)

� Also keeps the agent from “forgetting” about 
recent experiences

� Alternate between:
1. Sampling some $2 uniformly at random 

from ! and applying a Q-learning update 
(repeat 3 times)

2. Adding a new experience to !
� Can also sample experiences from ! according to 

some distribution that prioritizes experiences 
with high error (Schaul et al., 2016)
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RL Learning 
Goals: 
Q-Leaning 
and Deep RL

a. Apply Q-Learning to a real-world 
environment

b. Implement Q-learning

c. Identify the conditions under which the Q-
learning algorithm will converge to the true 
value function

d. Adapt Q-learning to Deep Q-learning by 
employing a neural network approximation 
to the Q function

e. Describe the connection between Deep Q-
Learning and regression

10



BIG PICTURE
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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Learning Paradigms
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DIMENSIONALITY REDUCTION
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High Dimension Data

Examples of high dimensional data:
– High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:
– Multilingual News Stories 

(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
– Brain Imaging Data (100s of MBs per scan)
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Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

Image from (Wehbe et al., 2014)



High Dimension Data

Examples of high dimensional data:
– Customer Purchase Data
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Learning Representations
Dimensionality Reduction Algorithms: 
Powerful (often unsupervised) learning techniques for extracting 
hidden (potentially lower dimensional) structure from high 
dimensional datasets.

Examples: 
PCA, Kernel PCA, ICA, CCA, Autoencoders, Matrix Factorization

Useful for:
• Visualization 
• More efficient use of resources (e.g., time, memory, 

communication)
• Statistical: fewer dimensions à better generalization
• Noise removal (improving data quality)

20
Slide adapted from Nina Balcan



This section in one slide…

25

1. Dimensionality reduction: 2. Random Projection:

3. Definition of PCA:

Choose the matrix V that either…
1. minimizes reconstruction error
2. consists of the K eigenvectors with 

largest eigenvalue

The above are equivalent definitions.

4. Algorithm for PCA:

The option we’ll focus on: 

Run Singular Value 
Decomposition (SVD) to 
obtain all the eigenvectors. 
Keep just the top-K to form V. 
Play some tricks to keep 
things efficient.

5. An Example



DIMENSIONALITY REDUCTION BY 
RANDOM PROJECTION
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Random Projection

Whiteboard
– Random linear projection
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Johnson-Lindenstrauss Lemma
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http://www.cs.cmu.edu/~anupamg/papers/jl.pdf

A: Even random projection enjoys some surprisingly impressive properties. 
In fact, a standard of the J-L lemma starts by assuming we have a random 
linear projection obtained by sampling each matrix entry from a 
Gaussian(0,1).

Q: But how could we ever hope to preserve any useful information 
by randomly projecting into a low-dimensional space?



DEFINITION OF PRINCIPAL 
COMPONENT ANALYSIS (PCA)
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Principal Component Analysis (PCA)

In case where data  lies on or near a low d-dimensional linear subspace, 
axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be 
obtained by using classic matrix computation tools (Eigen or Singular Value 
Decomposition).

Slide from Nina Balcan



PCA Example: 2D Gaussian Data
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https://commons.wikimedia.org/wiki/File:Scatter_diagram_for_quality_characteristic_XXX.svg



Data for PCA

We assume the data is centered
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s =

�

����

(t(1))T

(t(2))T

...
(t(N))T

�

����D = {t(i)}N
i=1

µ =
1

N

N�

i=1

t(i) = 0

Q: What if 
your data is 

not centered?

A: Subtract off the sample mean



Sample Covariance Matrix
The sample covariance matrix
is given by:
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�jk =
1

N

N�

i=1

(x(i)
j � µj)(x

(i)
k � µk)

Since the data matrix is centered, we rewrite as:

� =
1

N
sT s s =
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����

(t(1))T

(t(2))T

...
(t(N))T
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Principal Component Analysis (PCA)

Linear Projection:
Given KxM matrix V, and Mx1 

vector x(i) we obtain the Kx1 

projection u(i) by:

u(i) = VTx(i)

Definition of PCA:
PCA repeatedly chooses a next vector vj that minimizes the 
reconstruction error s.t. vj is orthogonal to v1, v2,..., vj-1. 

Vector vj is called the jth principal component.

Notice: Two vectors a and b are orthogonal if aTb = 0. 

èthe K-dimensions in PCA are uncorrelated

34



Vector Projection

35



Principal Component Analysis (PCA)

Whiteboard
– Objective functions for PCA
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Maximizing the Variance
Quiz: Consider the two projections below

1. Which maximizes the variance?
2. Which minimizes the reconstruction error?

37

Option A Option B
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Background: 
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the 
vector v (n x 1 matrix) is an eigenvector
iff there exists eigenvalue λ (scalar) 
such that: 

Av = λv

41

Av = λv

v

The linear transformation A is only 
stretching vector v.

That is, λv is a scalar multiple of v.



Principal Component Analysis (PCA)

Whiteboard
– PCA, Eigenvectors, and Eigenvalues
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PCA
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Equivalence of Maximizing 
Variance and Minimizing  

Reconstruction Error



PCA
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The First 
Principal 

Component



PCA: the First Principal Component
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Principal Component Analysis (PCA)
X X" v = λv , so v (the first PC) is the eigenvector of 

sample correlation/covariance matrix & &'

Sample variance of projection v'& &'v = (v'v = (
Thus, the eigenvalue ( denotes the amount of variability 
captured along that dimension (aka amount of energy along that 
dimension).

Eigenvalues () ≥ (+ ≥ (, ≥ ⋯

• The 1st PC .) is the the eigenvector of the sample covariance matrix & &'
associated with the largest eigenvalue 

• The 2nd PC .+ is the the eigenvector of the sample covariance matrix 
& &' associated with the second largest eigenvalue 

• And so on …

Slide from Nina Balcan



ALGORITHMS FOR PCA
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Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?
• Power iteration (aka. Von Mises iteration)
– finds each principal component one at a time in order 

• Singular Value Decomposition (SVD)
– finds all the principal components at once
– two options:

• Option A: run SVD on XTX
• Option B: run SVD on X 

(not obvious why Option B should work…)

• Stochastic Methods (approximate)
– very efficient for high dimensional datasets with lots of 

points

48
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Slide from Tom Mitchell
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Slide from Tom Mitchell
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Slide from Tom Mitchell



• For M original dimensions, sample covariance matrix is MxM, and has 
up to M eigenvectors. So M PCs.

• Where does dimensionality reduction come from?
Can ignore the components of lesser significance. 
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• You do lose some information, but if the eigenvalues are small, you don’t lose 
much
– M dimensions in original data 
– calculate M eigenvectors and eigenvalues
– choose only the first D eigenvectors, based on their eigenvalues
– final data set has only D dimensions

Variance (%) = ratio of variance along 
given principal component to total 

variance of all principal components



PCA EXAMPLES
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Projecting MNIST digits
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Task Setting:
1. Take 25x25 images of digits and project them down to K components
2. Report percent of variance explained for K components
3. Then project back up to 25x25 image to visualize how much information was preserved



Projecting MNIST digits
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Task Setting:
1. Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points
3. Here we look at all ten digits 0 - 9



Projecting MNIST digits
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Task Setting:
1. Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points
3. Here we look at just four digits 0, 1, 2, 3



Learning Objectives
Dimensionality Reduction / PCA

You should be able to…
1. Define the sample mean, sample variance, and sample 

covariance of a vector-valued dataset
2. Identify examples of high dimensional data and common use 

cases for dimensionality reduction
3. Draw the principal components of a given toy dataset
4. Establish the equivalence of minimization of reconstruction 

error with maximization of variance
5. Given a set of principal components, project from high to low 

dimensional space and do the reverse to produce a 
reconstruction

6. Explain the connection between PCA, eigenvectors, 
eigenvalues, and covariance matrix

7. Use common methods in linear algebra to obtain the principal 
components

59



CLUSTERING
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Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar 
data points.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g., 
for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression 
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan

• Cluster news articles or web pages or search results by topic.



• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan



Clustering

Question: Which of these partitions is “better”?
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