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Q&A

Q: I’ve had such a great experience with this class, especially
with your excellent TAs: how can | be more like them and

contribute to future iterations of this class?

A: You can apply to be TA for this course next semester (S22)!
' 1
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https://www.ml.cmu.edu/academics/ta.html

Q&A

Q: I’ve had such a great experience with this class, especially
with the ML content: what courses should | take next
given my specific interests in ML?

A: Wellinstead of asking us old fogeys (who have never
taken any of these courses), why not see what some
fellow students have to say on the subject, courtesy of
your aforementioned excellent TAs:

(Latest pinned post on Piazza)


https://piazza.com/class/ksg77m9s2cx3d6?cid=1780

Q&A

I’ve seen the term Markov boundary used before: is that

* related to a Markov blanket?

In a BayesNet, the Markov blanket for X is any set S s.t. X is
conditionally independent of all other variables when
conditioned on S.

The Markov boundary for X is the smallest possible
Markov blanket, which happens to be the children,
parents and co-parents of X (note this is the definition of a
Markov blanket we presented)

Every Markov boundary is a Markov blanket but not vice
versa.



* Algorithm 4: Online learning of Q™ (parametric form)
* Inputs: discount factor y,

an initial state s,

learning rate «

Deep + Initialize parameters ©(®)
Q Iearnin * Fort=20,1,2, ...
g * Gather training sample (s, ag, 7, St 4+1)
- Update 0 by taking a step opposite the
gradient
O B0 — Vg esn £(00, 0C+D)
where |

v@(t+1)£(®(t), @(t+1))

=2 (y — Q(s, a; G(t"'l))) v®(t+1)Q(S; a, @(Hl))
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Deep
Q-learning:

Experience
Replay

* SGD assumes i.i.d. training samples but in RL,

samples are highly correlated

* ldea: keep a “replay memory” D = {e4, e, ... , ey}

of N most recent experiences e, = (S;, at, Tt St 4+1)
(Lin, 1992) -
- Also keeps the agent from “forgetting” about
recent experiences

* Alternate between:

1. Sampling some e; uniformly at random
from D and applying a Q-learning update
(repeat T times)

2. Adding a new experienceto D

- Can also sample experiences from D according to

some distribution that prioritizes experiences
with high error (Schaul et al., 2016)



RL Learning
Goals:

Q-Leaning
and Deep RL

Apply Q-Learning to a real-world
environment

Implement Q-learning

Identify the conditions under which the Q-
learning algorithm will converge to the true
value function

Adapt Q-learning to Deep Q-learning by
employing a neural network approximation
to the Q function

Describe the connection between Deep Q-
Learning and regression
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BIG PICTURE



ML Big Picture

Learning Paradigms:

What data is available and
when? What form of prediction?

. supervised learning

. unsupervised learning

. semi-supervised learning
. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction
. ensemble learning

. distant supervision

) hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

U 00O

Problem Formulation:

What is the structure of our output prediction? )
boolean Binary Classification o :E
categorical Multiclass Classification *é_B
ordinal Ordinal Classification 2 - §.~
real Regression Y N S 0
ordering Ranking i %’D {::E
multiple discrete  Structured Prediction _g é T 06.2
multiple continuous (e.g. dynamical systems) § = %f{:}
both discrete & (e.g. mixed graphical models) | ‘& ; nC 5
cont. TL=z2Y9
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2.  Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

inductive bias
generalization / overfitting
bias-variance decomposition
generative vs. discriminative
deep nets, graphical models
PAC learning

distant rewards



Learning Paradigms

Paradigm Data

Supervised D = {x(), yO}N x ~ p*(-)and y = ¢*(-)
< Regression yeR

< Classification yie{1,..., K}

< Binary classification  y(" € {+1, -1}

<3 Structured Prediction y'! isa vector

Unsupervised ﬁ= x ~ p*(-)

Semi-supervised =|{x®, y@P"1 U @“;l —

Online D = {(xV),yM), (x(2),y@), (x3), 43, ...}
Active Learning ‘D‘?x(')_}g and can query ') = ¢*(-) at a cost
Imitation Learning D = {(sD),aM), (s®,a?),...}

Reinforcement Learning D = {(s'V),aV), +(1)) (52 a@) 20 .}



DIMENSIONALITY REDUCTION



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:

— Multilingual News Stories
(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Subject

Image from (Wehbe et al., 2014)
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Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



High Dimension Data

Examples of high dimensional data:
— Customer Purchase Data
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Learning Representations

Dimensionality Reduction Algorithms:

Powerful (often unsupervised) learning techniques for extracting
hidden (potentially lower dimensional) structure from high
dimensional datasets.

Examples:
PCA, Kernel PCA, ICA, CCA, Autoencoders, Matrix Factorization

Useful for:
e Visualization

* More efficient use of resources (e.g., time, memory,
communication)

* Statistical: fewer dimensions = better generalization
* Noise removal (improving data quality)

Slide adapted from Nina Balcan



This section in one slide...

1. Dimensionality reduction: 2. Random Projection:
[J KxM
¥ ° Q ?av\éo-\’7 Sgnflﬁ- \MA“T\X \/e K
T° -e PIDFC‘L (Lh‘-ﬂ . -\J)(& \/X(*)
e o O 4 -
4. Algorithm for PCA:

3. Definition of PCA: The option we’ll focus on:

Choose the matrix V that either...

1.  minimizes reconstruction error

2. consists of the K eigenvectors with
largest eigenvalue

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.

Play some tricks to keep
The above are equivalent definitions. things efficient.

5. An Example




DIMENSIONALITY REDUCTION BY
RANDOM PROJECTION



Random Projection

Whiteboard
— Random linear projection



Johnson-Lindenstrauss Lemma

. But how could we ever hope to preserve any useful information
by randomly projecting into a low-dimensional space?

. Evenrandom projection enjoys some surprisingly impressive properties.
In fact, a standard of the J-L lemma starts by assuming we have a random
linear projection obtained by sampling each matrix entry from a

Gaussian(0,1).

An Elementary Proof of a Theorem of
Johnson and Lindenstrauss

Sanjoy Dasgupta,’ Anupam Gupta®

ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high
dimensional Euclidean space can be mapped into an O(log n/e*)-dimensional Euclidean space such
that the distance between any two points changes by only a factor of (1 = €). In this note, we prove
this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct.
Alg., 22: 60-65, 2002

http://www.cs.cmu.edu/~anupamg/papers/jl.pdf



DEFINITION OF PRINCIPAL
COMPONENT ANALYSIS (PCA)



Principal Component Analysis (PCA)

-0’ 'g:‘g;:t&: ib-.. |'|§" s::‘ “ ‘) .:.r'..' p

r" m

x‘o i’ﬁ o
ﬁ&b

In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be

obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Slide from Nina Balcan



PCA Example: 2D Gaussian Data

1st principal
component
2nd principal
component
L
o
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o
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o
) e
- =
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https://commons.wikimedia.org/wiki/File:Scatter diagram_for_quality characteristic XXX.svg



Data for PCA

_(X(l))T_
| (X(2))T
D = {X(Z)}yg\;l X =
X(Z) c ]RM _(X(];T))T_

We assume the data is centered

L)
p=—5) X =
P>

Q: What if A: Subtract off the sample mean
your data is

not centered? %) = x() _ W, Vi



Sample Covariance Matrix
RMXM

The sample covariance matrix XY € R==227

is given by:

¥ =

Since the data matrix is centered, we rewrite as:
T C(x)TT

3 _XTX (X(Q))T
X .

()T



Principal Component Analysis (PCA) ,

Linear Projection: / 3T - R

Given KxM matrix V and Mx1 \/~ ,___V_?‘-__ (\)1. YV X €

vector X we obtainthe Kx1  _“jxM| 2= AR |

projection u® by: T :Tx :
u® = VIx® T Ve Ul Ve

Definition of PCA:

PCA repeatedly chooses a next vector v; that minimizes the
reconstruction error s.t. v;is orthogonal to v,, v,,..., V...

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if aTb = o.
=>the K-dimensions in PCA are uncorrelated



Vector Projection
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Principal Component Analysis (PCA)

Whiteboard
— Objective functions for PCA



Maximizing the Variance

Quiz: Consider the two projections below (s
A\ 1 Which maximizes the variance? A: %% 15: 7
Q2 2. Which minimizes the reconstruction error? A-b 102

Option A Option B C =-L»<i¢
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A When survey is active, respond at pollev.com/10301601polls

Lecture 24: In-Class Poll

0 done

s
L0 underwav
Start the presentation 1o see bve content, For screen share software, share the entie soreen. Get help at pollev.comapp

"u
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"

€ When poll is active, respond at pollev.com/10301601polls

Question 1

STt the presentation 10 see bve Content. For scroen share software, share the entiee sareen. Get help at pollev.comapp

.I

"u
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I.

"

€ When poll is active, respond at pollev.com/10301601polls

Question 2

STt the presentaticn 10 see bve Content. For scroen share software, share the entier sareen. Get help at pollev.com/app

J

"u
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Background:
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the
vector v (n X 1 matrix) is an eigenvector
iff there exists eigenvalue A (scalar)
such that:

Av = Av

Av = Av
The linear transformation A is only

stretching vectorv.

That is, Av is a scalar multiple of v.




Principal Component Analysis (PCA)

Whiteboard
— PCA, Eigenvectors, and Eigenvalues



Equivalence of Maximizing PCA

Variance and Minimizing
Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

—_—

roof: First, note that:

(vx?)? (1)

1@ — (vIxD)v|[ = [|x?]|* -
S A

SinCQ&TV = ||v||? =q

Substituting into the minimization problem, and removing the extr
neous terms, we obtain the maximization problem.

1 : :
v* = argmin N Z ||x) — (vIx®)v||?

vi||v]|?=1

i ||x(z)||2 VTx(‘i))2
- e Z
- @ vix(®)? (4)
[|v| _l
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The First
Principal
Component

Claim: The vector that maximizes the variances is the
eigenvector of X with largest eigenvalue.

Proof Sketch: To find the first principal component, we
wish to solve the following constrained optimization
problem (variance minimization).

v, = argmax v! Xv (1)
Vi v|[2=1 ~ve—

So we turn to the method of Lagrange multipliers. The
Lagrangian is:

Lv,\) =vIBv - Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to
zero gives:

;iv (vVIZv — AVTv—1)) =0 3)
Sv—Av=0 (4)
v =A\v (5)

PCA

Recall: For a square matrix A, the vector v is an eigen-
vector iff there exists eigenvalue A such that:

Dv = AV J (6)

Rewriting the objective of the maximization shows that
not only will the optimal vector v, be an eigenvector,
it will be one with maximal eigenvalue.

viSv=viiv @)
= Ty ®)
= Allv][? (9)
= (10)
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PCA: the First Principal Component

To find the first principal component, we wish to solve the fol-
lowing constrained optimization problem (variance minimization).

v, = argmax v’ $v (1)
vi||v]]?=1

So we turn to the method of Lagrange multipliers. The Lagrangian
is:

Lv,\)=vIZv-Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to zero gives:

div (VTEV —AvTv - 1)) =0 (3)
Yv—-Av=10 (4)
v =Av (5)

Recall: For a square matrix A, the vector v is an eigenvector iff
there exists eigenvalue A such that:

Av = )\v (6)

45



Principal Component Analysis (PCA)

Thus, the eigenvalue 1 denotes the amount of variability
captured along that dimension (aka amount of energy along that
dimension).

Slide from Nina Balcan




ALGORITHMS FOR PCA



Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

* Power iteration (aka. Von Mises iteration)
— finds each principal component one at a time in order

» Singular Value Decomposition (SVD)
— finds all the principal components at once

— two options:

* Option A: run SVD on X™X

* Option B: run SVD on X
(not obvious why Option B should work...)

 Stochastic Methods (approximate)

— very efficient for high dimensional datasets with lots of
points

48



SVD

m n

Data X, one
row per data
point

[from Wall et al., 2003]

Eigenassay

X=USV
Singular
‘u - Value
U

g
m "

m=n n=n
US gives S is diagonal,
coordinates St > Spes
of rows of X 52 is kth
in the space largest
of principle eigenvalue
components

Figengene
a ’

n=n

Rows of ¥ are unit
length eigenvectors of

XX =z
If cols of X have zero
mean, then X' X = ¢ X

and eigenvects are the
Principle Components

Slide from Tom Mitchell



Singular Value Decomposition

To generate principle components:

—~ 1 '\‘ n
« Subtract mean * = Z.l" from each data point, to

n—

create zero-centered data

« Create matrix X with one row vector per (zero centered)
data point

« Solve SVD: X = USV"

» Output Principle components: columns of V (= rows of V7)
— Eigenvectors in V are sorted from largest to smallest eigenvalues
-~ S is diagonal, with s;° giving eigenvalue for kth eigenvector

Slide from Tom Mitchell



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x

If x; is i'" row of data matrix X, then
« ("rowof US) =V xT
« (US)T=VTXT

/4

To project a column vector x to# dim Principle Components
subspace, take just the first & ceerdinates of V7 x

L

Slide from Tom Mitchell



How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M PCs.

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 - Variance (%) = ratio of variance along
- given principal component to total
0 variance of all principal components
;\g ___
< 15 -
[/} —
o
<
£ 10
= 10 -
> —
5 4
A B0 A me

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose

much
— M dimensions in original data
— calculate M eigenvectors and eigenvalues
— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011
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PCA EXAMPLES



Projecting MNIST digits

Task Setting:

1. Take 25x25 images of digits and project them down to K components

2. Report percent of variance explained for K components

3. Then project back up to 25x25 image to visualize how much information was preserved

Oniginal Image 95% of Explained Varance Y% of Explared Variance BO% of Explained Variancd SO% of Explained Varance
184 componerts 154 components 87 components 43 components 11 companents




Projecting MNIST digits

Task Setting:

1.
2.

3.

Take 25x25 images of digits and project them down to 2 components
Plot the 2 dimensional points
Here we look at all ten digits 0 -9
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Projecting MNIST digits

Task Setting:

1. Take 25x25 images of digits and project them down to 2 components
2.  Plot the 2 dimensional points

3. Herewelook at just four digits o, 1, 2, 3

3.0

2.5

- 2.0

- 1.5

- 1.0

0.5

T T 0.0

I
=
o
=
N
w



Learning Objectives

Dimensionality Reduction / PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample
covariance of a vector-valued dataset

Identify examples of high dimensional data and common use
cases for dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction
error with maximization of variance

Given a set of principal components, project from high to low
dimensional space and do the reverse to produce a
reconstruction

Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

Use common methods in linear algebra to obtain the principal
components



CLUSTERING



Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar

data points.

Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.

e Understanding hidden structure in data.

e Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere...)

e C(Cluster news articles or web pages or search results by topic.

e (luster protein sequences by function or genes according to expression
profile. ' -

g [ 2 28 FRITVI iAo s N wi
1 o 9 IR IR LI My ALY » an L R AL ) ]
"< [~ | ERTTAT LYY AN b . Q-m- S U
L ’ ¢ % 1y
3o Bes-f ety SIS o3 BN e = 1R rve
" M BRTWI I e AT a e XL 15
" X FRIYY IS TV ; awn L SR Wk
[} B2 [ S Shivvilmamey i avori » LB N nbnm
" g e 4 SRTTVIL Y LAN LY. LM x ko

[ N (25 SEITVILMSIANLLYL ’ L 3 S - SRR Sl
L e RV i mammy AL o8 g s L "B Ul
“w> [ S8 ) AR LA ANT L "a as Raranvy

o C(Cluster users of social networks by interest (community detection).
Facebook network —_— Twitter Network

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere...)

* Cluster customers according to purchase history.

CRBITZ - ]
[ — = qeyre - ﬂ}l ‘ i
mIIT s w““ Pl free mghts. M ars M
e . © reserteredts e
o ~ wg )’ LG = #':w
R e . % %

e And many many more applications....

Slide courtesy of Nina Balcan



Clustering

Question: Which of these partitions is “better”?

@)
@)
P OoO
O O
P
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