
K-Means + 
Ensemble Methods +

Recommender Systems

1

10-301/601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 25

Nov. 22, 2021

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• Homework 9: Learning Paradigms
– Out: Sun, Nov. 21
– Due: Wed, Dec. 1 at 11:59pm
– Can only be submitted up to 2 days late, 

so we can return grades before final exam

• Exam 3 Practice Problems
– Out: Wed, Dec. 1

• Mock Exam 3
– Out: Wed, Dec. 1
– Due: Sat, Dec. 4 at 11:59pm

• Exam 3
– Mon, Dec. 6 (9:30am – 11:30am)

2



CLUSTERING

13



Clustering

Question: Which of these partitions is “better”?

19



Block Coordinate Descent
• Goal: minimize some objective 

"⃗∗ = argmin
+

, "⃗

• Idea: iteratively pick one variable and minimize the 
objective w.r.t. just that one variable, keeping all 
the others fixed. 

20

"-

".

"⃗ /

"⃗ -

"⃗ . "⃗ 0



Block Coordinate Descent
• Goal: minimize some objective 

"⃗∗, %⃗∗ = argmin
-,.

/ "⃗, %⃗

• Idea: iteratively pick one block of variables ("⃗ or %⃗) 
and minimize the objective w.r.t. that block, 
keeping the other(s) fixed. 

21



K-Means

Whiteboard:
– (Block) Coordinate descent
– K-means recipe
• K-means model parameters
• K-means objective function

– K-means algorithm

22



K-Means Algorithm

• Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

• Initialize cluster centers c = {c(1),…, c(K)} 
• Repeat until convergence:
– for i in {1,…, N}

z(i) ← index j of cluster center nearest to x(i)

– for j in {1,…,K}
c(j) ←mean of all points assigned to cluster j

24



K-MEANS EXAMPLE
K=3 cluster centers

29



Example: K-Means

30



Example: K-Means

31



Example: K-Means

32



Example: K-Means

33



Example: K-Means

34



Example: K-Means

35



Example: K-Means

36



Example: K-Means

37



K-MEANS EXAMPLE
K=2 cluster centers

38



Example: K-Means

39



Example: K-Means

40



Example: K-Means

41



Example: K-Means

42



Example: K-Means

43



Example: K-Means

44



Example: K-Means

45



Example: K-Means

46



Example: K-Means

47



INITIALIZING K-MEANS

48



Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Given a set of data points



Select initial centers at random from amongst the data points 

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Assign each point to its nearest center

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Recompute optimal centers given a fixed clustering



Assign each point to its nearest center

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Recompute optimal centers given a fixed clustering

Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Slide courtesy of Nina Balcan

Assign each point to its nearest center



Recompute optimal centers given a fixed clustering

Lloyd’s method: Random Initialization

Good quality solution in this example

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Always converges but may converge to a local optimum that is 
different from the global optimum, and in fact could be arbitrarily 
worse in terms of its score.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Local optimum: every point is assigned to its nearest center and 
every center is the mean value of its points.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Can be arbitrarily worse than the optimum solution…

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

This bad performance, can happen 
even with well separated Gaussian 
clusters.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Slide courtesy of Nina Balcan

This bad performance, can happen 
even with well separated Gaussian 
clusters.



Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block 

coordinate descent
2. Define an objective function that gives rise to a "good" 

clustering
3. Apply block coordinate descent to an objective function 

preferring each point to be close to its nearest 
objective function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective 

function with the (possibly) poor performance of 
random initialization

67



Learning Paradigms

68



ML Big Picture

69

Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards

A
pp

lic
at

io
n 

A
re

as
Ke

y 
ch

al
le

ng
es

?
N

LP
, S

pe
ec

h,
 C

om
pu

te
r 

Vi
si

on
, R

ob
ot

ic
s,

 M
ed

ic
in

e,
 

Se
ar

ch



Outline for Today
We’ll talk about two distinct topics:
1. Ensemble Methods: combine or learn multiple 

classifiers into one
(i.e. a family of algorithms)

2. Recommender Systems: produce 
recommendations of what a user will like
(i.e. the solution to a particular type of task)

We’ll use a prominent example of a recommender 
systems (the Netflix Prize) to motivate both 
topics…

70



RECOMMENDER SYSTEMS

71



Recommender Systems
A Common Challenge:
– Assume you’re a company 

selling items of some sort: 
movies, songs, products, 
etc.

– Company collects millions 
of ratings from users of 
their items

– To maximize profit / user 
happiness, you want to 
recommend items that 
users are likely to want

72



Recommender Systems

73



Recommender Systems

74



Recommender Systems

75



Recommender Systems

76

Problem Setup
• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower root mean squared error (RMSE) 

than Netflix’s existing system on 3 million held out ratings 



Recommender Systems

77

Top performing systems 
were ensembles



ENSEMBLE METHODS

78



Weighted Majority Algorithm
• Given: pool A of binary classifiers (that 

you know nothing about)
• Data: stream of examples (i.e. online 

learning setting)
• Goal: design a new learner that uses 

the predictions of the pool to make 
new predictions

• Algorithm: 
– Initially weight all classifiers equally
– Receive a training example and predict 

the (weighted) majority vote of the 
classifiers in the pool

– Down-weight classifiers that contribute 
to a mistake by a factor of β

79

(Littlestone & Warmuth, 1994)



Weighted Majority Algorithm

81

(Littlestone & Warmuth, 1994)



Weighted Majority Algorithm

83

Theorems (Littlestone & Warmuth, 1994)

These are 
“mistake 

bounds” of the 
variety we saw 

for the 
Perceptron 
algorithm



ADABOOST

87



Comparison

Weighted Majority Algorithm

• an example of an 
ensemble method

• assumes the classifiers are 
learned ahead of time

• only learns (majority vote) 
weight for each classifiers

AdaBoost
• an example of a boosting 

method
• simultaneously learns:

– the classifiers themselves
– (majority vote) weight for 

each classifiers

88



Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

AdaBoost: Toy Example

90
Slide from Schapire NIPS Tutorial 



Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

AdaBoost: Toy Example

91
Slide from Schapire NIPS Tutorial 



Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

AdaBoost: Toy Example

92
Slide from Schapire NIPS Tutorial 



Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

AdaBoost: Toy Example

93
Slide from Schapire NIPS Tutorial 



Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

AdaBoost: Toy Example

94
Slide from Schapire NIPS Tutorial 



AdaBoost

95

Given: where ,
Initialize .
For :

Train weak learner using distribution .
Get weak hypothesis with error

Choose .
Update:

if
if

where is a normalization factor (chosen so that will be a distribution).

Output the final hypothesis:

Figure 1: The boosting algorithm AdaBoost.

and the labels give the outcomes (i.e., the winners) of each race. The weak hypotheses are
the rules of thumb provided by the expert gambler where the subcollections that he examines are
chosen according to the distribution .

Once the weak hypothesis has been received, AdaBoost chooses a parameter as in the
figure. Intuitively, measures the importance that is assigned to . Note that if
(which we can assume without loss of generality), and that gets larger as gets smaller.

The distribution is next updated using the rule shown in the figure. The effect of this rule
is to increase the weight of examples misclassified by , and to decrease the weight of correctly
classified examples. Thus, the weight tends to concentrate on “hard” examples.

The final hypothesis is a weighted majority vote of the weak hypotheses where is the
weight assigned to .

Schapire and Singer [42] show how AdaBoost and its analysis can be extended to handle weak
hypotheses which output real-valued or confidence-rated predictions. That is, for each instance ,
the weak hypothesis outputs a prediction whose sign is the predicted label ( or
) and whose magnitude gives a measure of “confidence” in the prediction. In this paper,

however, we focus only on the case of binary ( ) valued weak-hypothesis predictions.

3

Algorithm from (Freund & Schapire, 1999) 



AdaBoost

Theoretical Results:

96

…saved for HW9…



AdaBoost

98
Figure from (Freund & Schapire, 1999) 

er
ro
r

10 100 1000
0

5

10

15

20

cu
m
ul
at
iv
e
di
st
rib
ut
io
n

-1 -0.5 0.5 1

0.5

1.0

# rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Analyzing the training error
The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error of as . Since a hypothesis that guesses each instance’s class
at random has an error rate of (on binary problems), thus measures how much better than
random are ’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis is at most

(1)

Thus, if each weak hypothesis is slightly better than random so that for some , then
the training error drops exponentially fast.

A similar property is enjoyed by previous boosting algorithms. However, previous algorithms
required that such a lower bound be known a priori before boosting begins. In practice, knowl-
edge of such a bound is very difficult to obtain. AdaBoost, on the other hand, is adaptive in that it
adapts to the error rates of the individual weak hypotheses. This is the basis of its name — “Ada”
is short for “adaptive.”

The bound given in Eq. (1), combined with the bounds on generalization error given below,
prove that AdaBoost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak edge for any
distribution) into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).

4



Learning Objectives
Ensemble Methods / Boosting

You should be able to…
1. Implement the Weighted Majority Algorithm
2. Implement AdaBoost
3. Distinguish what is learned in the Weighted 

Majority Algorithm vs. Adaboost
4. Contrast the theoretical result for the 

Weighted Majority Algorithm to that of 
Perceptron

5. Explain a surprisingly common empirical result 
regarding Adaboost train/test curves

99



Outline
• Recommender Systems
– Content Filtering
– Collaborative Filtering (CF)
– CF: Neighborhood Methods
– CF: Latent Factor Methods

• Matrix Factorization
– Background: Low-rank Factorizations
– Residual matrix
– Unconstrained Matrix Factorization

• Optimization problem
• Gradient Descent, SGD, Alternating Least Squares
• User/item bias terms (matrix trick)

– Singular Value Decomposition (SVD)
– Non-negative Matrix Factorization

100



RECOMMENDER SYSTEMS

101



Recommender Systems

106

Problem Setup
• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower root mean squared error (RMSE) 

than Netflix’s existing system on 3 million held out ratings 



Recommender Systems

107



Recommender Systems
• Setup:

– Items: 
movies, songs, products, etc.
(often many thousands)

– Users: 
watchers, listeners, purchasers, etc.
(often many millions)

– Feedback: 
5-star ratings, not-clicking ‘next’, 
purchases, etc.

• Key Assumptions:
– Can represent ratings numerically 

as a user/item matrix
– Users only rate a small number of 

items (the matrix is sparse)

108
D

oc
to

r 
St

ra
ng

e

St
ar

 T
re

k:
 

Be
yo

nd

Zo
ot

op
ia

Alice 1 5

Bob 3 4

Charlie 3 5 2



Two Types of Recommender Systems

Content Filtering
• Example: Pandora.com

music recommendations 
(Music Genome Project)

• Con: Assumes access to 
side information about 
items (e.g. properties of a 
song)

• Pro: Got a new item to 
add? No problem, just be 
sure to include the side 
information

Collaborative Filtering
• Example: Netflix movie 

recommendations
• Pro: Does not assume 

access to side information 
about items (e.g. does not 
need to know about movie 
genres)

• Con: Does not work on 
new items that have no 
ratings

109



COLLABORATIVE FILTERING

110



Collaborative Filtering
• Everyday Examples of Collaborative Filtering...
– Bestseller lists
– Top 40 music lists
– The “recent returns” shelf at the library
– Unmarked but well-used paths thru the woods
– The printer room at work
– “Read any good books lately?”
– …

• Common insight: personal tastes are correlated
– If Alice and Bob both like X and Alice likes Y then 

Bob is more likely to like Y
– especially (perhaps) if Bob knows Alice

111
Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods

112
Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
1. Neighborhood Methods

113

In the figure, assume that 
a green line indicates the 
movie was watched

Algorithm:
1. Find neighbors based 

on similarity of movie 
preferences

2. Recommend movies 
that those neighbors 
watched

Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
2. Latent Factor Methods

114
Figures from Koren et al. (2009)

• Assume that both 
movies and users 
live in some low-
dimensional space 
describing their 
properties

• Recommend a 
movie based on its 
proximity to the 
user in the latent 
space

• Example Algorithm: 
Matrix Factorization



Recommending Movies
Question:
Applied to the Netflix Prize 
problem, which of the 
following methods always
requires side information 
about the users and movies?
Select all that apply
A. collaborative filtering
B. latent factor methods
C. ensemble methods
D. content filtering
E. neighborhood methods
F. recommender systems

115

Answer:



MATRIX FACTORIZATION

118



Matrix Factorization

• Many different ways of factorizing a matrix
• We’ll consider three:

1. Unconstrained Matrix Factorization
2. Singular Value Decomposition
3. Non-negative Matrix Factorization

• MF is just another example of a common 
recipe:

1. define a model
2. define an objective function
3. optimize with SGD

119



Matrix Factorization

Whiteboard
– Background: Low-rank Factorizations
– Residual matrix

121



Example: MF for Netflix Problem

122
Figures from Aggarwal (2016)

3.6. LATENT FACTOR MODELS 95

   1 

   2 

   3 

   4 

   5 

   6 

   7 

HI
ST

O
RY

 

RO
M

AN
CE

 

 X 
HISTORY 

 ROMANCE 

ROMANCE 

BOTH 

HISTORY 

 1 1 1 

1 1 1 

1 1 1 

- 1 

- 1 

- 1 

- 1 

- 1 

- 1 - 1 - 1 

1 1 1 1 1 1 

1 1 1 

1 1 1 1 

1 1 1 

0 0 0 

0 0 0 

0 0 0 

NE
RO

 

JU
LI

US
 C

AE
SA

R 

CL
EO

PA
TR

A 

SL
EE

PL
ES

S 
IN

 S
EA

TT
LE

 

PR
ET

TY
 W

O
M

AN
 

CA
SA

BL
AN

CA
 

 R  U 

VT 

NE
RO

 

JU
LI

US
 C

AE
SA

R 

CL
EO

PA
TR

A 

SL
EE

PL
ES

S 
IN

 S
EA

TT
LE

 

PR
ET

TY
 W

O
M

AN
 

CA
SA

BL
AN

CA
 

0 

0 

0 

- 1 

- 1 

- 1 

1 

1 

1 

1 

1 

1 

1 

1 
1 1 1 

1 1 1 1 0  0 

 0  0  0 

  6 

  7 

  5 

  4 

  3 

  2 

  1 

AT
TL

E

N

O US
CA

ES
AR

O
PA

TR
A

PL
ES

S
IN

SE
A

T T
Y

W
O

M
AN

AB
LA

NC
A

0 0 0

0 0 0

0 0 0

0 0 0

NE
RO

JU
LI

U

CL
EO

SL
EE

P

PR
ET

CA
SA

1

BOTH

HISTORY
0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

1

2

3

4

ROMANCE

0

0

0

0

0 0

1

0 0 0

1

0 0 0

0 0 0

15

6
0 0 1 0 0 0

R

7

(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix

3.6. LATENT FACTOR MODELS 95

   1 

   2 

   3 

   4 

   5 

   6 

   7 

HI
ST

O
RY

 

RO
M

AN
CE

 

 X 
HISTORY 

 ROMANCE 

ROMANCE 

BOTH 

HISTORY 

 1 1 1 

1 1 1 

1 1 1 

- 1 

- 1 

- 1 

- 1 

- 1 

- 1 - 1 - 1 

1 1 1 1 1 1 

1 1 1 

1 1 1 1 

1 1 1 

0 0 0 

0 0 0 

0 0 0 

NE
RO

 

JU
LI

US
 C

AE
SA

R 

CL
EO

PA
TR

A 

SL
EE

PL
ES

S 
IN

 S
EA

TT
LE

 

PR
ET

TY
 W

O
M

AN
 

CA
SA

BL
AN

CA
 

 R  U 

VT 

NE
RO

 

JU
LI

US
 C

AE
SA

R 

CL
EO

PA
TR

A 

SL
EE

PL
ES

S 
IN

 S
EA

TT
LE

 

PR
ET

TY
 W

O
M

AN
 

CA
SA

BL
AN

CA
 

0 

0 

0 

- 1 

- 1 

- 1 

1 

1 

1 

1 

1 

1 

1 

1 
1 1 1 

1 1 1 1 0  0 

 0  0  0 

  6 

  7 

  5 

  4 

  3 

  2 

  1 

AT
TL

E

N

O US
CA

ES
AR

O
PA

TR
A

PL
ES

S
IN

SE
A

T T
Y

W
O

M
AN

AB
LA

NC
A

0 0 0

0 0 0

0 0 0

0 0 0

NE
RO

JU
LI

U

CL
EO

SL
EE

P

PR
ET

CA
SA

1

BOTH

HISTORY
0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

1

2

3

4

ROMANCE

0

0

0

0

0 0

1

0 0 0

1

0 0 0

0 0 0

15

6
0 0 1 0 0 0

R

7

(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix

E



Regression vs. Collaborative Filtering

123

72 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

TRAINING
ROWS

TEST
ROWS

INDEPENDENT
VARIABLES

DEPENDENT
VARIABLE

NO
DEMARCATION

BETWEEN
TRAINING AND
TEST ROWS

NO DEMARCATION BETWEEN DEPENDENT
AND INDEPENDENT VARIABLES

(a) Classification (b) Collaborative filtering

Figure 3.1: Revisiting Figure 1.4 of Chapter 1. Comparing the traditional classification
problem with collaborative filtering. Shaded entries are missing and need to be predicted.

the class variable (or dependent variable). All entries in the first (n− 1) columns are fully
specified, whereas only a subset of the entries in the nth column is specified. Therefore, a
subset of the rows in the matrix is fully specified, and these rows are referred to as the
training data. The remaining rows are referred to as the test data. The values of the missing
entries need to be learned for the test data. This scenario is illustrated in Figure 3.1(a),
where the shaded values represent missing entries in the matrix.

Unlike data classification, any entry in the ratings matrix may be missing, as illustrated
by the shaded entries in Figure 3.1(b). Thus, it can be clearly seen that the matrix com-
pletion problem is a generalization of the classification (or regression modeling) problem.
Therefore, the crucial differences between these two problems may be summarized as follows:

1. In the data classification problem, there is a clear separation between feature (inde-
pendent) variables and class (dependent) variables. In the matrix completion problem,
this clear separation does not exist. Each column is both a dependent and independent
variable, depending on which entries are being considered for predictive modeling at
a given point.

2. In the data classification problem, there is a clear separation between the training
and test data. In the matrix completion problem, this clear demarcation does not
exist among the rows of the matrix. At best, one can consider the specified (observed)
entries to be the training data, and the unspecified (missing) entries to be the test
data.

3. In data classification, columns represent features, and rows represent data instances.
However, in collaborative filtering, it is possible to apply the same approach to ei-
ther the ratings matrix or to its transpose because of how the missing entries are
distributed. For example, user-based neighborhood models can be viewed as direct

Figures from Aggarwal (2016)

Regression Collaborative Filtering



UNCONSTRAINED MATRIX 
FACTORIZATION

124



Unconstrained Matrix Factorization

Whiteboard
– Optimization problem
– SGD
– SGD with Regularization
– Alternating Least Squares
– User/item bias terms (matrix trick)

125



Unconstrained Matrix Factorization
SGD for UMF:

126



Unconstrained Matrix Factorization
SGD for UMF:

127



Unconstrained Matrix Factorization
Alternating Least Squares (ALS) for UMF:

128



Matrix Factorization

129

47AUGUST 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization 
models using some variants of the methods described here. 
Our discussions with other top teams and postings on the 
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings. 

Factorizing the Netflix user-movie matrix allows us 
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most 
important dimensions from a matrix decomposition and 
explore the movies’ location in this new space. Figure 3 
shows the first two factors from the Netflix data matrix 
factorization. Movies are placed according to their factor 
vectors. Someone familiar with the movies shown can see 
clear meaning in the latent factors. The first factor vector 
(x-axis) has on one side lowbrow comedies and horror 
movies, aimed at a male or adolescent audience (Half Baked, 
Freddy vs. Jason), while the other side contains drama or 
comedy with serious undertones and strong female leads 
(Sophie’s Choice, Moonstruck). The second factorization 
axis (y-axis) has independent, critically acclaimed, quirky 
films (Punch-Drunk Love, I Heart Huckabees) on the top, 
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections 
between these boundaries: On the top left corner, where 
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the 
bottom right, where the serious female-driven movies meet 

preferences might cause a one-time 
event; however, a recurring event is 
more likely to reflect user opinion. 

The matrix factorization model 
can readily accept varying confidence 
levels, which let it give less weight to 
less meaningful observations. If con-
fidence in observing rui is denoted as 
cui, then the model enhances the cost 
function (Equation 5) to account for 
confidence as follows: 

min
* * *, ,p q b

( , )u i �
£

K
cui(rui 
 µ 
�bu 
 bi 


 pu
Tqi)

2 + L�(|| pu ||
2 + || qi ||

2  
 + bu

2 + bi
2)  (8) 

For information on a real-life ap-
plication involving such schemes, 
refer to “Collaborative Filtering for 
Implicit Feedback Datasets.”10 

NETFLIX PRIZE 
COMPETITION 

In 2006, the online DVD rental 
company Netflix announced a con-
test to improve the state of its recommender system.12 To 
enable this, the company released a training set of more 
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000 
movies, each movie being rated on a scale of 1 to 5 stars. 
Participating teams submit predicted ratings for a test set 
of approximately 3 million ratings, and Netflix calculates 
a root-mean -square error (RMSE) based on the held-out 
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a 
$1 million prize. If no team reaches the 10 percent goal, 
Netflix gives a $50,000 Progress Prize to the team in first 
place after each year of the competition. 

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data 
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s 
allure spurred a burst of energy and activity. According to 
the contest website (www.netflixprize.com), more than 
48,000 teams from 182 different countries have down-
loaded the data. 

Our team’s entry, originally called BellKor, took over 
the top spot in the competition in the summer of 2007, 
and won the 2007 Progress Prize with the best score at the 
time: 8.43 percent better than Netflix. Later, we aligned 
with team Big Chaos to win the 2008 Progress Prize with a 
score of 9.46 percent. At the time of this writing, we are still 
in first place, inching toward the 10 percent landmark.

–1.5 –1.0 –0.5 0.0 0.5 1.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Factor vector 1 

Fa
cto

r v
ec

to
r 2

 Freddy Got Fingered

Freddy vs. J
ason

Half B
aked

Road Trip

The Sound of M
usic

Sophie’s C
hoice

Moonstru
ck

Maid in Manhattan

The Way We Were

Runaway Bride

Coyote Ugly

The Royal Tenenbaums

Punch-Drunk Love

I Heart H
uckabees

Armageddon

Citiz
en Kane

The Waltons: S
eason 1 

Stepmom

Julien Donkey-Boy

Siste
r Act

The Fast a
nd the Furious

The Wizard of Oz

Kill B
ill: 

Vol. 1
 

ScarfaceNatural Born Kille
rs

Annie Hall

Belle de Jour
Lost i

n Translation

The Longest Y
ard

Being John Malkovich

Catwoman

Figure 3. The !rst two vectors from a matrix decomposition of the Net"ix Prize 
data. Selected movies are placed at the appropriate spot based on their factor 
vectors in two dimensions. The plot reveals distinct genres, including clusters of 
movies with strong female leads, fraternity humor, and quirky independent !lms. 

Figure from Koren et al. (2009)

Example 
Factors



Matrix Factorization

130

ALS = alternating least squares 

Comparison 
of 

Optimization 
Algorithms

Figure from Gemulla et al. (2011)



SVD FOR COLLABORATIVE 
FILTERING

131



Singular Value Decomposition
for Collaborative Filtering

133

Theorem: If R fully 
observed and no 
regularization, the 
optimal UVT from 
SVD equals the 
optimal UVT from 
Unconstrained MF



NON-NEGATIVE MATRIX 
FACTORIZATION

134



Implicit Feedback Datasets
• What information does a five-star rating contain?

• Implicit Feedback Datasets:
– In many settings, users don’t have a way of expressing dislike for an 

item (e.g. can’t provide negative ratings)
– The only mechanism for feedback is to “like” something

• Examples:
– Facebook has a “Like” button, but no “Dislike” button
– Google’s  “+1” button
– Pinterest pins
– Purchasing an item on Amazon indicates a preference for it, but 

there are many reasons you might not purchase an item (besides 
dislike)

– Search engines collect click data but don’t have a clear mechanism 
for observing dislike of a webpage

135
Examples from Aggarwal (2016)



Constrained Optimization Problem:

Non-negative Matrix Factorization

136

Multiplicative Updates: simple iterative 
algorithm for solving just involves multiplying a 
few entries together



138



Summary

• Recommender systems solve many real-world 
(*large-scale) problems

• Collaborative filtering by Matrix Factorization 
(MF) is an efficient and effective approach

• MF is just another example of a common 
recipe:

1. define a model
2. define an objective function
3. optimize with your favorite black box optimizer 

(e.g. SGD, Gradient Descent, Block Coordinate Descent aka. 
Alternating Least Squares)

139



EXTRA SLIDES ON UMF

140



Unconstrained Matrix Factorization
In-Class Exercise

Derive a block coordinate descent algorithm 
for the Unconstrained Matrix Factorization 
problem.

142

• User vectors:

• Item vectors:

• Rating prediction:

ru � Rr

?i � Rr

vui = rT
u ?i

• Set of non-missing entries:

• Objective:
�`;KBM

r,?

�

(u,i)�Z

(vui � rT
u ?i)

2



Matrix Factorization

• User vectors:

• Item vectors:

• Rating prediction:

143

Figures from Koren et al. (2009)

H�i � Rr

(Wu�)
T � Rr

Matrix$factorization$as$SGD$V$why$does$
this$work?$$Here’s$the$key$claim:


Figures from Gemulla et al. (2011)

Vui = Wu�H�i

= [WH]ui

(with matrices)



• User vectors:

• Item vectors:

• Rating prediction:

Matrix Factorization
(with vectors)

144

Figures from Koren et al. (2009)
ru � Rr

?i � Rr

vui = rT
u ?i



Matrix Factorization

• Set of non-missing entries:

• Objective:

145

Figures from Koren et al. (2009)

�`;KBM
r,?

�

(u,i)�Z

(vui � rT
u ?i)

2

(with vectors)



Matrix Factorization

• Regularized Objective:

• SGD update for random (u,i):

146

Figures from Koren et al. (2009)

(with vectors)

�`;KBM
r,?

�

(u,i)�Z

(vui � rT
u ?i)

2

+ �(
�

i

||ri||2 +
�

u

||?u||2)



Matrix Factorization

• Regularized Objective:

• SGD update for random (u,i):

147

Figures from Koren et al. (2009)

(with vectors)

eui � vui � rT
u ?i

ru � ru + �(eui?i � �ru)

?i � ?i + �(euiru � �?i)

�`;KBM
r,?

�

(u,i)�Z

(vui � rT
u ?i)

2

+ �(
�

i

||ri||2 +
�

u

||?u||2)



Matrix Factorization

• User vectors:

• Item vectors:

• Rating prediction:

148

Figures from Koren et al. (2009)

H�i � Rr

(Wu�)
T � Rr

Matrix$factorization$as$SGD$V$why$does$
this$work?$$Here’s$the$key$claim:


Figures from Gemulla et al. (2011)

Vui = Wu�H�i

= [WH]ui

(with matrices)



Matrix Factorization

• SGD

149

Figures from Koren et al. (2009)

Matrix$factorization$as$SGD$V$why$does$
this$work?$$Here’s$the$key$claim:


Figure from Gemulla et al. (2011)

(with matrices)
Matrix$factorization$as$SGD$V$why$does$

this$work?


step size 

Figure from Gemulla et al. (2011)


