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Reminders

Homework 9: Learning Paradigms
— Out: Sun, Nov. 21
— Due: Wed, Dec. 1 at 11:59pm

— Can only be submitted up to 2 days late,
so we can return grades before final exam

Exam 3 Practice Problems
— Out: Wed, Dec. 1
Mock Exam 3

— Out: Wed, Dec. 1
— Due: Sat, Dec. 4 at 11:59pm

D EINE
— Mon, Dec. 6 (9:30am - 11:30am)




CLUSTERING



Clustering

Question: Which of these partitions is “better”?
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Coordinate Descent

* Goal: minimize some objective
g* = argmin](é)
6

* |dea: iteratively pick one variable and minimize the
objective w.r.t. just that one variable, keeping all
the others fixed.
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Block Coordinate Descent

* Goal: minimize some objective

a*, f* = argmin J (&, E)
@B
* ldea: iteratively pick one block of variables (a or E)
and minimize the objective w.r.t. that block,
keeping the other(s) fixed.



K-Means

Whiteboard:
— (Block) Coordinate descent
— K-means recipe
* K-means model parameters
* K-means objective function
— K-means algorithm



K-Means Algorithm

unlabeled feature vectors
D = {x(, x®) .. x(N}

cluster centers ¢ = {c(",..., ¢}

until convergence:
—foriin{1,..., N}
z() « index j of cluster center nearest to x(
—forjin{1,...,K}
cl) « mean of all points assigned to cluster j
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K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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Example: K-Means

Clustering with K-Means (k=3, iter=0)
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Example: K-Means

Clustering with K-Means (k=3, iter=1)
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Example: K-Means

Clustering with K-Means (k=3, iter=2)
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Example: K-Means

Clustering with K-Means (k=3, iter=3)
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Example: K-Means

Clustering with K-Means (k=3, iter=4)
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Example: K-Means

Clustering with K-Means (k=3, iter=5)
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K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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Example: K-Means

Clustering with K-Means (k=2, iter=0)




Example: K-Means

Clustering with K-Means (k=2, iter=2)
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Example: K-Means

Clustering with K-Means (k=2, iter=3)
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Example: K-Means

Clustering with K-Means (k=2, iter=4)
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Example: K-Means

Clustering with K-Means (k=2, iter=5)
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Example: K-Means

Clustering with K-Means (k=2, iter=6)
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Example: K-Means

Clustering with K-Means (k=2, iter=7)
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INITIALIZING K-MEANS



Lloyd’s method: Random Initialization

Given a set of data points

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Select initial centers at random from amongst the data points

O

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Assign each point to its nearest center

™

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering

. /| {\\O

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Assign each point to its nearest center

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering
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Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Assign each point to its nearest center

)

Slide courtesy of Nina Balcan



Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering

\
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Good quality solution in this example

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Slide courtesy of Nina Balcan



Lloyd’s method: Performance
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Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Always converges but may converge to a local optimum that is
different from the global optimum, and in fact could be arbitrarily
worse in terms of its score.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

Local optimum: every point is assigned to its nearest center and
every center is the mean value of its points.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance
O 0« —h

O——— >@- —

Can be arbitrarily worse than the optimum solution...
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Slide courtesy of Nina Balcan



Lloyd’s method: Performance
O 0« —h

O——— >@- —

Can be arbitrarily worse than the optimum solution...

Slide courtesy of Nina Balcan



Lloyd’s method: Performance
O >0< ——o>

O——— >0+ —

Can be arbitrarily worse than the optimum solution...

Slide courtesy of Nina Balcan



Lloyd’s method: Performance
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0Q, L This bad performance, can happen
chgo even with well separated Gaussian
clusters.

Slide courtesy of Nina Balcan



Lloyd’s method: Performance

This bad performance, can happen
even with well separated Gaussian
clusters.

Slide courtesy of Nina Balcan



Learning Objectives

K-Means

You should be able to...

1.

4

Distinguish between coordinate descent and block
coordinate descent

Define an objective function that gives rise to a "good"
clustering

Apply block coordinate descent to an objective function

preferring each point to be close to its nearest
objective function to obtain the K-Means algorithm

Implement the K-Means algorithm

Connect the non-convexity of the K-Means objective
function with the (possibly) poor performance of
random initialization



Learning Paradigms

Paradigm

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised

< Clustering

— Dimensionality Reduction
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

Data

D={x"y"}Y, x~p*()andy=c()

y® eR

y® e {1,...,K}

y" € {+1,-1}

y'") is a vector

D={x"}Y, x~p()

predict {7} | where z(V) € {1,..., K}

convert each x'") € RM tou'?) € RX with K << M
D= {x,y"}2 U xO}E,
D = {(x1),y(1)), (x(2), 4(2)), (x3), 43N, .. }

D = {x}¥ | and can query y'") = ¢*(-) at a cost
D = {(sM,aM), (s, a®), .. )

D = {(sV,aV),r), (52, a@, +2)), . .}
. : . : s



ML Big Picture

Learning Paradigms:

What data is available and
when? What form of prediction?

. supervised learning

. unsupervised learning

. semi-supervised learning
. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

. density estimation

) recommender systems

. feature learning

O manifold learning

) dimensionality reduction
. ensemble learning

. distant supervision

) hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

U 00O

Problem Formulation:

What is the structure of our output prediction? )
boolean Binary Classification o :E
categorical Multiclass Classification *é_B
ordinal Ordinal Classification 2 - §.~
real Regression Y N S 0
ordering Ranking i %’D {::E
multiple discrete  Structured Prediction _g é T 06.2
multiple continuous (e.g. dynamical systems) § = %f{:}
both discrete & (e.g. mixed graphical models) | ‘& ; nC 5
cont. TL=z2Y9
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2.  Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

inductive bias
generalization / overfitting
bias-variance decomposition
generative vs. discriminative
deep nets, graphical models
PAC learning

distant rewards



Outline for Today

We’ll talk about two distinct topics:

1. Ensemble Methods: combine or learn multiple
classifiers into one
(i.e. a family of algorithms)

2. Recommender Systems: produce
recommendations of what a user will like
(i.e. the solution to a particular type of task)

We’ll use a prominent example of a recommender
systems (the Netflix Prize) to motivate both
topics...
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RECOMMENDER SYSTEMS



Recommender Systems

A Common Challenge:

— Assume you’re a company
selling items of some sort:
movies, songs, products,
etc.

— Company collects millions
of ratings from users of
their items

— To maximize profit [ user
happiness, you want to
recommend items that
users are likely to want



Recommender Systems
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Recommender Systems
NETFLIX

Home Rules Leaderboard Update

Congratulations!

The Nethix Prize sought %0 substantialy
IMprove he accuracy of predctions about
how much SOMEone IS QOINg 10 enjoy 8
movie Dased on their movie preferences

On September 21, 2009 we awarded ™
$1M Grand Prize %0 team “BeliKor's
Pragmatic Chaos™. Read about (heir
pigont checkou! 18am scores on the
Leaderboard, and join the AsSCousSions on
the Forun

We appiaud al e contnbutors 1o hs

QuesL whiCh imroves Our abeity 10
connect pedpie 10 the movies ey love

FAQ | Forum | Netfix Home
© 1897-2009 Netfitx, Inc. All rights reserved.




Recommender Systems
NETELIX

ions!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going to enjoy a
movie based on their movie preferences.

On September 21, 2009 we awarded the
$1M Grand Prize to team “BellKor's
Pragmatic Chaos”. Read about their

algorithm, checkout team scores on the
Leaderboard, and join the discussions on

the Forum.

We applaud all the contributors to this

quest, which improves our ability to
connect people to the movies they love.
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Recommender Systems




Recommender Systems
NETFELIX

atflix Prize ' COM PLE TED

Mome Rules Leaderboard Update

Top performing systems
Leaderboard were ensembles

Showing Test Score. | 308 10 Show QUIZ SCore
Rank Team Name Best re °% Improvement Best Submit Time
1 BalKor's Pragmanc Chaos 0.8567 1006 2000-07-26 18:18:28
2 The Fnsample 0.8567 10.06 2009-07-26 18:38:22
3 Grang Prize Team 0.8582 990 2009-07-10 21:24:40
4 pora S o 3 Vandelgy United 0.8588 984 2009-07-10 01:12:31
5 angelay Industne 0.8591 981 2009-07-10 00:32:20
6 Pragmatic Theory 08554 877 20060624 1206:56
7 BolKor In BigChaos 0.8801 870 20090513 08:14:09
8 Dace 0.8812 959 200007-24 17:18:43
S Feads? 0.8622 048 2009-07-12 13:11:51
10 BoChacs 0.8623 947 2000-04-07 12:33:59
il Qparg Soklons 0.8623 947 2000-07-24 003407
12 Belk 0.8624 946 2009-07-26 171911



ENSEMBLE METHODS



Weighted Majority Algorithm
(Littlestone & Warmuth, 1994) A A

* Given: pool A of binary classifiers (that
you know nothing about)

 Data: stream of examples (i.e. online

learning setting) . "
* Goal: design a new learner that uses P
the predictions of the pool to make
new predictions ®
* Algorithm: + T
— Initially weight all classifiers equally
— Receive a training example and predict A

the (weighted) majority vote of the
classifiers in the pool

— Down-weight classifiers that contribute
to a mistake by a factor of 3 —~




Weighted Majority Algorithm

(Littlestone & Warmuth, 1994)

Suppose we have a pool of 7" binary classifiers A = {hy,..., hr}

where hy; : RM — {41, —1}. Let ay be the weight for classifier h;.

Algorithm 1 Weighted Majority Algorithm

1
2:
3:
4:

procedure WEIGHTEDMAJORITY(A, 3)
Initialize classifier weights a; = 1, Vt € {1,...,T}
for each training example (x,y) do
Predict majority vote class (splitting ties randomly)

r
h(zx) = sign (Z aghy (J?))

t=1

if a mistake is made h(z) # y then
for each classifiert € {1,...,7"} do
If h.t(l‘) # Y, then vy € ,B(l't
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Weighted Majority Algorithm

Theorems (Littlestone & Warmuth, 1994)

For the genéra.l case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made

in a given sequence of trials: <‘:

1. O(log|A|+m), if one algorithm of .A makes
at most m mistakes.

2. O(logli‘-l + m), if each of a subpool of k
algorithms of A makes at most m mistakes.

3. O(log Lf‘ + ), if the total number of mis-
takes of a subpool of k algorithms of A is
at most m.

These are
“mistake
bounds” of the
variety we saw
for the
Perceptron
algorithm
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ADABOOST



Comparison

Weighted Majority Algorithm

an example of an
ensemble method

assumes the classifiers are
learned ahead of time

only learns (majority vote)
weight for each classifiers

AdaBoost

* an example of a boosting
method

* simultaneously learns:
— the classifiers themselves

— (majority vote) weight for
each classifiers



AdaBoost: Toy Example

weak classifiers = vertical or horizontal half-planes

Slide from Schapire NIPS Tutorial
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AdaBoost: Toy Example

Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

Sis JEN —I— _I__ +
©

N T - + S +

Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

£3=0.14

Slide from Schapire NIPS Tutorial
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AdaBoost: Toy Example

H  =sign| 042
final

+0.92

94
Slide from Schapire NIPS Tutorial



AdaBoost

Given: (x1,%1), -+, (Tm, ym) Where z; € X,y; € Y = {—-1,+1}
Initialize D, (i) = 1/m.
Fort=1,...,T":

e Train weak learner using distribution D;.
e Get weak hypothesis h; : X — {—1,+1} with error

¢; = Priwp, [hi(x:) # yil -

1 —

e Choose ay = 3 In ( €t>.
€t

e Update:

Doy = 240 x{ if A () = i

7, et if hy(x;) # s
Dy (i) exp(—ayy;ih(x;))
Zy

where Z; is a normalization factor (chosen so that D;,; will be a distribution).

Output the final hypothesis:

H(z) = sign (fj oztht(a:)) .

t=1

Algorithm from (Freund & Schapire, 1999)



AdaBoost

Theoretical Results:

...saved for HWa...



AdaBoost

1.0-

0.5-

error

EaY

cumulative distribution

10 100 1000

# rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Figure from (Freund & Schapire, 1999)
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Learning Objectives

Ensemble Methods [/ Boosting

You should be able to...

1.
2.

3.

Implement the Weighted Majority Algorithm
Implement AdaBoost

Distinguish what is learned in the Weighted
Majority Algorithm vs. Adaboost

Contrast the theoretical result for the
Weighted Majority Algorithm to that of
Perceptron

Explain a surprisingly common empirical result
regarding Adaboost train/test curves



Outline

* Recommender Systems
— Content Filtering
— Collaborative Filtering (CF)
— CF: Neighborhood Methods
— CF: Latent Factor Methods

* Matrix Factorization
— Background: Low-rank Factorizations
— Residual matrix

— Unconstrained Matrix Factorization
* Optimization problem
 Gradient Descent, SGD, Alternating Least Squares
* User/item bias terms (matrix trick)

— Singular Value Decomposition (SVD)

— Non-negative Matrix Factorization



RECOMMENDER SYSTEMS



Recommender Systems

2009-07-24 00:34:07

2009-07-26 17:19:11
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Recommender Systems

Netflix Prize //Zoc

Mome Rules Leaderboard  Update

Leaderboard

Showing Test Score. Cick nars 10 show Quiz score

Rank Team Name Best Test Score % Improvement Best Submit Time

Bolkors Pragmanc Chaos 0.8567 10.06 2000-07-26 18:.18:28
The Ensemble 0.8567 1006 2009-07-26 18.38:22
Grang Prize Team 0.8582 990 2009-07-10 21:24:40
Qpera Soktons and Vandedgy LUnted 0.8588 984 2009-07-10 0112231
Vandelay Ingustries ! 0.8591 88 2009-07-10 00:32:20
Pragmatic Theory 0.8554 0T 20090624 1206:56
Bolkor In BiaChaos 0.8801 870 20090813 08:14:09
Dace 08812 859 2000-07-24 17:18:43
Feads? 0.8622 948 2009-07-12 13:11:51
BaChaos 0.8623 2009-04-07 12.33:59
Qperg Sokions 0.8623 2009-07-24 00:34:07
Belkor 08624 2009-07-26 17:19:11

P N OO WUN -
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Recommender Systems

* Setup:
— |tems:

movies, songs, products, etc.
(often many thousands)

— Users: v U o =
watchers, listeners, purchasers, etc. - 5 =
(often many millions) S -

— Feedback: Alice | 1 :

5-star ratings, not-clicking ‘next’,
purchases, etc.

* Key Assumptions:

— Can represent ratings numerically | charlie | 3 5 2
as a user/item matrix

Bob 3 4

— Users only rate a small number of
items (the matrix is sparse)

108



Two Types of Recommender Systems

Content Filtering Collaborative Filtering

* Example: Pandora.com * Example: Netflix movie
music recommendations recommendations
(Music Genome Project) * Pro: Does not assume

* Con: Assumes access to access to

about about items (e.g. does not

items (e.g. properties of a need to know about movie
song) genres)

* Pro: Gotanew item to * Con: Does not work on
add? No problem, just be new items that have no
sure to include the side ratings

information



COLLABORATIVE FILTERING



Collaborative Filtering

* Everyday Examples of Collaborative Filtering...
— Bestseller lists
— Top 40 music lists
— The “recent returns” shelf at the library
— Unmarked but well-used paths thru the woods
— The printer room at work
— “Read any good books lately?”

* Common insight: personal tastes are correlated

— If Alice and Bob both like X and Alice likes Y then
Bob is more likely to like Y

— especially (perhaps) if Bob knows Alice

Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods

Serious
Elj
The Color Purple Amadeus
@ __I.ethal Weapon
Sense and
Geared Sensibility {l0cearts 11 ~ S
toward < - <
8 females ot m“‘d
i - i)
| | el Dave
" The Lion King e
{ Dumber
The Princess Independence| | ==y
Diaries Day 2!
1 Gus
Escapist

112
Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
1. Neighborhood Methods

., Inthefigure, assume that
a green line indicates the
movie was watched

Ny
- "
-« &

a U 0
Algorithm:

1. Find neighbors based
. on similarity of movie
preferences

Lo
/ Ty 2. Recommend movies

that those neighbors
watched

113
Figures from Koren et al. (2009)



Two Types of Collaborative Filtering

2. Latent Factor Methods

e Assume that both S‘"t"“’ o
. ravenear
movies and users

.o The Color Purple Amadeus
live in some low- ‘

dimensional space - 4

descrlblpg their O Lethal Weapon
properties “

Sense and
Geared Sensibility |Ocears 11
* Recommend a e
movie based on its  females kS,
proximity to the e Lo
user in the latent The Lion King | W
space : iDumber
P . The Princess Independence d}
* Example Algorithm: R Day 2
. . . Gus
Matrix Factorization e

114
Figures from Koren et al. (2009)



Recommending Movies

Question:

Applied to the Netflix Prize
problem, which of the
following methods always
requires side information
about the users and movies?

Select all that apply
collaborative filtering
latent factor methods
ensemble methods
content filtering
neighborhood methods
recommender systems

Answer:

nmounNwe



MATRIX FACTORIZATION



Matrix Factorization

* Many different ways of factorizing a matrix

 We’ll consider three:

1. Unconstrained Matrix Factorization
2. Singular Value Decomposition
3. Non-negative Matrix Factorization

* MF is just another example of a common

recipe:
1. define a model
2. define an objective function
3. optimize with SGD



Matrix Factorization

Whiteboard

— Background: Low-rank Factorizations
— Residual matrix



MF for Netflix Problem

Example
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(a) Example of rank-2 matrix factorization
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Figures from Aggarwal (2016)



Regression vs. Collaborative Filtering

[ ] [ ] [ ] [ ]
Regression Collaborative Filtering
A A
TRAINING
ROWS
NO
DEMARCATION
BETWEEN
TRAINING AND
TEST ROWS
TEST
ROWS
v A 4
< > <€ >
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES

123
Figures from Aggarwal (2016)



UNCONSTRAINED MATRIX
FACTORIZATION



Unconstrained Matrix Factorization

Whiteboard
— Optimization problem
—SGD
— SGD with Regularization
— Alternating Least Squares
— User/item bias terms (matrix trick)



Unconstrained Matrix Factorization

SGD for UMF:
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Unconstrained Matrix Factorization

SGD for UMF:

UW / I—Ie-n\g(ﬁ 24 ;
T

CJ— °‘-+FJ+ Uiy




Unconstrained Matrix Factorization

Alternating Least Squares (ALS) for UMF:
E’MJ‘- C,oen:!. ‘\}-SU--E‘.
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Matrix Factorization

Example
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Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Figure from Koren et al. (2009)
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Matrix Factorization

% o LBFGS
o A SGD

- \ - ALS
o

o ALS = alternating least squares

1.2

Mean Loss
1.0

......
- - +
"""""""""""

0.6

Figure from Gemulla et al. (2011) epoch



SVD FOR COLLABORATIVE
FILTERING



Singular Value Decomposition
for Collaborative Filtering

For any arbitrary matrix A, SVD gives a decomposition:
A =UAV"

where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we have the SVD of our ratings matrix
R =QxPT,

but then we truncate each of ), ¥, and P s.t. Q and P have only k
columnsand X is k x k:

Theorem: If R fully
observed and no

R~ QuSi Pl regglarizatiTon, the
For collaborative filtering, let: g\egngghtajl\g tﬁgm
U 2 Qrik optimal UV' from

Vap, Unconstrained MF

1
= U,V = argmin - ||R - UV”||3
AT

s.t. columns of U are mutually orthogonal
s.t. columns of V are mutually orthogonal



NON-NEGATIVE MATRIX
FACTORIZATION



Implicit Feedback Datasets

* What information does a five-star rating contain?

N \ / N \\_/ - 7 N N 7
* Implicit Feedback Datasets:
— In many settings, users don’t have a way of expressing dislike for an
item (e.g. can’t provide negative ratings)
— The only mechanism for feedback is to “like” something
* Examples:
— Facebook has a “Like” button, but no “Dislike” button
— Google’s “+1” button
— Pinterest pins

— Purchasing an item on Amazon indicates a preference for it, but
there are many reasons you might not purchase an item (besides
dislike)

— Search engines collect click data but don’t have a clear mechanism
for observing dislike of a webpage

Examples from Aggarwal (2016)



Non-negative Matrix Factorization

Constrained Optimization Problem:

1
U,V = argmin =||R — UV"||3
Uy 2

S.t. Uz'j > 0
S.t. V;'j >0

Multiplicative Updates: simple iterative
algorithm for solving just involves multiplying a
few entries together



Fighting Fire with Fire: Using Antidote Data to Improve
Polarization and Fairness of Recommender Systems

Bashir Rastegarpanah Krishna P. Gummadi Mark Crovella
Boston University MPI-SWS Boston University
bashir@bu.edu gummadi@mpi-sws.org crovella@bu.edu
whereS; = ¥, wju] + 007 + 21, The normalization term =5 in (10) rakes the polarization metric

Dy wsing (9) instead of the general formula in (5) we can sigai-
Mym:mmﬂudmmmﬁhh‘g
the gradicet of the utslty functs P
data Furthermoee, lhela'n.,'u"s -ppcclh-llhtp!ﬁl

s that coerespoad 10 cb i columa § of X and can
be peecomprated in cach of the algorithm and reused foe
pting partal derivalives with revpect o ifferes artid

5 SOCIAL OBJECTIVE FUNCTIONS

The previoes section developed & general framewerk for improviag
various properties of recommender systems: in this section we show
how %o apply that framework specifically to issues of polarization
and fairness

As described in S 2, polari uumnwm
opinions, views, and seati di within & pepulats
mmmwumwumu
they presest for ibemsa. To formalize this notion, we define polariza-
tiom in Serma of the variabilty of predicted ratings when compased
across users. In fact, we note that both very high variability, and
very low variabiity of ratings may be undesirable. [n the case of
high varishility, users have strongly divergent opinioas, leading to
condiict. Recent analyses of the YouTube recommendation system
have suggested that it can enhance this effect (29, 30]. On the other
hand, the perce of user poef e, very low variabdity
dwmummmmmmww
that may occur &s wers

-nh. de: system [11). As a result, in what
follows we -““dng tidote data in both ways o either
M;ln‘ “u‘ 3 fai is & topic of growing

Mmumhm&dumum“
tion, we consider a recommender system fair If it provides equal
quality of service (Le.. prediction accuracy) %o all users or all growps
of wsers [3%4).

Next we foemally define the metrics that specify the objective
wmm«admmmﬂmu

dient of each ob K is used in the optimaation algo-
Mhm“m the details about devivation
of the gradients in sppendix A2

5.1 Polarization

To captuse polarization, we seek to measure the extent 1o which the
user ratings disagree. Thus, to measare user polarization we con-
mummxunmmwm
2 the normalived sum of pairwise cuclidean di

catimated user ratings, ie., betwees rows of X I particular

Rl = 2 3 Z it - )P o)
Aeti>d

identical 10 the Sollowing definition: ¢

4
Z (1)
)i

-hmc} is the variance of extimated user ratings for fem J. Thus
this polarisation metric can be imterpeeted cither as the average of
the variances of estimatod ratings in cach itess, o¢ equivalently as
the average aser Ssagreement over all items.

52 Fairness

Individual fairmess. For each user |, we define £, the Joss of wser
I, a» the mean squared extimation error over known ratings of wser
3

L|-

L. 7
- ""’(?Q,l"'h -
Then we define the indivdual unf; s the of the wver

Jonses*

Rua X X) = 5 ?;;,;“‘ -4F )

To impeove individual fairness, we soek to misimize R
Group fairness. Let [ be the set of all userviitesa and G =
(Gy ....Gy} be a pastition of users/itemma into g growpe, ie, [ =
Uiein.. g1 Gr. We define the lows of group | as the mean squased
estimation ervor over all known ratings in group &

1P, (X = Xn§
T o

For a given partition G, we define the group unfairness as the
variance of all grosp lomen:

Ryrp(X.X.G) = -tZa. Ly (15)

n-x{»n
Agaia, % lmprove group fairmess, we seek o minimize Ry,

5.3 Accuracy vs. Social Welfare

Adding antidote data to the system to improve a social utility will
ahohmmd«\u!hewmlwv&ﬂoam Previous

works have idered social i e cone
mmnmmwuunnnm
& trade-olf b the p y and a social objective.

However. in the case of the metrics we define here, the rela-
m—hp.uluuqh cmum-uuum
g o do willl tend 10 decrease
mm Iuellhacnt-eldlhnmmuly
MMMMWRMQQMQ«&M
wes in Section 6. Considering cither individual or group unfai
the situation is more subtle. Note that cur safairness metrics will
be exactly zevo for & vystem with zevo error (perfect accuracy) As s

W cun v # by ewriing (100 s K, (X) = 12’::"-22:11.. “2,)
Avidrn

Nt that for & wet of equally lhaly vidaes ), . x..-vm_h'-p-—t
wthout referrog to te et = :LL"‘ =).



Summary

* Recommender systems solve many real-world
(*large-scale) problems

* Collaborative filtering by Matrix Factorization
(MF) is an efficient and effective approach

* MF is just another example of a common
recipe:

1.
2.

3.

define a model
define an objective function

optimize with your favorite black box optimizer
(e.g. SGD, Gradient Descent, Block Coordinate Descent aka.
Alternating Least Squares)



EXTRA SLIDES ON UMF



Unconstrained Matrix Factorization

In-Class Exercise

Derive a block coordinate descent algorithm
for the Unconstrained Matrix Factorization

problem.

* User vectors: * Set of non-missing entries
w, € R" Z = {(u,1) : vy; is observed}
* |tem vectors: * Objective:
T
h; e R argmin Z (Vs — Wi hy)?
wh ez

* Rating prediction:

T
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Matrix Factorization

(with matrices)

* User vectors:
(Wui)' €R"

* |tem vectors:
H,, € R"

* Rating prediction:

Vuz'

W H|.;

Serious
t Braveheart
[Amadeus] %
U/
Ocearfs 11 ﬁ(. Geared
8} males
)
Dave
[ e Lion King Dumb and
DDDDDD
[ripeen | &
ay s
Gus
Escapist

Figures from Koren et al. (2009)

H
H,

4

Figures from Gemulla et al. (20111)43



Matrix Factorization
(with vectors)

e User vectors:
w, € R"

* |tem vectors:

h;, e R"
* Rating prediction:
T
Vui — Wy, hz

Serious
t Braveheart
[Amadeus]
% ,
{Ocearts 11 ﬁ‘ ot
males

Figures from Koren et al. (2009)
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Matrix Factorization
(with vectors)

* Set of non-missing entries: I
Z = {(u,1) : vy is observed} ™

* Objective:

X =
-d |4 3
- I - 4
= - I3
g L@Ig
-
S

3 H

| Independence| |- == |
Day

gl

.
Escapist

Figures from Koren et al. (2009)

145



Matrix Factorization

(with vectors)
* Regularized Objective:

argmin Z (vui—wfghi)z
wh ez

+ A(Z Wil + ) Iha|l*)

Serious
t
madeus

Braveheart
The Color Purple | l A ]
-
| @l Weapon
and |*
Geared Ocearfs 11] | iy Geared
toward . toward
females males
" rt'\
- I
[The Lion King ban
Dumber
e Independence| |- ==
Day =

Escapist

Figures from Koren et al. (2009)

146



. . . [Amades]
Matrix Factorization °
(with vectors) S ] e
* Regularized Objective: S
w,h . :
(u,i)EZ Figures from Koren et al. (2009)

+ A(Z Wil + ) Iha|l*)

* SGD update for random (u,i):
Eui S Vui — thi
Wy — Wy + v(eywih; — Awy,)
h; < h; +~v(eyiwy, — Ah;)
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Matrix Factorization

(with matrices)

* User vectors:
(Wui)' €R"

* |tem vectors:
H,, € R"

* Rating prediction:

Vuz'

W H|.;

Serious
t Braveheart
[Amadeus] %
U/
Ocearfs 11 ﬁ(. Geared
8} males
)
Dave
[ e Lion King Dumb and
DDDDDD
[ripeen | &
ay s
Gus
Escapist

Figures from Koren et al. (2009)

H
H,

4

Figures from Gemulla et al. (20111)48



Matrix Factorization
(with matrices)
* SGD

require that the loss can be written as

L= ). UVis; Wi, He)
(i,4)€Z

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W and H
while not converged do {step}
Select a training point (7, j) € Z uniformly at random.
W:. — Wu - C"JVB-‘;%I(V,'J', W,’., H-))
H.; « H.; — N 53— 1(Vis,Wis, H.;)
W,‘. ¢ W:,
end while step size

Figure from Gemulla et al. (2011)
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