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Reminders

Homework 9: Learning Paradigms
— Out: Sun, Nov. 21
— Due: Wed, Dec. 1 at 11:59pm

— Can only be submitted up to 2 days late,
so we can return grades before final exam

Exam 3 Practice Problems

— Out: Wed; Dec1t Mon, Nov. 29!
Mock Exam 3

— Out: Wed, Dec. 1

— Due: Sat, Dec. 4 at 11:59pm
Exam 3

— Mon, Dec. 6 (9:30am - 11:30am)



EXAM LOGISTICS



Einal 374 Exam

* Time /Location
— Time: Mon, Dec. 6th at J#@ 9:30am - 11:30am
— Location & Seats: You have all been split across multiple rooms.
Everyone has an assigned seat in one of these room.
— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lectures 18 - 25
— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers

* Interpreting figures
* Implementing algorithms on paper

— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and
back)



Einal 374 Exam

* How to Prepare
— Attend (or watch) this exam review session
— Review practice problems
— Review homework problems
— Review the poll questions from each lecture

— Consider whether you have achieved the
learning objectives for each lecture [ section

— Write your cheat sheets



Einal 374 Exam

* Advice (for during the exam)

— Read all the problems and solve the easy ones first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated, you’re likely
missing something

— Don’t leave any answer blank!
— If you make an assumption, write it down
— If you look at a question and don’t know the
answer:
* we probably haven’t told you the answer

* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Final Exam

* Graphical Models * Other Learning
— HMMs Paradigms
— Learning and Inference — K-Means
— Bayesian Networks — PCA
e Reinforcement — Ensemble Methods
Leaming — Recommender Systems

— Value Iteration
— Policy Iteration
— Q-Learning

— Deep Q-Learning



It was all a ruse!




It was all a ruse!

DYNAMIC PROGRAMMING
ETC
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Medical Diagnosis

Interview Transcript e Matt: What if he’s both sneezing and itchy?

Date: Aug. 15, 2021 . Dr. S: Then he’s allergic.

Parties: Matt Gormley and Doctor S. ¢ Matt: Got it. What if your little brother is sneezing
Topic: Medical decision making and itchy, plus he’s a doctor.

¢ Dr.S: Then, thumbs down, he’s not allergic.
«  Matt: Welcome. Thanks for interviewing withme ~ *  Matt: How do you know?

today. e Dr.S: Doctors don’t get allergies.
. Dr. S: Interviewing...? . Matt: What if he is not sneezing, but is itchy, and he
*  Matt: Yes. For the record, what type of doctor are is a fox....

you? ¢ Matt:...and the fox is in the bottle where the
e Dr.S:Who said I’'m a doctor? tweetle beetles battle with their paddles in a puddle

. Matt: | thought when we set up this interview you ond noodle—ea.tlng poodie.
said— e Dr.S: Then he is must be a tweetle beetle noodle

poodle bottled paddled muddled duddled fuddled

’ Dr. St I'm a preschooler. ) wuddled fox in socks, sir. That means he’s definitely
*  Matt: Good enough. Today, I’d like to learn how you allergic.

would determine whether or not your little brother
is allergic to cats given his symptoms.

e Dr.S: He’s not allergic.

. Matt: We haven’t started yet. Now, suppose he is
sneezing. Does he have allergies to cats?

. Dr. S: Well, we don’t even have a cat, so that doesn’t
make any sense.

¢ Matt: What if he is itchy; Does he have allergies?
. Dr. S: No, that’s just a mosquito.

. [Editor’s note: preschoolers unilaterally agree that
itchiness is always caused by mosquitos, regardless
of whether mosquitos were/are present.]

Matt: Got it. Can | use this conversation in my
lecture?

. Dr. S: Yes







Overfitting in Decision Tree Learning
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Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose
the “best” model from among a set of candidates
— Def: hyperparameter optimization is the process by
which we choose the “best” hyperparameters from
among a set of candidates (could be called a special
case of model selection)

* Both assume access to a function capable of
measuring the quality of a model

* Both are typically done “outside” the main training
algorithm - typically training is treated as a black
box



Linear Models for-Classification

Key idea: Try to learn
this hyperplane directly

If Directly modeling the

* We’ll see a number of ==
commonly used Linear =% hyperplane would use a

Looking_ahead: ;

Classifiers -~ | decision function:
* These include: e, -
— Perceptron oy h(X) — Sign(g X)

— Logistic Regression

— Naive Bayes (under
certain conditions) | for:

— Support Vector

Machines | _ Y € {—1, 1}
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Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R, then the online Perceptron algorithm
makes < (R/y)? mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

— —
- b B

o+ T
Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

~y -
‘——_—



# tourists (thousands)

\L

Linear Regression by Rand. Guessing

J(@)=J(6,, 8,) =~ @) _ gTx®y)
Optimization Method #o: (8)=( ) N;(y )

>

Random Guessing Ho 0.000
1.  Pickarandom ©
2. Evaluate J(0) %
3. Repeat steps 1and 2 many \
times 06% o g P N
4. Return 0 that gives 0, s 7T
smallest J(0) - o
y = h*(x) S
h(x; 8) (unknown) | w“
h(x; 63))
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
6,
t] 6, [ 6, | J6,6,)
/' - 1] 0.2 | 0.2 10.4
h(x; 6) 2 | 0.3 | 0.7 7.2
o 3| 0.6 | 0.4 1.0
time > 4]09 07 ] 192







mean squared error,

# tourists (thousands)

\L

Linear Regression by Gradient Desc.

J(6, 6,)

t J(8) = (8, 8) = 1 - (1 - 7x)’
1.0 =
A 0.000
0.8 A
A
064 o § G\o “o’o \
“ A e § 8 3 2 g%c’
> 2 S g
iteration, t 0.4 - Q
y= h*(X) 5 S
A (unljnown) . S
/
h(x; 9(4)) O
h(x; 6)) Y 0.2 0.4 o 0.6 0.8 1.0
1
t 91 ez J(en ez)
/’ __ h(x; 6) 1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
—_ h(x; 6%) 3 | 0.51 | 0.30 1.5
>
time 4 | 0.59 | 0.43 0.2







Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p*(-)
yW = ¢*(x)

Our goal was to learn a
hypothesis h(x) that best
approximates ¢*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p*()
y )~ p(-x1?)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|[x)



MLE
Suppose we have data D = {z()} ¥ |

Principle of Maximum Likelihood Estimation:
Choose the parameters that maX|m|ze the likelihood

of the data.
""" = argmax Hp ()]09)

o 1=1
Maximum Likelihood Estimate (MLE)

A

/\L(el

>

MLE

D k-



Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {xW, ¢y wherex ¢ RM and y € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1]x) =

1 + exp(—0' %)
Learning: finds the parameters that minimize some

objective function. g* — argmin J(6)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
ye{0,1}



Feature Engineering

Where do features come from?

A
word embedding best of both
hand-crafted features worlds?
features ~ ----- > O~ )
_3 Turian et al. O ->
O O 2010 Hermann et al. A
Sunetal., 2011 Koo etal. 2014 !
2008 !
O | tree
i '®) embeddings
! Socher et al.,
8 i O i
i A Hermann & Blunsom,
i / 2013
O ! !
: /
Zhou et al., | H string
7
2005 ] / -
word /'~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function

2.0 - ¢
IEEEIES
1 20 12 .. (1.2)° 15
2 1.3 17 ... (1.7)9
y 1.0 -
10 11 19 .. (1.9)°
0.5 -
0.0 -
—-0.5 -

Linear Regression (poly=9)

2.0 2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0
29



Example: Linear Regression

* Withjust N =10

Goal: Learny =wT f(x) + b points we overfit!
where f(.) is a polynomial * But with N =100
basis function | Linear Regression (poly=9) points, the
2.5 - overfitting
I I (mostly)
y .
-.n-n o . dlsappears
1 20 12 .. (1.2)° . . Takeaway: more
2 13 17 ... (1.7) 15 data helps
; prevent
o | O] 27 | = [ y overfitting
1.0 -
4 11 19 .. (1.9)°
0.5 -
0.0 -
98 —-05 -
99 ‘ ‘ | ‘ |
1.0 15 2.0 2.5 3.0
100 0.9 15 .. (1.5)° X 30




Regularization

Given objective function: J(0)
Goal is to find: 0 = argmin .J(0) + \r(6)
0

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple

1
Choose form of r(0): M q
— Example: g-norm (usually p-norm):||8]|,; = (2 |9m|>

m=1

qg r(8) yields parame- name  optimization notes
ters that are...
0 ||@lo=>1(0,, #0) zerovalues Loreg. no good computa-
tional solutions
L 16|l = > |0m] zero values Lireg. subdifferentiable

(110]|2)% = ¥ 62, small values L2reg. differentiable




Decision
Functions

Output

Linear Regression




Decision
Functions

Output

Perceptron

y = he(x) =
where o (a )




Decision
Functions

. y = he(x) =0c(0'x

Q In-Class Example

Logistic Regression
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Decision
Functions

Output

Neural Network




Erro
rB
ack-Propag
ation
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Architecture #2: AlexNet

5 e =




RNN Language Model

[The ] [ bat ][made][noise][ at ][night] [ END]

[ O N N
Tp(tho Tp(wzlhz) Tp(w3|h3> TP(W4Ih4) T»(wsms) T(wdhe) Tp<w7|h7)
> > > > > > >

A

h, h h, h, h, he h

2 7
I s N e e L I D e I I e

[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(w,, ..., W,)




Sampling from an RNN-LM

??

VIOLA: Why, Salisbury must find his flesh and
thought That which I am not aps, not a man and
in fire, To show the reining of the raven and the
wars To grace my hand reproach within, and
not a fair are hand, That Caesar and my goodly
father's world; When I was heaven of presence

??

CHARLES: Marry, do I, sir; and | came to
acquaint you with a matter. | am given, sir,
secretly to understand that your younger
brother Orlando hath a disposition to come in
disguised against me to try a fall. To-morrow,
snr | wrestle for my credit; and he that escapes

and our ﬂeets, We spare with Bt cut iy
council  am great, Murdered a
master's ready there My powe
so much as hell: Some service i
bondman here, Would show i

Which is the real
Shakespeare?!

roken limb shall acquit him
is but young and tender; and,
Id be loath to foil him, as |
onour, if he come in:

love to you, | came hither

KING LEAR: O, if you w eeble sight, the
courtesy of your law, Yoursight and several
breath, will wear the gods With his heads, and
my hands are wonder'd at the deeds, So drop
upon your lordship's head, and your opinion
Shall be against your honour.

Example from

to acquaint you wyj
stay him from his in ent or brook such
disgrace well as he sh ninto, in thatitis a
thing of his own search and altogether against
my will.

t either you might

TOUCHSTONE: For my part, | had rather bear
with you than bear you; yet | should bear no
cross if | did bear you, for | think you have no
money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

PAC-MfAN’Learning

For some hypothesis h € H: _—
1. True Error

R(h)
2. Training Error
R(h)

Question 2:

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-
Over?

A. 110
B. 11-20
C. 2130




to1).

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > ![log(|H|) + log(})] la-
beled examples are sufficient so that with
probability (1— &) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > ;4 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — 4) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N:()(‘l [VC(H) l()g(%) - log(%)])
labeled examples are sufficient so that
with probability (1 — é§) all h € H with

-~

R(h) = O have R(h) <e.

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that | R(h) — R(h)| < e.
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PAC Learning & Regularization
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Misinformation Detector

Today’s Goal: To define a generative model of news
articles of two different classes (e.g., real vs. fake news)

Associated Press

Steelers steady themselves behind linebacker T.).
Watt

By WILL GRAVES  October 18, 2021

The Onion

Perfectly Preserved Fourth Watt Brother
Discovered Frozen In Wisconsin Beer
Cooler

PITTSBURGH (AP) — Pittsburgh Steelers linebacker Devin Bush scooped
up the loose ball and amid the chaos, immediately started running in the

wrong direction before finding his bearings.

How very fitting for a team that’s spent its first six weeks trying to figure
things out.

WAUKESHA, WI—Hailing the massive specimen as the greatest NFL discovery

of the century, league scientists announced Tuesday that they have discovered a

perfectly preserved fourth Watt brother frozen in a Wisconsin beer cooler. “This

is a historic find for football that could finally be the crucial missing link

between J.J. and T.J.," said lead scientist Robin Grossman, who told reporters 43



Model 1: Bernoulli Naive Bayes

Flip weighted coin

If HEADS, flip If TAILS, flip

each red coin each blue coin
Y X X2 X3 X

“" o||1]o0]1 1 .“.

1 o|1]o0 1
1 111 |1 1
0 OO0 |1 1
0 110 |1 0
1 110 |1 0




Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x( ~ p(x|0)
Write log-likelihood

40) = log p(x"]0) + ... + log p(xN]|©)
Compute partial derivatives

00(0)/08, = ...

00(0)/08, = ...

00(0)/06, = ...
Set derivatives to zero and solve for ©
00(0)/06,, = o forallme{y, ..., M}

@MLE =

Compute the second derivative and check that {0) is concave down
at OMLE



Recipe for Closed-form MAP
Estimation

Assume data was generated i.i.d. from some model
(i.e. write the generative story
0~ pg 0) and then for all i: x® ~ p(x|0)

Write log-likelihood

{unp(0) = log p(0) + log p(x([@) + ... +log p(x(N]6)
Compute partial derivatives

0luap(0)/00, = ...

aéMAP(e)/aez =

Set derivatives to zero and solve for ©
00, ,p(0)/00,, =0 forallme {1, ..., M}

QMAP —

Compute the second derivative and check that {0) is concave down
at eMAP
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y; = j) = Ak, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = Bk, Vt, k
Initial probs, C, where P(Y; = k) = Cy, Vk

ol s oS C O|S|C
S| 1 O|.9|08.02 O|.9|08.02
C S|.2.7] 1 S|.2.7/.1

Cl.g9|o0 1 Cl.g9|o0]|.1

o | 2
© |Q | [3min




Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

I +I+ I= 6 of
us

> only sek
my incoming
messages
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Forward-Backward Algorithm: Finds Marginals

- total weight of these - = total weight of these
path preftgxes (@a+b+¢) path suffixes (X + v +2)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Sample Questions

—

4 Hidden Markov Models
Verb Noun Z Verb 2

1. Given the POS tagging data shown, what are the cee oot un
parameter values learned by an HMM? P

C=V [ v N AR un | verb |

- — Verb Noun
NI O A Tsee %‘ O \C)ﬁ ' (
A \/3 run spot run
=l s&v (0 {1 |0
v N A Ad;. Ad;. Noun
= o |3
6 N — ™) (N {L‘ O D ) funny | funny spot

—-—

g oy 0 0

A T

52



Sample Questions

4 Hidden Markov Models

1. Given the POS tagging data shown, what are the
parameter values learned by an HMM?

2. Suppose you a learning an HMM POS Tagger,
how many POS tag sequences of length 23 are
there? 323

3. How does an HMM efficiently search for the
most probable tag sequence given a 23-word
sentence?

Verb Noun Verb
see spot run
Verb Noun Verb
run spot run
Adj. Ad;. Noun
funny | funny spot




Example: Why is Henry tired?
T=1 2 Hay 5 Foed
S 7%&7 il (|
R=l D {nde- or»%»eash«) G,a‘«n )
Hel 2 Walowenn ves yesimia/ F
C=\ D Nary © « Codos oo Tdoo #Y- BevesNel  ( Cavsal
X %L\m{\/ X w&jﬂ < bk R T

A |
Xz = Q\m«/ d Q\m\ Teres { L/<>\§\D @
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The “Burglar Alarm” example

* After you get this phone call,
suppose you learn that there was a Larthquake
medium-sized earthquake in your

neighborhood. Oh, whew! Probably C Alarm

not a burglar after all.

 Earthquake “explains away” the -
hypothetical burglar. Phone Call
* But then it must not be the case

that

Burglar 1L Earthquake | PhoneClall
even though

Burglar 1L Earthquake

Slide from William Cohen



Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. Imagine that
With Emergency Sirens, Officials Say you work at the
By ELI ROSENBERG and MAYA SALAM  APRIL 8, 2017 911 Ca” Center
—— in Dallas

2. You receive siX
calls informing
you that the
Emergency
Weather Sirens
are going off

e @ 3. What do you

l”!;'?i’,‘ii; 1.‘;' Friday d 0t sk ot el 120 & R C. ey o Toa o ok T, conclude?

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Sample Questions

(a) [2 pts.] Write the expression for the joint distribution.

PG,R,E, ) =P )PR)Ple |s,&) PA |E)

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S, E, A € {0,1}.

Y

Figure 5: Directed graphical model for problem 5.



Sample Questions

(b) [2 pts.] How many parameters, i.e., entries in the CPT tables, are necessary to describe
the joint distribution?

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S, F, A € {0,1}.

(

Z K:OF
ﬂ GD\ R={

A A B
£=0 E<\

Y @ = P(A\E) =‘>A'\E—E]

Figure 5: Directed graphical model for problem 5.




N Sample Questions

(d) [2 pts.] Is S marginally independent of R? Is S conditionally independent of R given

E? Answer yes or no to each questions and provide a brief explanation why.

A': ‘\'cx'\c %" CJ,/

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S, E, A € {0,1}.

Y

Figure 5: Directed graphical model for problem 5.



a @ When poll is active, respond at pollev.com/10301601polls

Question 1

Start the preseritation s see lve costent. For scicen share seftmare, share the entiee swoeon. Get belp 2t pellev.comligp



a @ When poll is active, respond at pollev.com/10301601polls

Question 2

Start the preseritation s see lve costent. For scicen share seftmare, share the entiee swoeon. Get belp 2t pellev.comligp



Sample Questions

25
(d) [2 pts.] Is S marginally independent of R? Is S conditionally independent of R given
E? Answer yes or no to each questions and provide a brief explanation why.

\ ¢

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S, E, A € {0,1}.

Figure 5: Directed graphical model for problem 5.



Sample Questions
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A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.

How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

How do we compute marginal probabilities?

P(A) = ...
<:I Can we

How do we draw samples from a conditional distribution?

t,h,a~P(T,H, A|C=c) use
samples
How do we compute conditional marginal probabilities? >

PH|C=0)=...




Gibbs Sampling




MDP Example:
Multi-armed bandit

* Single state:
S| =1

* Three actions:
A =1{1,2,3}

« Rewards are stochastic
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RL:Value
Function

Example

3
2 3 4
0 1 6
"2 ‘@’ 7
(2 if entering state 0 (safety)
R(s,a) = 3 if entering state 5 (field goal)

7 if entering state 6 (touch down)
_ 0 otherwise
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Today’s
lectureis

brought to
you by the
letter Q

Source: https://vignettei1.wikia.nocookie.net/jamesbond/images a/The Four Qs - Profile (2).png/revision/latest?cb=20121102195112



Today's
lecture is

brought to
you by the
letter Q

* Inputs: reward function R(s, a),

transition probabilities p(s’ | s, a)

* Initialize V(s) = 0V s € § (or randomly)

* While not converged, do:

* Fors €S
* Fora € A
Q(s,a) =R(s,a) +y Z p(s’|s,a)V(s")
s'es

* V(s) « max Q(s,a)

e

*Fors €S

n*(s) « argmax R(s,a) + y Z p(s'|s,a)V(s")

EA
a s'es

* Returnt*
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Playing Go

placing black and
more territory than
the opponent

Players alternate
white stones

* 19-by-19 board
* The goal is claim

HEE

o_et.t_ f

. & ’ . y 4
99 ' i 0 ,.
ouaco Hu90. ., ﬁ:

The number of legal Go board states is ~10%7°

(https://en.wikipedia.org/wiki/Go_and

mathematics) compared to the number of

possible games of chess

~10120

I/
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Sample Questions

7.1 Reinforcement Learning

‘ ;2 3. (1 point) Please select one statement that is true for reinforcement learning
and supervised learning.

< (O Reinforcement learning is a kind of supervised learning problem because you
can treat the reward and next state as the label and each state, action pair as
the training data.

“ O Reinforcement learning differs from supervised learning because it has a tem-
poral structure in the learning process, whereas, in supervised learning, the
prediction of a data point does not affect the data you would see in the future.

1\
C = ‘koﬁ\(
\

vV

Q 4. (1 point) True or False: Value iteration is better at balancing exploration and ex-
ploitation compared with policy iteration.

z (O True

~ O False
B°
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Sample Questions

7.1 Reinforcement Learning

3. (1 point) Please select one statement that is true for reinforcement learning
and supervised learning.

(O Reinforcement learning is a kind of supervised learning problem because you
can treat the reward and next state as the label and each state, action pair as
the training data.

\Q/ﬁeinforcement learning differs from supervised learning because it has a tem-
poral structure in the learning process, whereas, in supervised learning, the
prediction of a data point does not affect the data you would see in the future.

4. (1 point) True or False: Value iteration is better at balancing exploration and ex-
ploitation compared with policy iteration.

O True

‘-@/False



Sample Questions

7.1 Reinforcement Learning

1. For the R(s,a) values shown on the arrows below, what
is the corresponding optimal policy? Assume the discount
factor is 0.1

2. For the R(s,a) values shown on the arrows below, which
are the corresponding V*(s) values? Assume the discount
factor is 0.1

3. For the R(s,a) values shown on the arrows below, which
are the corresponding Q*(s,a) values? Assume the
discount factor is 0.1

4. Could we change R(s,a) such that all the V*(s) values
change but the optimal policy stays the same? If so, show
how and if not, briefly explain why not.




PCA section in one slide...

1. Dimensionality reduction: 2. Random Projection:

3. Definition of PCA:

Choose the matrix V that either...

1.  minimizes reconstruction error

2. consists of the K eigenvectors with
largest eigenvalue

The above are equivalent definitions.

rJd .
CD Pa«lo«'7 ng?b. V-u.(‘ﬂ.x \/GKK M

© T dun G-V

A

4. Algorithm for PCA:
The option we’ll focus on:

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.
Play some tricks to keep
things efficient.

5. An Example




Projecting MNIST digits

Task Setting:
1. Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

3.0
3 -
2.5
2 - . .
. 7 R L 2.0
14 2 A
3 - R '47"’"-
s : ":,:.'j‘»
0- LS “ s 1.5
: s
= :-:.:-‘.ag.‘:
’.J..
: "-f‘.‘%' 3% - 1.0
-1 4 --:g s
5 0.5
T T T T 0-0




Sample Questions

4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on R?

are given, where the original features are the coordinates (z,y). For each, answer the
following questions:

(i) [3 pt.] Draw all the principal components.

(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1-2 sentences why it is not possible.

Dataset 1: Dataset 2:




Example: K-Means

Clustering with K-Means (k=3, iter=3)

a-tfg‘:?-.

. ‘.‘
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Example: K-Means

Clustering with K-Means (k=2, iter=8)
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Sample Questions

3.5

2.2 Lloyd’s algorithm

251

Circle the image which depicts g
the cluster center positions after 1 o5

iteration of Lloyd’s algorithm.

Figure 2: Initial data and cluster centers

3.5

251




Recommender Systems
NETFLIX

PriEe i

Home  Rules Leaderboard  Update

Leaderboard

Showing Test Score. Click here 10 $how QUi score

Rank Team Name Beost Test Score % Improvement Best Submit Time
1 BolKor's Pragmatc Chaos 08567 10.06 2009-07-26 18:18:28
2 The Ensemble 08567 10.08 2009-07-26 18:38:22
3 Geand Prize Team 0.8582 990 2009-07-10 21:24:40
4 Qpera Sohgons and Vandelay Uniteg 0.8588 984 2009-07-10 01:12:31

5 Vangelay Indystries | 0.8501 281 2009-07-10 00:32:20
6 Pragmatic Theory 0.8594 9.77 2009-06-24 12:06:56
7 BelkKor In BigChaos 0.8601 9.70 20090513 08:14.09
) Dace 08612 959 2009-07-24 17:18:43
9 Feods? 08622 948 20000712 13:11:51

10 BoChaos 0.8623 947 2009-04-07 12:33:59
" Opera Sohgons 08623 947 2000-07-24 00:34:.07
12 ol Kor 08624 946 2009-07-26 17:19:11
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Weighted Majority Algorlthm

(Littlestone & Warmuth, 1994)

* Given: pool A of binary classifiers (that
you know nothing about)

 Data: stream of examples (i.e. online

learning setting) N g
* Goal: design a new learner that uses o ©
the predictions of the pool to make
new predictions ®
* Algorithm: +
— Initially weight all classifiers equally
— Receive a training example and predict 7\

the (weighted) majority vote of the
classifiers in the pool

— Down-weight classifiers that contribute

to a mistake by a factor of 7



Weighted Majority Algorithm

Theorems (Littlestone & Warmuth, 1994)

For the genéral case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made

in a given sequence of trials: C

1. O(log|.A|+m), if one algorithm of A makes
at most m mistakes.

25 O(logj-“;:-l 4+ m), if each of a subpool of k
algorithms of A makes at most m mistakes.

3. O(log L’;-l + ), if the total number of mis-
takes of a subpool of k£ algorithms of A is
at most m.

These are
“mistake
bounds” of the
variety we saw
for the
Perceptron
algorithm
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AdaBoost: Toy Example

H =sign | 0.42
final

+0.92

Slide from Schapire NIPS Tutorial



Two Types of Collaborative Filtering
2. Latent Factor Methods

Sedos
* Assume that both 1 TS
: et
I’T\OV.IGS and users | The Color Purple Amadess | P
live in some low- ‘ : p SR
dimensional space - o -
describing their 2 Ve
properties [Sense and | e
| Seendikry |

* Recommend a
movie based on its

1H

proximity to the -~
user in the latent . e Lise Mg | =
_ i Damber |
space he Princess sdependenit é,fé‘“
* Example Algorithm: L %o | & I
. . . >
Matrix Factorization fscapls
88

Figures from Koren et al. (2009)



MF for Netflix Problem

Example
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(a) Example of rank-2 matrix factorization
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Figures from Aggarwal (2016)



Recommending Movies
35
Question:

Which of the following pieces of information
about user behavior could be used to improve a
collaborative filtering system?

Select all that apply

. # of times a user watched a given movie
Total # of movies a user has watched

How often a user turns on subtitles

. # of times a user paused a given movie

How many accounts a user is associated with
# of DVDs a user canrent at atime = Toxic

nmo N WP
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Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Given data D = {x(®) y(H}N e Perceptron: hg(x) = sign(6”x)
2. (@) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 87 x
(parameterized by @)

e Discriminative Models: hg(x) = argmax X
(b) Choose an objective function Jp(0) = o(x) g;n pely | %)
(relies on data) T
o Logistic Regression: pg(y =1 | x) = o(0" x)

3. Learnby choosing parameters that optimize the objective Jp (@) o Neural Net (classification):

g = — 2nT (1T (1) (2)
0 ~ argmin Jp(0) po(y=1|x)=c((W*) ' a(W) x+bW) +bl*)
(]

e Generative Models: hg(x) = argmax pg (X, y)
Y
4. Predict on new test example Xpew using hg(-)

i = ho(Xnew) o Naive Bayes: pg(x,y) H po(Tm | y)
m=1
Optimization Method

Objective Function
e Gradient Descent: @ — 6 — vV J(0) JecHve FEnEE

e SGD:0 — 0 — Ve D (0) o MLE: J () = Zlogp(x(’) y(®)
fori ~ Uniform(1,..., N)
N

1 )
where J(8) = — Y J@(9) N : :
N ; e MCLE: J(0) = — Zlogp(y(’) | x()
=1
e mini-batch SGD '
e L2 Regularized: J'(8) = J(8) + )||6||3
e closed form (same as Gaussian prior p(@) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(6) + )\||6|];
2. set equal to zero and solve (same as Laplace prior p(@) over parameters)
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Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

— Binary classification
«— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

D={x"yV}L, x~p*()andy=c*()
y(i) eR

ye{1,...,K}

y e {+1,-1}

y'") is a vector

D={x"}L, x~p*()

D = {x@,y®O}1, U {xD}2,

D= {(x(l)’y(l)), (x2), y(2)), (x(3) 46N, ..}
D = {x?}¥  and can query y'*) = ¢*(-) at a cost
D = {(sV,aV), (s2,a(?),...}

D= {(s(l),a(l)’r(l))?(3(2)’0(2),,,.(2)),._,}
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ML Big Picture

Learning Paradigms:

What data is available and
when? What form of prediction?
. supervised learning

. unsupervised learning

. semi-supervised learning

O reinforcement learning

. active learning

O imitation learning

. domain adaptation

O online learning

- density estimation

*  recommender systems

e feature learning

O manifold learning

. dimensionality reduction

. ensemble learning

- distant supervision

. hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

CDCOO00

Problem Formulation:

What is the structure of our output prediction? )
boolean Binary Classification T :S
categorical Multiclass Classification 438
ordinal Ordinal Classification ) - 2“
real Regression O~ SY
ordering Ranking E %’0 {::_é
multiple discrete  Structured Prediction g é 7 o%
multiple continuous (e.g. dynamical systems) g = ‘%C“'S
both discrete & (e.g. mixed graphical models) E ; 5‘% S
cont. << z53H
Facets of Building ML Big Ideas in ML:

Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2.  Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Which are the ideas driving
development of the field?

* inductive bias

* generalization / overfitting

*  bias-variance decomposition
e generative vs. discriminative
e deep nets, graphical models
*  PAClearning

e distant rewards



Course Level Objectives

You should be able to...

1.

Implement and analyze existing learning algorithms, including well-studied
methods for classification, regression, structured prediction, clustering, and
representation learning

Integrate multiple facets of practical machine learning in a single system: data
preprocessing, learning, regularization and model selection

Describe the the formal properties of models and algorithms for learning and
explain the practical implications of those results

Compare and contrast different paradigms for learning (supervised,
unsupervised, etc.)

Design experiments to evaluate and compare different machine learning
techniques on real-world problems

Employ probability, statistics, calculus, linear algebra, and optimization in
order to develop new predictive models or learning methods

Given a description of a ML technique, analyze it to identify (1) the expressive
power of the formalism; (2) the inductive bias implicit in the algorithm; (3) the
size and complexity of the search space; (4) the computational properties of
the algorithm: (5) any guarantees (or lack thereof) regarding termination,
convergence, correctness, accuracy or generalization power.



SIGNIFICANCE TESTING



Significance Testing

Whiteboard
— Which classifier is better?

— Two sources of variance: (1) randomness in
training (2) randomness in test data

— Report system variance

— Significance Testing

* The paired bootstrap test
* The paired permutation test



FAIRNESS IN ML



Are Face-Detection Cameras Racist?

e

W Twost

When Joz Wang and her brother bought their mom a
Nikon Coolpix S630 digital camera for Mother's Day
last year, they discovered what seemed to be a
malfunction. Every time they took a portrait of each
other smiling, a message flashed across the screen
asking, "Did someone blink?" No one had, "I thought
the camera was broken!" Wang, 33, recalls, But when
her brother posed with his eyes open so wide that he

looked "bug-eyed,” the messages stopped.

Wang, a Taiwanese-American strategy consultant
who goes by the Web handle "jozjozjoz,” thot
was funny that the camera had difficulties figuring

out when her family had their eyes open. So she

Source:

Read Later

)id someone blink?

» N
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http://content.time.com/time/business/article/0,8599,1954643,00.html

“A Chinese woman [surname Yan] was
offered two refunds from Apple for her
new iPhone X... [it] was unable to tell her
and her other Chinese colleague apart.”

IS THE IPHONE X RACIST? APPLE REFUNDS " Thinking that a faulty camera was to
DEVICE THAT CAN'T TELL CHINESE PEOPLE blame, the store operator gave [Yan] a
APART, WOMAN CLAIMS

BY CHRISTINA ZHAO ON 12/18/17 AT 12:24 PM EST

refund, which she used to purchase
another iPhone X. But the new phone
turned out to have the same problem,
prompting the store worker to offer her
another refund ... It is unclear whether she

purchased a third phone”

Source: https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263 102



https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263

“As facial recognition systems become

more common, Amazon has emerged asa  Gender and racial bias found in Amazon'’s
frontrunner in the field, courting customers facial recognition technology (again)

Research shows that Amazon'’s tech has a harder time identifying

aroun d th e U S/ I n CI u d I n g pO I ice gender in darker-skinned and female faces

departments and Immigration and Customs
Enforcement (ICE).”

Source: https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender 103



https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender

“While it [the algorithm] didn't directly

: : consider ethnicity, its emphasis on medical
Healthcare risk algorithm had b1 EmP
. u_ imi . . costs as bellwethers for health led to the
significant racial bias

It reportedly underestimated health needs for black patients.

code routinely underestimating the needs
of black patients. A sicker black person
ﬁ . o would receive the same risk score as a

¢ Medicine

healthier white person simply because of
how much they could spend.”

Source: https://science.sciencemag.org/content/366/6464/447 104
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Machine Bias

There's software used across the country to predict future criminals. And it's biased
against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
s J

May 23, 2016

Two Drug Possession Arrests Two Drug Possession Arrests

DYLAN FUGETT BERNARD PARKER

Prior Offense Prior Offense

1attempted burglary 1resisting arrest
without violence

Subsequent Offenses

3 drug possessions Subsequent Offenses
None

LOW RISK 3 HIGH RIS LOW RISK 3 HieHrisk 10

Fugett was rated low risk after being arrested with cocaine and Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that. marijuana. He was arrested three times on drug charges after that.

Source:


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Welge
embeddings

» https://lamyiowce.github.io/word2viz/

and
analogies
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https://lamyiowce.github.io/word2viz/

Running

Example

CMU

- Suppose you're an admissions officer for CMU,

deciding which applicants to admit to your program

» X are the features of an applicant (e.qg.,

standardized test scores, GPA)

* ais a protected attribute (e.g., gender), usually

categoricali.e.a € {aq, ..., ac}

* h(X, a) is your model’s prediction, which usually

corresponds to some decision or action (e.qg.,
+ 1 = admit to CMU)

* yisthe true, underlying target variable, usually

thought of as some latent or hidden state (e.qg.,
+ 1 = this applicant would be “successful” at CMU)
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Three

Criteria for
Fairness

- Independence: h(x,a) L a

- Probability of being accepted is the same for
all genders

- Separation: h(x,a) Laly

* All "good” applicants are accepted with the
same probability, regardless of gender

- Same for all “bad” applicants

- Sufficiency: y 1 a | h(x, a)

* For the purposes of predicting y, the
information contained in h(X, a) is
“sufficient”, a becomes irrelevant

108



* Pre-processing data

Ach ieving - Additional constraints during training
Fairness

* Post-processing predictions

109



Three

Criteria for
Fairness

- Independence: h(x,a) L a

- Probability of being accepted is the same for
all genders

- Separation: h(x,a) Laly

* All "good” applicants are accepted with the
same probability, regardless of gender

- Same for all “bad” applicants

- Sufficiency: y 1 a | h(x, a)

* For the purposes of predicting y, the
information contained in h(X, a) is
“sufficient”, a becomes irrelevant

 Any two of these criteria are mutually exclusive in

the general case!

110



* Causality Bayesian networks to the rescue!

Knowledge

A Fourth

Criterion for
Fairness

Reference
Letters

111



* Causality Bayesian networks to the rescue!

Knowledge

A Fourth

Criterion for
Fairness

Reference
Letters

- Counterfactual fairness: how would an applicant’s
probability of acceptance change if they were a
different gender?

Source: Counterfactual fairness, Kusner et al., https://papers.nips.cc/paper/2017/file/ar86cdoyesracyd2yo571622f4f316ecs-Paper.pdf 112
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