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Reminders

* Homework 2: Decision Trees
— Out: Wed, Sep. 8
— Due: Mon, Sep. 20 at 11:59pm
* Schedule Changes:
— Fri, Sep. 17: Lecture 6: Perceptron
— Wed, Sep. 29: Recitation: Linear Algebra Prog.

* Poll URL:
— http://poll.mlcourse.org



http://p5.mlcourse.org/

Moss Cheat Checker



What is Moss?

* Moss (Measure Of Software Similarity): is an
automatic system for determining the similarity
of programs. To date, the main application of
Moss has been in detecting plagiarism in
programming classes.

* Moss reports:
— The Andrew IDs associated with the file submissions
— The number of lines matched

— The percent lines matched

— Color coded submissions where similarities are
found



What is Moss?

At first glance, the submissions may look different

prrenc e



What is Moss?

Moss can quickly find the similarities



Q&A

Q: ’m now terrified to collaborate with
anyone ever again. Can you remind me of
what sort of collaboration is allowed within
our programming groups:?

A: Don’t be!

Within your programming group, you can
show your code to each other. The only
requirement is that you do not take notes
while doing so.

If we discover significant code overlap within
your programming group, you will not receive
an AlV.



K-NEAREST NEIGHBORS



Classification & KNN

Whiteboard:

— Binary classification
— 2D examples
— Decision rules [ hypotheses

— Nearest neighbor and K nearest neighbors
classifiers

— KNN for binary classification



KNN: Remarks

Distance Functions:
* KNN requires a distance function

d: RMxRM 5 R
e The most common choice is Euclidean distance

@) = | ) (= v’

\
* But there are other choices (e.g. Manhattan distance)
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KNN: Remarks

In-Class Exercises

1. How can we handle ties
for even values of k?

2. Whatis the inductive bias
of KNN?




KNN: Remarks

In-Class Exercises

1. How can we handle ties
for even values of k?

2. Whatis the inductive bias
of KNN?

Answer(s) Here:

1.
— Consider another point

— Remove farthest of k
points

— Weight votes by
distance

— Consider another

distance metric
e




1.

KNN: Inductive Bias

Similar points should have similar [abels

2. All dimensions are created equally!

Example: two features for KNN

sepal length
(cm)

A

® +

+ +

A

sepal width (cm)

>

£

sepal length
(cm)

big problem:
feature scale
can
dramatically
influence
classification
results!

sepal width (m)

>




KNN: Computational Efficiency

Suppose we have N training examples and
each one has M features

Computational complexity when k=1:

Tk Inave  lkdTee

Train 0(1) ~O(M N log N)

Predict O(MN) ~0O(2Mlog N) on average
(one test example)

Problem: Very fast for small M, but :
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically ofterras good)
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KNN: Theoretical Guarantees

Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary
classifier. As the number of training
examples N goes to infinity...

error,,.(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the
classification information in an infinite
sample set is contained in the nearest
neighbor.”

very
informally,
Bayes Error
Rate can be
thought of as:

‘the best you
could possibly
do’




Decision Boundary Example

Dataset: Outputs {+,-}; Features x, and x,

In-Class Exercise

Question: ,
A. Can ak-Nearest Neighbor classifier

with k=1 achieve zero training error

on this dataset?

B. If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not?

A
X5 + +

Question: Z
A.

,\l}’js
6’, o]

- — (“'ci oNn
C= =

Can a Decision Tree classifier achieve
zero training error on this dataset?

If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not?

X5 + +
+
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k-Nearest Neighbors

Whiteboard:

— Decision Tree boundary with continuous
features



KNN ON FISHER IRIS DATA






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

epal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

m

0

0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3-3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7
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Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by
Anderson (1936)

m Deleted two of the
0 4.3 3.0 four features, so that
0 4.9 3.6 input space is 2D

0 5.3 3.7

1 4.9 2.4 @

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set




sepal length
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KNN on Fisher Iris Data

y=0 .

sepal width
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KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = ‘uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 2, weights = ‘uniform')
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KNN on Fisher Iris Data
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KNN on Fisher Iris Data

3-Class classification (k = 10, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 20, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 40, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 60, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 70, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 80, weights = 'uniform')

)

) O

o ¢

) @ O O ¢
@

J
CNC)
o o
CRONO CRONC)
® 00 00 ()

o o

(

CNC)
O
() U0
()

(
) @

L)
()

@ (

()

()
) @ O

® o

o
()
) © O

o000 0
()

®

(2

)

U0
U
®

(

)

49



KNN on Fisher Iris Data

3-Class classification (k = 90, weights = 'uniform')
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KNN on Fisher Iris Data

3-Class classification (k = 100, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 110, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 120, weights = 'uniform’)
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KNN on Fisher Iris Data

3-Class classification (k = 130, weights = 'uniform’)
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3-Class classification (k = 140, weights = 'uniform’)
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KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)
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KNN ON GAUSSIAN DATA



KNN on Gaussian

Data

58



KNN on Gaussian Data

- Classification with KNN (k = 1, weights = 'uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 2, weights = 'uniform’)
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KNN on Gaussian Data

- Classification with KNN (k = 3, weights = 'uniform’)
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KNN on Gaussian Data

- Classification with KNN (k = 4, weights = 'uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 5, weights = 'uniform')
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KNN on Gaussian Data

- Classification with KNN (k = 9, weights = 'uniform')
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KNN on Gaussian Data

 Classification with KNN (k = 16, weights = 'uniform')
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KNN on Gaussian Data

 Classification with KNN (k = 25, weights = 'uniform')
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KNN on Gaussian Data

Classification with KNN (k = 36, weights = 'uniform')
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KNN on Gaussian Data

 Classification with KNN (k = 49, weights = 'uniform')
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KNN on Gaussian Data

 Classification with KNN (k = 64, weights = 'uniform')
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KNN on Gaussian Data

 Classification with KNN (k = 81, weights = 'uniform')
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KNN on Gaussian Data

Classification with KNN (k = 100, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 121, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 144, weights = 'uniform’)
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KNN on Gaussian Data

‘uniform’)

ts

= 169, weigh

(k

Classification with KNN
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KNN on Gaussian Data

Classification with KNN (k = 196, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 225, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 256, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 289, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 400, weights = 'uniform’)
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KNN on Gaussian Data

Classification with KNN (k = 529, weights = 'uniform’)

80



KNN on Gaussian Data

Classification with KNN (k = 576, weights = 'uniform’)

81



Questions

* How could KNN be applied to regression?
* Can we do something other than majority

vote?

* Where does the Cover & Hart (1967) Bayes
error rate bound come from?



KNN Learning Objectives

You should be able to...

* Describe a dataset as points in a high dimensional space
[CIML]

* Implement k-Nearest Neighbors with O(N) prediction

 Describe the inductive bias of a k-NN classifier and relate
it to feature scale [a la. CIML]

* Sketch the decision boundary for a learning algorithm
(compare k-NN and DT)

 State Cover & Hart (1967)'s large sample analysis of a
nearest neighbor classifier

* Invent "new' k-NN learning algorithms capable of dealing
with even k



MODEL SELECTION



Model Selection

WARNING:

* |n some sense, our discussion of model
selection is premature.

* The models we have considered thus far are
fairly simple.

* The models and the many decisions available
to the data scientist wielding them will grow
to be much more complex than what we’ve
seen so far.



Model Selection

Example: Decision Tree

model = set of all possible
trees, possibly restricted by
some hyperparameters (e.g.
max depth)

parameters = structure of a
specific decision tree

learning algorithm = ID3,
CART, etc.

hyperparameters = max-
depth, threshold for splitting
criterion, etc.

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Example: k-Nearest Neighbors

model = set of all possible
nearest neighbors classifiers

parameters = none
(KNN is an instance-based or
non-parametric method)

learning algorithm = for naive
setting, just storing the data

hyperparameters = k, the
number of neighbors to
consider

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Statistics

Def: a model defines the data
eneration process (i.e. a set or
amily of parametric probability

distributions)

Def: model parameters are the
values that give rise to a
particular probability
distribution in the model family

Def: learning (aka. estimation) is
the process of finding the
parameters that best fit the data

Def: hyperparameters are the
parameters of a prior
distribution over parameters

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select



Model Selection

Statistics Machine Learning

* Def: a model defines the data * Def: (loosely) a model defines the

eneration pr : pace over which
amily of pa'?a, It “learning™ is all about forms its search

distributions) picking the best
arameters are the
* Def: model p parameters how do we |esor structure
values that gi \1 piCk the best he learning algorithm

particular prok to a hypothesis

distribution in hyperparameters?

ning algorithm

. , , , detines the -driven search
* Def: learni ka. estimation) is : .
the pro@‘inding the over the hyp sis space (i.e.

: h f
parame that best fit the data searchtor §00 ameters)

* Def: hyperparameters are the
* Def: hyperparameters are the tunable aspects of the model, that

parameters of a prior the learning algorithm does not
distribution over parameters select



Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose
the “best” model from among a set of candidates
— Def: hyperparameter optimization is the process by
which we choose the “best” hyperparameters from
among a set of candidates (could be called a special
case of model selection)

* Both assume access to a function capable of
measuring the quality of a model

* Both are typically done “outside” the main training
algorithm - typically training is treated as a black
box




EXPERIMENTAL DESIGN



Training

Hyperparameter
Optimization

Testing

Experimental Design

Input Output

training dataset * best model parameters
hyperparameters

training dataset * Dbest hyperparameters
validation dataset

test dataset * testerror
hypothesis (i.e. fixed
model parameters)

Notes

We pick the best model
parameters by learning on the
training dataset for a fixed set
of hyperparameters

We pick the best
hyperparameters by learning
on the training data and
evaluating error on the
validation error

We evaluate a hypothesis
corresponding to a decision
rule with fixed model
parameters on a test dataset
to obtain test error
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Example of Hyperparameter Opt.

Whiteboard:
— Special cases of k-Nearest Neighbors
— Choosing k with validation data
— Choosing k with cross-validation



Cross-Validation

Cross validation is a method of estimating loss on held out data
Input: training data, learning algorithm, loss function (e.g. 0/1 error)
Output: an estimate of loss function on held-out data

Key idea: rather than just a single “validation’ set, use many!
(Error is more stable. Slower computation.)

Fold 1

Fold 2

Fold 3

] Fold 4
Definition:

N-fold cross validation = cross validation with N folds
—_—

Algorithm:

Divide data into folds (e.g. 4)

1. Train on folds {1,2,3} and
predict on {4}

2. Train on folds {1,2,4} and
predict on {3}

3. Train on folds {1,3,4} and
predict on {2}

4. Train on folds {2,3,4} and
predict on {1}

Concatenate all the predictions
and evaluate loss (almost
equivalent to averaging loss
over the folds)
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Experimental Design

Input Output Notes

Training * training dataset * best model parameters  We pick the best model

e hvperparameters parameters by learning on the
yperp training dataset for a fixed set

of hyperparameters

Hyperparameter training dataset best hyperparameters We pick the best

. ... . . hyperparameters by learning
Optimization validation dataset e ————

evaluating error on the
validation error

Cross-Validation training dataset cross-validation error We estimate the error on held

. . out data by repeatedly training
validation dataset on N-1 folds and predicting on

the held-out fold

Testing test dataset test error We evaluate a hypothesis

. ] corresponding to a decision
hypothesis (l'e' fixed rule with fixed model

model parameters) parameters on a test dataset
to obtain test error




Experimental Design

No!

A:

Let's assume that {train-original} is the original training data and {test} is the

provided test dataset.
1. Split {train-original} into {train-subset} and {validation}.
2. Pick the hyperparameters that when training on {train-subset}} give the lowest
error on {validation}. Call these hyperparameters {best-hyper}.
3. Retrain a new model using {best-hyper} on {train-original} = {train-
subset} U {validation}.
4. Report test error by evaluating on {test}.

Alternatively, you could replace Steps 1-2 with the following:

1. Pick the hyperparameters that give the lowest cross-validation error on {train-
original}. Call these hyperparameters {best-hyper}.

100



Classification with KNN (k = 144, weights = 'uniform’')

k-NN: Choosing k-

Classification with KNN (k = 1, weights = 'uniform')

---------
--------

Train / Test Errors with k-NN

-

v MO O

Fisher Iris Data: varying the value of k
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. Classification with KNN (k = 1, weights = 'uniform')

~ k-NN: Choosing k-

0- .

Train / Test Errors with k-NN

o o T —
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Gaussian Data: varying the value of k

Classification with KNN (k = 225, weights = 'uniform’)
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HYPERPARAMETER
OPTIMIZATION



Model Selection

WARNING (again):
— This section is only scratching the surface!
— Lots of methods for hyperparameter

optimization: (to talk about later)
e Grid search
e Random search
* Bayesian optimization
e Graduate-student descent

Main Takeaway:
— Model selection [ hyperparameter optimization
is just another form of learning



Hyperparameter Optimization

Setting: suppose we have hyperparameters «, 3, and x and
we wish to pick the “best” values for each one

Algorithm 1: Grid Search

— Pick a set of values for each hyperparameter
a €43, ay...,a,}, BE {P" b,, ..., b}, and x €{¢;, G5, ..., €}
— Run a grid search — -

fora € {a%, 3,y --e, A}

for@ €{b, b,, ..., b}
forx € {cj, Cpy +eey Cr}

0= tramw
error = pr Dl ekt e)

— return a, 3, and x with lowest validation error



Hyperparameter Optimization

Setting: suppose we have hyperparameters «, 3, and x and
we wish to pick the “best” values for each one




Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters
than random search.

Answer:



Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters
than random search.

An Swer: Grid Layout Random Layout
O (o] (o] O
® o
O (0] (@] ® ..
o
O O (e] (o] °




Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters
than random search.

An Swer: Grid Layout Random Layout

Unimportant parameter

| ]
Important parameter Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f(x,y) = g(x) + h(y) ~
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square A(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.



Model Selection Learning Objectives

You should be able to...

* Plan an experiment that uses training, validation, and
test datasets to predict the performance of a
classifier on unseen data (without cheating)

 Explain the difference between (1) training error, (2)
validation error, (3) cross-validation error, (4) test
error, and (5) true error

* For a given learning technique, identify the model,
learning algorithm, parameters, and hyperparamters

* Define "instance-based learning' or ""nonparametric
methods"

* Select an appropriate algorithm for optimizing (aka.
learning) hyperparameters



THE PERCEPTRON ALGORITHM



Perceptron: History

Imagine you are trying to build a new machine learning
technique... your name is Frank Rosenblatt...and the

yearis 1957

M) BPERARRE BRSAL TR BEIEM BARL AT aet

FIBURE 3
DERGN OF TYFICAL wWiTs
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Perceptron: History

Imagine you are trying to build a new machine learning
technique... your name is Frank Rosenblatt...and the
yearis 1957

The New Yorker, December 6, 1958 P 44

Talk stoey about the perceptron, a now electronic brain which hasn't been buily,
bas which has boen seccossfully simulased on the LB, 704, Talk with Iy
Frank Rosenblatt, of the Comell Acronautical Laboratory, who i one of the
two men who developed the prodigy: the other mam s D Manhall C. Yority,
of the Othce of Naval Rescasch, in Washington, Dr, Rescnblatt defined the
perooptron as the St non-biological object which will achicve an organization
o ity exterzal envisonment in 3 meaninglul way: 18 interacts with ity
emviromment, forming concepes that have not been made ready for it by a
Brarnan agene. 1f 2 triangle is held up, the perceptron’s cye picks o the imsage &
coeveys it along 2 randoen succession of lines to the eesponie arats, where the
snage is registered. Tt can tell the ditference berw. 2 car and 2 dog, although it
woelda't be able 1o rell whether the dog was to theleft o right of the can. Righa
oow 1t s of no practical we, Dy, Rosenblatt conceded, but he saod that ane day
ot might be wieful 1o send one Into ourer space to take i impressions for us,




Linear Models for Classification

Key idea: Try to learn
this hyperplane directly

Looking ahead: l If Directly modeling the

 We’ll see a number of
commonly used Linear hyperplane would use a

Classifiers decision function:
e These include: -
— Perceptron h(X) — Sign(g X)

— Logistic Regression
— Naive Bayes (under

certain conditions) for:
— Support Vector

Machines Y € {—1, 1}




GEOMETRY & VECTORS



Geometry

In-Class Exercise Answer Here:

Draw a picture of the o
region corresponding 4
to:
w1x1 + wexe +b >0
where w; = 2,wy = 3,b =16 T

Draw the vector
W = [Wv Wz]




Visualizing Dot-Products

Whiteboard:
— definition of dot product
— definition of L2 norm

— definition of orthogonality



Vector Projection
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Visualizing Dot-Products

Whiteboard:
— vector projection
— hyperplane definition
— half-space definitions



Linear Models for Classification

Key idea: Try to learn
this hyperplane directly

Looking ahead: l If Directly modeling the

 We’ll see a number of
commonly used Linear hyperplane would use a

Classifiers decision function:
e These include: -
— Perceptron h(X) — Sign(g X)

— Logistic Regression
— Naive Bayes (under

certain conditions) for:
— Support Vector

Machines Y € {—1, 1}




