
Perceptron

1

10-301/601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 6

Sep. 17, 2021

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Q&A

4

Q: Is there really another change in the
Collaboration Policy for HW3?

A: Yes! Here are the details:
• For each written assignment, you will be randomly assigned to a

homework group of 3. These homework groups will be different
for each assignment.

• Every problem on each written assignment will be designated
as SOLO or GROUP.

• Within your assigned homework group, you are allowed to
collaborate on GROUP problems more fully than before.
Specifically, you are allowed to share written notes pertaining
to GROUP problems and you are allowed to write your solutions
collectively.

• Our original Collaboration Policy still applies to SOLO questions:
any written notes about these problems must be taken on an
impermanent surface (e.g. whiteboard, chalkboard) and the actual
solution to these problems must be written by yourself.

Q&A

5

Q: Those decision boundary figures for KNN
were really cool, how did you make those?

A: Well it’s a little complicated for k > 1, but here’s a way you can think
about decision boundaries for a nearest neighbor hypothesis (k=1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

--

-

Q&A

7

Q: Those decision boundary figures for KNN
were really cool, how did you make those?

A: Well it’s a little complicated for k > 1, but here’s a way you can think
about decision boundaries for a nearest neighbor hypothesis (k=1)

Reminders

• Homework 2: Decision Trees
– Out: Wed, Sep. 8

– Due: Mon, Sep. 20 at 11:59pm

• Homework 3: KNN, Perceptron, Lin.Reg.

– Out: Mon, Sep. 20 (+ 1 day)

– Due: Sun, Sep. 26 at 11:59pm

• Today’s In-Class Poll
– http://poll.mlcourse.org

8

THE PERCEPTRON ALGORITHM

9

Perceptron: History
Imagine you are trying to build a new machine learning
technique… your name is Frank Rosenblatt…and the
year is 1957

10

Perceptron: History
Imagine you are trying to build a new machine learning
technique… your name is Frank Rosenblatt…and the
year is 1957

11

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

GEOMETRY & VECTORS

13

Geometry

In-Class Exercise
Draw a picture of the
region corresponding
to:

Draw the vector
w = [w1, w2]

14

Answer Here:

Visualizing Dot-Products

Whiteboard:
– definition of dot product
– definition of L2 norm
– definition of orthogonality

15

Vector Projection

16

Question:
Which of the following is the projection of a vector a onto a
vector b?

17

18

Visualizing Dot-Products

Whiteboard:
– vector projection
– hyperplane definition
– half-space definitions

19

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

ONLINE LEARNING

21

Online vs. Batch Learning

Batch Learning
Learn from all the examples at
once

Online Learning
Gradually learn as each example
is received

22

Online Learning

Examples
1. Stock market prediction (what will the value

of Alphabet Inc. be tomorrow?)
2. Email classification (distribution of both spam

and regular mail changes over time, but the
target function stays fixed - last year's spam
still looks like spam)

3. Recommendation systems. Examples:
recommending movies; predicting whether a
user will be interested in a new news article

4. Ad placement in a new market
23

Slide adapted from Nina Balcan

Online Learning
For i = 1, 2, 3, …:
• Receive an unlabeled instance x(i)

• Predict y’ = hθ(x(i))
• Receive true label y(i)

• Suffer loss if a mistake was made, y’ ≠ y(i)

• Update parameters θ

Goal:
• Minimize the number of mistakes

24

THE PERCEPTRON ALGORITHM

25

Perceptron

Whiteboard:
– (Online) Perceptron Algorithm
– Hypothesis class for Perceptron
– 2D Example of Perceptron

26

28

Perceptron Algorithm: Example
Example: −1,2 −

-
+
+

%& = (0,0)
%+ = %& − −1,2 = (1, −2)
%, = %+ + 1,1 = (2, −1)
%. = %, − −1,−2 = (3,1)

+
-
-

Perceptron Algorithm: (without the bias term)
§ Set t=1, start with all-zeroes weight vector %&.
§ Given example 0, predict positive iff %1 ⋅ 0 ≥ 0.
§ On a mistake, update as follows:

• Mistake on positive, update %15& ← %1 + 0
• Mistake on negative, update %15& ← %1 − 0

1,0 +
1,1 +

−1,0 −
−1, −2 −
1, −1 +

X
a
X

a
X

a

Slide adapted from Nina Balcan

Intercept Term
Q: Why do we need an
intercept term?

A: It shifts the decision
boundary off the origin

31

w

b < 0

b = 0

b > 0

Q: Why do we add / subtract 1.0
to the intercept term during
Perceptron training?
A: Two cases
1. Increasing b shifts the

decision boundary
towards the negative side

2. Decreasing b shifts the
decision boundary
towards the positive side

Perceptron Inductive Bias

1. Decision boundary should be linear
2. Most recent mistakes are most important

(and should be corrected)

32

Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1):

w

Hyperplane (Definition 2):

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one to
get x’!

1
’

’ ’

1

1

(Online) Perceptron Algorithm

34

Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged
• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

1

(Online) Perceptron Algorithm

35

Learning:

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

1

(Online) Perceptron Algorithm

36

Learning:

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.
ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

Implementation Trick: same
behavior as our “add on

positive mistake and
subtract on negative

mistake” version, because
y(i) takes care of the sign

(Batch) Perceptron Algorithm

37

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {(t(1), y(1)), . . . , (t(N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T t(i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i)t(i) � Update parameters
8: return �

(Batch) Perceptron Algorithm

38

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a
so-called Hinge Loss on a linear separator

Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during

training, so each one can vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially

large set
– Mistake bound does not depend on the size of that set

39

Perceptron Exercises
Question:
The parameter vector w learned by the
Perceptron algorithm can be written as
a linear combination of the feature
vectors x(1), x(2),…, x(N).

A. True, if you replace “linear” with
“polynomial” above

B. True, for all datasets
C. False, for all datasets
D. True, but only for certain datasets
E. False, but only for certain datasets

40

41

ANALYSIS OF PERCEPTRON

42

Geometric Margin
Definition: The margin of example ! w.r.t. a linear separator " is
the distance from ! to the plane " ⋅ ! = 0 (or the negative if on
wrong side)

!&

Margin of negative example !&

Slide from Nina Balcan

!'

Margin of positive example !'

w

Geometric Margin

Definition: The margin !" of a set of examples # w.r.t. a linear
separator $ is the smallest margin over points % ∈ #.

+

+ + +

+

-

- -

-
- +

--

-
-

+

Slide from Nina Balcan

Definition: The margin of example % w.r.t. a linear separator $ is
the distance from % to the plane $ ⋅ % = 0 (or the negative if on
wrong side)

!"
!"

w

+

+ +
+
+-

-
-

!
!

+

--

-
-

w

Definition: The margin ! of a set of examples " is the maximum !#
over all linear separators $.

Geometric Margin

Slide from Nina Balcan

Definition: The margin !# of a set of examples " w.r.t. a linear
separator $ is the smallest margin over points % ∈ ".

Definition: The margin of example % w.r.t. a linear separator $ is
the distance from % to the plane $ ⋅ % = 0 (or the negative if on
wrong side)

- -

Linear Separability

46

Def: For a binary classification problem, a set of examples !
is linearly separable if there exists a linear decision boundary
that can separate the points

+
+-

Case 1:

+ +
-

Case 2:

+
++

Case 3:

+
+-
-

Case 4:

Perceptron Mistake Bound

47
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin ! and all points lie inside
a ball of radius ", then the online Perceptron algorithm
makes ≤ ⁄" ! % mistakes

++

+
+
+
+

+

-

- -

-

-

g
g

--
-
-

+

R

��

Perceptron Mistake Bound

48
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin ! and all points lie inside
a ball of radius ", then the online Perceptron algorithm
makes ≤ ⁄" ! % mistakes

++

+
+
+
+

+

-

- -

-

-

g
g

--
-
-

+

R

��Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

ANALYSIS OF PERCEPTRON
(PROOF)

49

Analysis: Perceptron

50
Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Perceptron Mistake Bound

Analysis: Perceptron

51
Figure from Nina Balcan

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Common
Misunderstanding:

The radius is
centered at the

origin, not at the
center of the

points.

Analysis: Perceptron

52

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

parameters
after k’th
mistake

Analysis: Perceptron

53

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(t(i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · t(i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PĊėĈĊĕęėĔē(D = {(t(1), y(1)), (t(2), y(2)), . . .})
2: � � 0, k = 1 � Initialize parameters
3: for i � {1, 2, . . .} do � For each example
4: if y(i)(�(k) · t(i)) � 0 then � If mistake
5: �(k+1) � �(k) + y(i)t(i) � Update parameters
6: k � k + 1
7: return �

Analysis: Perceptron

55

Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak � ||�(k+1)|| � B

�
k

�(k+1) · �� = (�(k) + y(i)t(i))��

by Perceptron algorithm update

= �(k) · �� + y(i)(�� · t(i))

� �(k) · �� + �

by assumption

� �(k+1) · �� � k�

by induction on k since �(1) = 0

� ||�(k+1)|| � k�

since ||r|| � ||m|| � r · m and ||��|| = 1

Cauchy-Schwartz inequality

Analysis: Perceptron

56

Proof of Perceptron Mistake Bound:
Part 2: for some B, Ak � ||�(k+1)|| � B

�
k

||�(k+1)||2 = ||�(k) + y(i)t(i)||2

by Perceptron algorithm update

= ||�(k)||2 + (y(i))2||t(i)||2 + 2y(i)(�(k) · t(i))

� ||�(k)||2 + (y(i))2||t(i)||2

since kth mistake � y(i)(�(k) · t(i)) � 0

= ||�(k)||2 + R2

since (y(i))2||t(i)||2 = ||t(i)||2 = R2 by assumption and (y(i))2 = 1

� ||�(k+1)||2 � kR2

by induction on k since (�(1))2 = 0

� ||�(k+1)|| �
�

kR

Analysis: Perceptron

57

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

k� � ||�(k+1)|| �
�

kR

�k � (R/�)2

The total number of mistakes
must be less than this

Analysis: Perceptron
What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)
2. However, Freund & Schapire (1999) show that by projecting the

points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

58

LARGE MARGIN CLASSIFICATION USING THE PERCEPTRON ALGORITHM 281

Similarly,

‖vk+1‖2 = ‖vk‖2 + 2yi (vk · xi) + ‖xi‖2 ≤ ‖vk‖2 + R2.

Therefore, ‖vk+1‖2 ≤ kR2.
Combining, gives

√
kR ≥ ‖vk+1‖ ≥ vk+1 · u ≥ kγ

which implies k ≤ (R/γ)2 proving the theorem. !

3.2. Analysis for the inseparable case

If the data are not linearly separable then the Theorem 1 cannot be used directly. However,
we now give a generalized version of the theorem which allows for some mistakes in the
training set. As far as we know, this theorem is new, although the proof technique is very
similar to that of Klasner and Simon (1995, Theorem 2.2). See also the recent work of
Shawe-Taylor and Cristianini (1998) who used this technique to derive generalization error
bounds for any large margin classifier.

Theorem2. Let 〈(x1, y1), . . . , (xm, ym)〉bea sequenceof labeled exampleswith‖xi‖ ≤ R.
Let u be any vector with ‖u‖ = 1 and let γ > 0. Define the deviation of each example as

di = max{0, γ − yi (u · xi)},

and define D =
√∑m

i=1 d
2
i . Then the number of mistakes of the online perceptron algorithm

on this sequence is bounded by

(
R + D

γ

)2
.

Proof: The case D = 0 follows from Theorem 1, so we can assume that D > 0.
The proof is based on a reduction of the inseparable case to a separable case in a higher

dimensional space. As we will see, the reduction does not change the algorithm.
We extend the instance space Rn to Rn+m by adding m new dimensions, one for each

example. Let x′
i ∈ Rn+m denote the extension of the instance xi .We set the first n coordinates

of x′
i equal to xi . We set the (n + i)’th coordinate to " where " is a positive real constant

whose value will be specified later. The rest of the coordinates of x′
i are set to zero.

Next we extend the comparison vector u ∈ Rn to u′ ∈ Rn+m . We use the constant Z ,
whichwe calculate shortly, to ensure that the length ofu′ is one.We set the first n coordinates
of u′ equal to u/Z . We set the (n+ i)’th coordinate to (yidi)/(Z"). It is easy to check that
the appropriate normalization is Z =

√
1+ D2/"2.

Perceptron Exercises

59

Question:
Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron
algorithm does not suffer from
overfitting because it does not
have any hyperparameters that
could be over-tuned on the
training data.

A. True
B. False
C. True and False

60

Summary: Perceptron
• Perceptron is a linear classifier
• Simple learning algorithm: when a mistake is

made, add / subtract the features
• Perceptron will converge if the data are linearly

separable, it will not converge if the data are
linearly inseparable

• For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

• Extensions support nonlinear separators and
structured prediction

61

Perceptron Learning Objectives
You should be able to…
• Explain the difference between online learning and

batch learning
• Implement the perceptron algorithm for binary

classification [CIML]
• Determine whether the perceptron algorithm will

converge based on properties of the dataset, and
the limitations of the convergence guarantees

• Describe the inductive bias of perceptron and the
limitations of linear models

• Draw the decision boundary of a linear model
• Identify whether a dataset is linearly separable or not
• Defend the use of a bias term in perceptron

62

