

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Linear Regression

Matt Gormley & Henry Chai Lecture 7 Sep. 20, 2021

Reminders

- Homework 2: Decision Trees
 - Out: Wed, Sep. 8
 - Due: Mon, Sep. 20 at 11:59pm
- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Mon, Sep. 20
 - Due: Sun, Sep. 26 at 11:59pm
 - Only 2 grace days allowed on HW3!
- Today's In-Class Poll

 http://poll.mlcourse.org

ANALYSIS OF PERCEPTRON

Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples *S* w.r.t. a linear separator *w* is the smallest margin over points $x \in S$.

Slide from Nina Balcan

Geometric Margin

- **Definition:** The margin of example x w.r.t. a linear separator w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)
- **Definition:** The margin γ_w of a set of examples *S* w.r.t. a linear
- separator w is the smallest margin over points $x \in S$.
- **Definition:** The margin γ of a set of examples *S* is the maximum γ_w over all linear separators *w*.

Linear Separability

Def: For a **binary classification** problem, a set of examples *S* is **linearly separable** if there exists a linear decision boundary that can separate the points

Perceptron Mistake Bound

Guarantee: if some data has margin γ and all points lie inside a ball of radius R, then the online Perceptron algorithm makes $\leq (R/\gamma)^2$ mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes! The algorithm is invariant to scaling.)

Perceptron Mistake Bound

Guarantee: if some data has margin γ and all points lie inside a ball of radius R, then the online Perceptron algorithm makes $\leq (R/\gamma)^2$ mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes! The algorithm is invariant to scaling.)

···· + ···

Def: We say that the (batch) perceptron algorithm has **converged** if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the perceptron algorithm cycles repeatedly through the data, it will converge in a finite # of steps.

PROVING THE BOUND (COVERED IN RECITATION)

Perceptron Mistake Bound Theorem 0.1 (Block (1962), Novikoff (1962)). Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$. Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^*$ s.t. $||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Perceptron Mistake Boun Theorem 0.1 (Block (1962), Novikoff (19 Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$ Suppose:

Common Misunderstanding: The radius is centered at the origin, not at the center of the points.

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^*$ s.t. $||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t. $Ak \leq ||\boldsymbol{\theta}^{(k+1)}|| \leq B\sqrt{k}$

Proof of Perceptron Mistake Bound: Part 1: for some A, $Ak \leq ||\boldsymbol{\theta}^{(k+1)}||$ $\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* = (\boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}) \boldsymbol{\theta}^*$ by Perceptron algorithm update $= \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + y^{(i)}(\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)})$ $> \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + \gamma$ by assumption $\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* > k\gamma$ by induction on k since $\theta^{(1)} = \mathbf{0}$ $\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| > k\gamma$ since $||\mathbf{w}|| \times ||\mathbf{u}|| \ge \mathbf{w} \cdot \mathbf{u}$ and $||\theta^*|| = 1$ **Cauchy-Schwartz inequality**

Proof of Perceptron Mistake Bound: Part 2: for some B, $||\boldsymbol{\theta}^{(k+1)}|| < B\sqrt{k}$ $||\boldsymbol{\theta}^{(k+1)}||^2 = ||\boldsymbol{\theta}^{(k)} + y^{(i)}\mathbf{x}^{(i)}||^2$ by Perceptron algorithm update $= ||\boldsymbol{\theta}^{(k)}||^{2} + (y^{(i)})^{2}||\mathbf{x}^{(i)}||^{2} + 2y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)})$ $< ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2 ||\mathbf{x}^{(i)}||^2$ since kth mistake $\Rightarrow y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0$ $= ||\boldsymbol{\theta}^{(k)}||^2 + R^2$ since $(y^{(i)})^2 ||\mathbf{x}^{(i)}||^2 = ||\mathbf{x}^{(i)}||^2 = R^2$ by assumption and $(y^{(i)})^2 = 1$ $\Rightarrow || \boldsymbol{\theta}^{(k+1)} ||^2 < kR^2$ by induction on k since $(\theta^{(1)})^2 = 0$ $\Rightarrow || \boldsymbol{\theta}^{(k+1)} || < \sqrt{kR}$

Proof of Perceptron Mistake Bound: Part 3: Combining the bounds finishes the proof.

$$k\gamma \le ||\boldsymbol{\theta}^{(k+1)}|| \le \sqrt{kR}$$
$$\Rightarrow k \le (R/\gamma)^2$$

The total number of mistakes must be less than this

What if the data is not linearly separable?

- 1. Perceptron will **not converge** in this case (it can't!)
- 2. However, Freund & Schapire (1999) show that by projecting the points (hypothetically) into a higher dimensional space, we can achieve a similar bound on the number of mistakes made on **one pass** through the sequence of examples

Theorem 2. Let $\langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \rangle$ be a sequence of labeled examples with $||\mathbf{x}_i|| \le R$. Let **u** be any vector with $||\mathbf{u}|| = 1$ and let $\gamma > 0$. Define the deviation of each example as

$$d_i = \max\{0, \gamma - y_i(\mathbf{u} \cdot \mathbf{x}_i)\},\$$

and define $D = \sqrt{\sum_{i=1}^{m} d_i^2}$. Then the number of mistakes of the online perceptron algorithm on this sequence is bounded by

$$\left(\frac{R+D}{\gamma}\right)^2$$

Perceptron Exercises

Question:

Unlike Decision Trees and K-Nearest Neighbors, the Perceptron algorithm **does not suffer from overfitting** because it does not have any hyperparameters that could be over-tuned on the training data.

- A. True
- B. False
- C. True and False

Summary: Perceptron

- Perceptron is a **linear classifier**
- Simple learning algorithm: when a mistake is made, add / subtract the features
- Perceptron will converge if the data are linearly separable, it will not converge if the data are linearly inseparable
- For linearly separable and inseparable data, we can bound the number of mistakes (geometric argument)
- Extensions support nonlinear separators and structured prediction

Perceptron Learning Objectives

You should be able to...

- Explain the difference between online learning and batch learning
- Implement the perceptron algorithm for binary classification [CIML]
- Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
- Describe the inductive bias of perceptron and the limitations of linear models
- Draw the decision boundary of a linear model
- Identify whether a dataset is linearly separable or not
- Defend the use of a bias term in perceptron

REGRESSION

Regression

Goal:

- Given a training dataset of pairs (x,y) where
 - **x** is a vector
 - y is a scalar
- Learn a function (aka. curve or line) y' = h(x) that best fits the training data

Example Applications:

- Stock price prediction
- Forecasting epidemics
- Speech synthesis
- Generation of images (e.g. Deep Dream)

Regression

Х

Example: Dataset with only one feature x and one scalar output y

y

Q: What is the function that best fits these points?

K-NEAREST NEIGHBOR REGRESSION

k-NN Regression

Х

Example: Dataset with only one feature x and one scalar output y

y

k=1 Nearest Neighbor Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest x in training data and return its y

k=2 Nearest Neighbors Distance Weighted Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest two instances x⁽ⁿ¹⁾ and x⁽ⁿ²⁾ in training data and return the weighted average of their y values

DECISION TREE REGRESSION

Decision Tree Regression

Decision Tree Regression

Dataset for Regression

Y	А	В	С
4	1	0	0
1	1	0	1
3	1	0	0
7	0	0	1
5	1	1	0
6	0	1	1
8	1	1	0
9	1	1	1

During learning, choose the attribute that minimizes an appropriate splitting criterion (e.g. mean squared error, mean absolute error)

LINEAR FUNCTIONS, RESIDUALS, AND MEAN SQUARED ERROR

Linear Functions

<u>Def</u>: Regression is predicting real-valued outputs

$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(i)}, y^{(i)} \right) \right\}_{i=1}^{n} \text{ with } \mathbf{x}^{(i)} \in \mathbb{R}^{M}, y^{(i)} \in \mathbb{R}$$

Common Misunderstanding: Linear functions ≠ Linear decision boundaries

Linear Functions

<u>Def</u>: Regression is predicting real-valued outputs

$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(i)}, y^{(i)} \right) \right\}_{i=1}^{n} \text{ with } \mathbf{x}^{(i)} \in \mathbb{R}^{M}, y^{(i)} \in \mathbb{R}$$

Common Misunderstanding: Linear functions \neq Linear decision boundaries

- A general linear function is $y = \mathbf{w}^T \mathbf{x} + b$
- A general linear decision boundary is $y = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$

Regression Problems

Chalkboard

- Residuals
- Mean squared error

The Big Picture

OPTIMIZATION FOR ML

Optimization for ML

Not quite the same setting as other fields...

- Function we are optimizing might not be the true goal
 - (e.g. likelihood vs generalization error)
- Precision might not matter
 (e.g. data is noisy, so optimal up to 1e-16 might not help)
- Stopping early can help generalization error (i.e. "early stopping" is a technique for regularization – discussed more next time)

min vs. argmin

 $v^* = min_x f(x)$ $x^* = argmin_x f(x)$

1. Q: What is v*?

2. Q: What is x*?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollew.com/app

55

Notation Trick: Folding in the Intercept Term

$$\mathbf{x}' = [1, x_1, x_2, \dots, x_M]^T$$
$$\boldsymbol{\theta} = [b, w_1, \dots, w_M]^T$$

Notation Trick: fold the bias b and the weights w into a single vector $\boldsymbol{\theta}$ by prepending a constant to x and increasing dimensionality by one!

 $h_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$ $h_{\boldsymbol{\theta}}(\mathbf{x}') = \boldsymbol{\theta}^T \mathbf{x}'$

This convenience trick allows us to more compactly talk about linear functions as a simple dot product (without explicitly writing out the intercept term every time).

Linear Regression as Function $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$ Approximation

1. Assume \mathcal{D} generated as:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$
$$y^{(i)} = h^*(\mathbf{x}^{(i)})$$

2. Choose hypothesis space, \mathcal{H} : all linear functions in *M*-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

3. Choose an objective function: mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- 4. Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent
 - ...

$$\hat{\boldsymbol{ heta}} = \operatorname*{argmin}_{\boldsymbol{ heta}} J(\boldsymbol{ heta})$$

5. Test time: given a new x, make prediction \hat{y}

$$\hat{y} = h_{\hat{\theta}}(\mathbf{x}) = \hat{\boldsymbol{\theta}}^T \mathbf{x}$$

Contour Plots

Contour Plots

- 1. Each level curve labeled with value
- 2. Value label indicates the value of the function for all points lying on that level curve
- 3. Just like a topographical map, but for a function

 $J(\mathbf{\theta}) = J(\theta_1, \theta_2) = (10(\theta_1 - 0.5))^2 + (6(\theta_1 - 0.4))^2$ 1.0 ,000. 130.007 10.000 0.8 -15.000 . 15.000 20.000 0.6 20.000 -**D**DD θ_2 0.4 · 5.000 0.2 0.0 -0.6 0.2 0.4 0.8 0.0 1.0

 θ_1

Optimization by Random Guessing

Optimization Method #0: Random Guessing

- 1. Pick a random θ
- 2. Evaluate $J(\theta)$
- 3. Repeat steps 1 and 2 many times
- 4. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

 $J(\boldsymbol{\theta}) = J(\theta_1, \theta_2) = (10(\theta_1 - 0.5))^2 + (6(\theta_1 - 0.4))^2$

61

Optimization by Random Guessing

Optimization Method #0: Random Guessing

- 1. Pick a random θ
- 2. Evaluate $J(\theta)$
- 3. Repeat steps 1 and 2 many times
- Return θ that gives smallest J(θ)

For Linear Regression:

 objective function is Mean Squared Error (MSE)

• MSE = J(w, b)
= J(
$$\theta_1$$
, θ_2) = $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$

- contour plot: each line labeled with MSE – lower means a better fit
- minimum corresponds to parameters (w,b) = (θ₁, θ₂) that best fit some training dataset

Linear Regression by Rand. Guessing

Optimization Method #0: Random Guessing

- 1. Pick a random θ
- 2. Evaluate $J(\theta)$
- 3. Repeat steps 1 and 2 many times
- 4. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

For Linear Regression:

- target function h*(x) is unknown
- only have access to h*(x) through training examples (x⁽ⁱ⁾,y⁽ⁱ⁾)
- want h(x; θ^(t)) that best approximates h*(x)
- enable generalization w/inductive bias that restricts hypothesis class to linear functions

Linear Regression by Rand. Guessing $J(\theta) = J(\theta_1, \theta_2) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$ **Optimization Method #0:** 1.0 **Random Guessing** *000.02 ,30,000 10.000 Pick a random $\boldsymbol{\theta}$ 1. 0.8 Evaluate $J(\boldsymbol{\theta})$ 2. Repeat steps 1 and 2 many 3. 15.000 15.000 0.6 - 000 20.000 times 20.000 Return $\boldsymbol{\theta}$ that gives 4. θ_2 smallest $J(\theta)$ 0.4 $y = h^*(x)$ 5.000 h(x; **θ**⁽⁴⁾) (unknown) 0.2 h(x; **θ**⁽²⁾) # tourists (thousands) h(x; **θ**⁽³⁾) 0.0 0.2 0.4 0.6 0.8 0.0 1.0 θ_1 $J(\theta_1, \theta_2)$ θ θ, t 0.2 0.2 1 10.4 h(x; **θ**⁽¹⁾) 2 0.3 0.7 7.2 3 0.6 0.4 1.0 16.2 0.7 0.9 4 time

64

OPTIMIZATION METHOD #1: GRADIENT DESCENT

Optimization for ML

Chalkboard

- Unconstrained optimization
- Derivatives
- Gradient

Topographical Maps

Franconia Ridge by Jeff P / <u>CC BY</u>

Topographical Maps

These are the **gradients** that Gradient **Ascent** would follow.

These are the **negative** gradients that Gradient **Descent** would follow.

(Negative) Gradient Paths

Shown are the **paths** that Gradient Descent would follow if it were making **infinitesimally small steps**.

Gradient Descent

Chalkboard

- Gradient Descent Algorithm
- Details: starting point, stopping criterion, line search

Gradient Descent

Algorithm 1 Gradient Descent

1: procedure
$$GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$$

2:
$$\boldsymbol{ heta} \leftarrow \boldsymbol{ heta}^{(0)}$$

3: while not converged do 4: $\theta \leftarrow \theta - \gamma \nabla_{\theta} J(\theta)$

5: return θ

 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & &$

In order to apply GD to Linear Regression all we need is the **gradient** of the objective function (i.e. vector of partial derivatives).

$$\begin{bmatrix} \frac{d}{d\theta_1} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J(\boldsymbol{\theta}) \end{bmatrix}$$

 $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) =$

Gradient Descent

Algorithm 1 Gradient Descent

1: procedure
$$GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$$

2:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$$

3: while not converged do 4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\gamma} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

5: return θ

There are many possible ways to detect **convergence**. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

 $||\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})||_2 \leq \epsilon$

Alternatively we could check that the reduction in the objective function from one iteration to the next is small.

GRADIENT DESCENT FOR LINEAR REGRESSION

Linear Regression as Function $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$ Approximation

1. Assume \mathcal{D} generated as:

$$\begin{aligned} \mathbf{x}^{(i)} &\sim p^*(\cdot) \\ y^{(i)} &= h^*(\mathbf{x}^{(i)}) \end{aligned}$$

2. Choose hypothesis space, \mathcal{H} : all linear functions in *M*-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

3. Choose an objective function: mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- 4. Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent
 - ...

$$\hat{\boldsymbol{ heta}} = \operatorname*{argmin}_{\boldsymbol{ heta}} J(\boldsymbol{ heta})$$

5. Test time: given a new x, make prediction \hat{y}

$$\hat{y} = h_{\hat{\theta}}(\mathbf{x}) = \hat{\boldsymbol{\theta}}^T \mathbf{x}$$

Linear Regression by Gradient Desc. $J(\theta) = J(\theta_1, \theta_2) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$

Optimization Method #1: Gradient Descent

- 1. Pick a random θ
- Repeat:
 a. Evaluate gradient ∇J(θ)
 b. Step opposite gradient
- Return θ that gives smallest J(θ)

Linear Regression by Gradient Desc.

Optimization Method #1: Gradient Descent

1. Pick a random θ

2.

- Repeat: a. Evaluate gradient ∇J(**θ**) b. Step opposite gradient
- Return θ that gives smallest J(θ)

t	θ	θ2	$J(\theta_1, \theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

Linear Regression by Gradient Desc. $J(\theta) = J(\theta_1, \theta_2) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$

Optimization Method #1: Gradient Descent

Pick a random $\boldsymbol{\theta}$ 1.

2.

>

Repeat: a. Evaluate gradient $\nabla J(\boldsymbol{\theta})$ b. Step opposite gradient

Х

Return $\boldsymbol{\theta}$ that gives 3. smallest $J(\theta)$

3

4

0.51

0.59

0.30

0.43

1.5

0.2

Linear Regression by Gradient Desc. mean squared error, $J(\theta_1, \theta_2)$ iteration, t $y = h^*(x)$ (unknown) h(x; **θ**⁽⁴⁾) h(x; **θ**⁽³⁾) > $J(\theta_1, \theta_2)$ θ_1 θ, t 0.02 25.2 0.01 h(x; **θ**⁽²⁾) 1 8.7 0.12 2 0.30 h(x; **θ**⁽¹⁾) 3 0.51 0.30 1.5 0.59 0.2 4 0.43

83

Optimization for Linear Regression

Chalkboard

- Computing the gradient for Linear Regression
- Gradient Descent for Linear Regression

GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function

