
Linear Regression

1

10-301/601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 7

Sep. 20, 2021

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 2: Decision Trees
– Out: Wed, Sep. 8
– Due: Mon, Sep. 20 at 11:59pm

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Sep. 20
– Due: Sun, Sep. 26 at 11:59pm
– Only 2 grace days allowed on HW3!

• Today’s In-Class Poll
– http://poll.mlcourse.org

5

ANALYSIS OF PERCEPTRON

6

Geometric Margin
Definition: The margin of example ! w.r.t. a linear separator " is
the distance from ! to the plane " ⋅ ! = 0 (or the negative if on
wrong side)

!&

Margin of negative example !&

Slide from Nina Balcan

!'

Margin of positive example !'

w

Geometric Margin

Definition: The margin !" of a set of examples # w.r.t. a linear
separator $ is the smallest margin over points % ∈ #.

+

+ + +

+

-

- -

-
- +

--

-
-

+

Slide from Nina Balcan

Definition: The margin of example % w.r.t. a linear separator $ is
the distance from % to the plane $ ⋅ % = 0 (or the negative if on
wrong side)

!"
!"

w

+

+ +
+
+-

-

-

!
!

+

--

-
-

w

Definition: The margin ! of a set of examples " is the maximum !#
over all linear separators $.

Geometric Margin

Slide from Nina Balcan

Definition: The margin !# of a set of examples " w.r.t. a linear
separator $ is the smallest margin over points % ∈ ".

Definition: The margin of example % w.r.t. a linear separator $ is
the distance from % to the plane $ ⋅ % = 0 (or the negative if on
wrong side)

- -

Linear Separability

10

Def: For a binary classification problem, a set of examples !
is linearly separable if there exists a linear decision boundary
that can separate the points

+
+-

Case 1:

+ +
-

Case 2:

+
++

Case 3:

+
+-
-

Case 4:

Perceptron Mistake Bound

11
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin ! and all points lie inside
a ball of radius ", then the online Perceptron algorithm
makes ≤ ⁄" ! % mistakes

++

+
+
+
+

+

-

- -

-

-

g
g

--
-
-

+

R

��

Perceptron Mistake Bound

12
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin ! and all points lie inside
a ball of radius ", then the online Perceptron algorithm
makes ≤ ⁄" ! % mistakes

++

+
+
+
+

+

-

- -

-

-

g
g

--
-
-

+

R

��Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

PROVING THE BOUND
(COVERED IN RECITATION)

13

Analysis: Perceptron

14
Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(t(i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · t(i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Analysis: Perceptron

15
Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(t(i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · t(i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Common
Misunderstanding:

The radius is
centered at the

origin, not at the
center of the

points.

Analysis: Perceptron

16

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Analysis: Perceptron

19

Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak � ||�(k+1)|| � B

�
k

�(k+1) · �� = (�(k) + y(i)t(i))��

by Perceptron algorithm update

= �(k) · �� + y(i)(�� · t(i))

� �(k) · �� + �

by assumption

� �(k+1) · �� � k�

by induction on k since �(1) = 0

� ||�(k+1)|| � k�

since ||r|| � ||m|| � r · m and ||��|| = 1

Cauchy-Schwartz inequality

Analysis: Perceptron

20

Proof of Perceptron Mistake Bound:
Part 2: for some B, Ak � ||�(k+1)|| � B

�
k

||�(k+1)||2 = ||�(k) + y(i)t(i)||2

by Perceptron algorithm update

= ||�(k)||2 + (y(i))2||t(i)||2 + 2y(i)(�(k) · t(i))

� ||�(k)||2 + (y(i))2||t(i)||2

since kth mistake � y(i)(�(k) · t(i)) � 0

= ||�(k)||2 + R2

since (y(i))2||t(i)||2 = ||t(i)||2 = R2 by assumption and (y(i))2 = 1

� ||�(k+1)||2 � kR2

by induction on k since (�(1))2 = 0

� ||�(k+1)|| �
�

kR

Analysis: Perceptron

21

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

k� � ||�(k+1)|| �
�

kR

�k � (R/�)2

The total number of mistakes
must be less than this

Analysis: Perceptron
What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)
2. However, Freund & Schapire (1999) show that by projecting the

points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

22

LARGE MARGIN CLASSIFICATION USING THE PERCEPTRON ALGORITHM 281

Similarly,

‖vk+1‖2 = ‖vk‖2 + 2yi (vk · xi) + ‖xi‖2 ≤ ‖vk‖2 + R2.

Therefore, ‖vk+1‖2 ≤ kR2.
Combining, gives

√
kR ≥ ‖vk+1‖ ≥ vk+1 · u ≥ kγ

which implies k ≤ (R/γ)2 proving the theorem. !

3.2. Analysis for the inseparable case

If the data are not linearly separable then the Theorem 1 cannot be used directly. However,
we now give a generalized version of the theorem which allows for some mistakes in the
training set. As far as we know, this theorem is new, although the proof technique is very
similar to that of Klasner and Simon (1995, Theorem 2.2). See also the recent work of
Shawe-Taylor and Cristianini (1998) who used this technique to derive generalization error
bounds for any large margin classifier.

Theorem2. Let 〈(x1, y1), . . . , (xm, ym)〉bea sequenceof labeled exampleswith‖xi‖ ≤ R.
Let u be any vector with ‖u‖ = 1 and let γ > 0. Define the deviation of each example as

di = max{0, γ − yi (u · xi)},

and define D =
√∑m

i=1 d
2
i . Then the number of mistakes of the online perceptron algorithm

on this sequence is bounded by

(
R + D

γ

)2
.

Proof: The case D = 0 follows from Theorem 1, so we can assume that D > 0.
The proof is based on a reduction of the inseparable case to a separable case in a higher

dimensional space. As we will see, the reduction does not change the algorithm.
We extend the instance space Rn to Rn+m by adding m new dimensions, one for each

example. Let x′
i ∈ Rn+m denote the extension of the instance xi .We set the first n coordinates

of x′
i equal to xi . We set the (n + i)’th coordinate to " where " is a positive real constant

whose value will be specified later. The rest of the coordinates of x′
i are set to zero.

Next we extend the comparison vector u ∈ Rn to u′ ∈ Rn+m . We use the constant Z ,
whichwe calculate shortly, to ensure that the length ofu′ is one.We set the first n coordinates
of u′ equal to u/Z . We set the (n+ i)’th coordinate to (yidi)/(Z"). It is easy to check that
the appropriate normalization is Z =

√
1+ D2/"2.

Perceptron Exercises

23

Question:
Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron
algorithm does not suffer from
overfitting because it does not
have any hyperparameters that
could be over-tuned on the
training data.

A. True
B. False
C. True and False

25

Summary: Perceptron
• Perceptron is a linear classifier
• Simple learning algorithm: when a mistake is

made, add / subtract the features
• Perceptron will converge if the data are linearly

separable, it will not converge if the data are
linearly inseparable

• For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

• Extensions support nonlinear separators and
structured prediction

26

Perceptron Learning Objectives
You should be able to…
• Explain the difference between online learning and

batch learning
• Implement the perceptron algorithm for binary

classification [CIML]
• Determine whether the perceptron algorithm will

converge based on properties of the dataset, and
the limitations of the convergence guarantees

• Describe the inductive bias of perceptron and the
limitations of linear models

• Draw the decision boundary of a linear model
• Identify whether a dataset is linearly separable or not
• Defend the use of a bias term in perceptron

27

REGRESSION

32

Regression
Goal:
– Given a training dataset of

pairs (x,y) where
• x is a vector
• y is a scalar

– Learn a function (aka. curve
or line) y’ = h(x) that best fits
the training data

Example Applications:
– Stock price prediction
– Forecasting epidemics
– Speech synthesis
– Generation of images (e.g.

Deep Dream)

33

Week 49 (December 5) forecast, using wILI data through week 47. During the week of
the first forecast, all of the available wILI values are below the CDC onset threshold, as shown
in Fig 2A. Predictions for the onset are concentrated near the actual value, and the error in the
point prediction is fairly small (1.58 weeks). Much of this error can be attributed to the sudden
jump in wILI at the onset, which corresponds to Thanksgiving week. The number of patients
seen per reporting provider in ILINet drops noticeably every season on Thanksgiving week and
around winter holidays; at these times, there is a systematic bias towards higher wILI values.

In the 2013–2014 season, the number of total visits dropped from 869362 on the week
before Thanksgiving to 661282 on Thanksgiving week, and from 808701 on week 51 to 607611
on week 52. The number of ILI visits also dropped slightly on Thanksgiving week (from 14995
to 13909, not as significant as the drop in total visits), then increased continuously until it

Fig 2. 2013–2014 national forecast, retrospectively, using the final revisions of wILI values, using
revised wILI data through epidemiological weeks (A) 47, (B) 51, (C) 1, and (D) 7.

doi:10.1371/journal.pcbi.1004382.g002

Flexible Modeling of Epidemics with an Empirical Bayes Framework

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004382 August 28, 2015 8 / 18

Regression
Q: What is the function that
best fits these points?

35

x

y Example: Dataset with only
one feature x and one scalar
output y

K-NEAREST NEIGHBOR
REGRESSION

37

k-NN Regression

k=2 Nearest Neighbors Distance
Weighted Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)

in training data and return
the weighted average of
their y values

k=1 Nearest Neighbor
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

38

x

y Example: Dataset with only
one feature x and one scalar
output y

DECISION TREE REGRESSION

40

Decision Tree Regression

41

B

A A

0 1

0 1 0 1

+ -

+

C C

0 1 0 1

+ - +

B

A A

0 1

0 1 0 1

75 21

56

C C

0 1 0 1

32 10 60

Decision Tree for Classification Decision Tree for Regression

Decision Tree Regression

42

Dataset for Regression Decision Tree for Regression

Y A B C

4 1 0 0

1 1 0 1

3 1 0 o

7 0 0 1

5 1 1 0

6 0 1 1

8 1 1 0

9 1 1 1

B

A A

0 1

0 1 0 1

C

0 1

{4,1,3,7} {5,6,8,9}

{5,8,9}

{4,1,3,7,5,6,8,9}

{7} {4,1,3} {6}

{5,8} {9}

During learning, choose the attribute that
minimizes an appropriate splitting
criterion (e.g. mean squared error, mean
absolute error)

7 2.7 6

6.5 9

LINEAR FUNCTIONS, RESIDUALS,
AND MEAN SQUARED ERROR

44

Linear Functions

Def: Regression is predicting real-valued outputs

! = # $, & $
$'(
)

with # $ ∈ ℝ,, & $ ∈ ℝ

46

Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

& = ./ + 1&

/

Linear Functions

Def: Regression is predicting real-valued outputs

! = # $, & $
$'(
)

with # $ ∈ ℝ,, & $ ∈ ℝ

47

Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

&

.(

./

& = 0(.(+ 0/./ + 2

• A general linear function is
& = 34# + 2

• A general linear decision boundary is
& = sign 34# + 2

Regression Problems

Chalkboard
– Residuals
– Mean squared error

48

OPTIMIZATION FOR ML
The Big Picture

49

Optimization for ML

Not quite the same setting as other fields…
– Function we are optimizing might not be the

true goal
(e.g. likelihood vs generalization error)

– Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might
not help)

– Stopping early can help generalization error
(i.e. “early stopping” is a technique for
regularization – discussed more next time)

50

min vs. argmin

51

y = f(x) =x2 + 1
1

2

3 v* = minx f(x)

x* = argminx f(x)

1. Q: What is v*?

2. Q: What is x*?

52

53

Notation Trick:
Folding in the Intercept Term

55

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one!

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without

explicitly writing out the intercept term every time).

Linear Regression as Function
Approximation

56

Contour Plots

Contour Plots
1. Each level curve labeled

with value

2. Value label indicates the
value of the function for
all points lying on that
level curve

3. Just like a topographical
map, but for a function

60

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

Optimization by Random Guessing
Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many

times
4. Return θ that gives

smallest J(θ)

61

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4

Optimization by Random Guessing
Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many

times
4. Return θ that gives

smallest J(θ)

62

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4

For Linear Regression:
• objective function is Mean

Squared Error (MSE)
• MSE = J(w, b)

= J(θ1, θ2) =
• contour plot: each line labeled with

MSE – lower means a better fit
• minimum corresponds to

parameters (w,b) = (θ1, θ2) that
best fit some training dataset

Linear Regression by Rand. Guessing
Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many

times
4. Return θ that gives

smallest J(θ)

63
time

to

ur
is

ts
 (

th
o

us
an

d
s)

y = h*(x)
(unknown)

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

For Linear Regression:
• target function h*(x) is unknown
• only have access to h*(x) through

training examples (x(i),y(i))

• want h(x; θ(t)) that best
approximates h*(x)

• enable generalization w/inductive
bias that restricts hypothesis class
to linear functions

Linear Regression by Rand. Guessing

Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)

3. Repeat steps 1 and 2 many

times

4. Return θ that gives

smallest J(θ)

64

θ1

θ2

θ1 θ2 J(θ1, θ2)

0.2 0.2 10.4

0.3 0.7 7.2

0.6 0.4 1.0

0.9 0.7 16.2time

#
 t

o
u

ri
s
ts

 (
th

o
u

s
a

n
d

s
)

y = h*(x)

(unknown)

t

1

2

3

4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

OPTIMIZATION METHOD #1:
GRADIENT DESCENT

65

Optimization for ML

Chalkboard
– Unconstrained optimization
– Derivatives
– Gradient

66

67

Topographical Maps

Franconia Ridge by Jeff P / CC BY

https://flic.kr/p/azSZZG
https://creativecommons.org/licenses/by/2.0/

69

Topographical Maps

Franconia Ridge Trail by Roy Luck /
CC BY

https://flic.kr/p/28UcuN2
https://creativecommons.org/licenses/by/2.0/

Gradients

70

Gradients

71
These are the gradients that

Gradient Ascent would follow.

(Negative) Gradients

72
These are the negative gradients that

Gradient Descent would follow.

(Negative) Gradient Paths

73

Shown are the paths that Gradient Descent
would follow if it were making infinitesimally

small steps.

Gradient Descent

Chalkboard
– Gradient Descent Algorithm
– Details: starting point, stopping criterion, line

search

75

Gradient Descent

76

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

—

M

Gradient Descent

77

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.

—

GRADIENT DESCENT FOR
LINEAR REGRESSION

78

Linear Regression as Function
Approximation

79

Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)

b. Step opposite gradient

3. Return θ that gives

smallest J(θ)

80

θ
1

θ
2

θ
1

θ
2

J(θ
1
, θ

2
)

0.01 0.02 25.2

0.30 0.12 8.7

0.51 0.30 1.5

0.59 0.43 0.2

t

1

2

3

4

J(θ) = J(θ
1
, θ

2
) = (10(θ

1
– 0.5))

2
+ (6(θ

1
– 0.4))

2

Linear Regression by Gradient Desc.
Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives
smallest J(θ)

81

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

Linear Regression by Gradient Desc.
Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives
smallest J(θ)

82

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

Linear Regression by Gradient Desc.

83

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

iteration, t

m
ea

n
 s

q
ua

re
d

 e
rr

o
r,

J(

θ
1,

θ
2)

Linear Regression by Gradient Desc.

84

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

iteration, t

m
ea

n
 s

q
ua

re
d

 e
rr

o
r,

J(

θ
1,

θ
2)

Optimization for Linear Regression

Chalkboard
– Computing the gradient for Linear Regression
– Gradient Descent for Linear Regression

85

GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

87

Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓ ✓(0) . Initialize parameters
3: while not converged do
4: ;

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓ ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg=">AAAFIXicdVNLbxMxEN6G8FqehSOXEU2lVuojKQcQElJFy0uqUClNi5QNleOd3VjY3pXtbRtW+2v4C9z4BdwQN8SJK/wJxmlSmrb44vG8vpn5xr1cCuuazR9TtQv1i5cuX7kaXrt+4+at29N3dmxWGI5tnsnMvOsxi1JobDvhJL7LDTLVk7jb+7Dm7bv7aKzI9LYb5NhVLNUiEZw5Uu1N17bDqIep0CWTaWaE66uq87IbAkSc5d6nfLEOSWZggxCYgS1MDVqfr/JOp2IFrzqtLszCdh9BF6qHBhxKaeGgjwbBkdqXOrIJnYLtZ4WMwTpmHGWknJsm4xgXBgl6Y6sqG9E6byxAI6Jox/bfl3PN+apRwdCb/N865vDYDFGKzsKkM0RrmVKoXflKCyeYFB8RcmaYQkfTqcapdvtCYqkzBzzTNLcU47HtFFh6DGQLtVeKJ63q/WuYG8NuQ3TowcV8BYswOJLm/ylPVER3XlDO1LBYkOI/gOd1R6mjlCnF6No/kbKdxz7onAaf6XjY4+TsIoeHrpeUBl1hdHWM1gjHQceceNJRxxOUh5OaKty7PdNcag4PnBVaI2EmGJ3Nvempz1Gc8cJXzyWzttNq5q5b0k4ILpEQCos54x9Yih0SNfVlu+Vw/yuYJU08XNIk05460p6MKJmydqB65KmY69vTNq88z9YpXPKoWwrt+dH8CCgpJLgM/GeCWBjkTg5IYJx6Fxx4n4bO/czDMBpGlsttS89lReNREgfLtF5Iz8EiTX0xxoQV0tklelQU4pk4ELHrt5pcheEszD6nvtaYjikveCsIDRvE2uErByyO6U8J6ysa/ntGH3/BfzMNVCscovSej8PIoMYDTvtBmcooYUrIwQi7KiObjOWJ2fhx2hw9w5bWjmnrNeWomiHPrdOsnhV2VpZaD5ZW3qzMrD4dMX4luBfcD+aCVvAwWA1eBptBO+C1L7Vftd+1P/VP9a/1b/XvR661qVHM3WDi1H/+BdBErlY=</latexit>

