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Reminders

 Homework 2: Decision Trees
— Out: Wed, Sep. 8
— Due: Mon, Sep. 20 at 11:59pm

* Homework 3: KNN, Perceptron, Lin.Reg.

— Out: Mon, Sep. 20
— Due: Sun, Sep. 26 at 11:59pm

* Today’s In-Class Poll
— http://poll.mlcourse.org




ANALYSIS OF PERCEPTRON



Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on
wrong side)

Margin of positive example x4

Margin of negative example x,

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on
wrong side)

Definition: The margin y,, of a set of examples § w.r.t. alinear
separator w is the smallest margin over points x € S.
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Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on
wrong side)

Definition: The margin y,, of a set of examples § w.r.t. a linear

separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,
over all linear separators w.

Slide from Nina Balcan




Linear Separability

Def: For a binary classification problem, a set of examples S
is linearly separable if there exists a linear decision boundary
that can separate the points



Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R, then the online Perceptron algorithm
makes < (R/y)? mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Slide adapted from Nina Balcan



Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R, then the online Perceptron algorithm
makes < (R/y)? mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)
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Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.
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PROVING THE BOUND
(COVERED IN RECITATION)



Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y(D)} N,

Suppose:
1. Finitesize inputs: ||z(V|| < R
2. Linearly separable data: 40" s.t. ||@7|| = 1 and

Yy (07 - x) > 7, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)?




Common

AnalysiS: Percept Misunderstanding:

. The radius is
Perceptron Mistake Boun} . ontared at the

Theorem 0.1 (Block (1962), Novikoff (1 origin, not at the
Given dataset: D = {(x\9) y()} ¥ center of the

1. Finite size inputs: ||zV|| < R
2. Linearly separable data: 40" s.t. ||@7|| = 1 and

Yy (0" - x)) >, Vi
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)?




Analysis: Perceptron
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Analysis: Perceptron




Analysis: Perceptron

What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)

2. However, Freund & Schapire ﬁ999) show that by projecting the
points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

Theorem?2. Let((X1, y1), ..., Xm, Ym)) beasequence of labeled examples with ||X;|| < R.
Let u be any vector with ||u|| = 1 and let y > 0. Define the deviation of each example as

d; = max{0, y — y;(u-x;)},

and define D = /Y ., d?. Then the number of mistakes of the online perceptron algorithm
on this sequence is bounded by

20y




Perceptron Exercises

Question:

Unlike Decision Trees and K-
Nearest Neighbors, the Perceptron
algorithm does not suffer from
overfitting because it does not
have any hyperparameters that
could be over-tuned on the
training data.

A. True
B. False
C. True and False



.. € When poll is active, respond at pollev.com/10301601polls J

Question 1

.. STart the presentation 10 see bve content. For screen share software, shave the enter soreen. Get help at pollev.comapp -.



Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake is
made, add [ subtract the features

Perceptron will converge if the data are linearly
separable, it will not converge if the data are

linearly inseparable

For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

Extensions support nonlinear separators and
structured prediction



Perceptron Learning Objectives

You should be able to...

Explain the difference between online learning and
batch learning

Implement the perceptron algorithm for binary
classification [CIML]

Determine whether the perceptron algorithm will
converge based on properties of the dataset, and
the limitations of the convergence guarantees

Describe the inductive bias of perceptron and the
imitations of linear models

Draw the decision boundary of a linear model
dentify whether a dataset is linearly separable or not
Defend the use of a bias term in perceptron




REGRESSION



Regression

National wiLl Forecast

Goal:

— Given a training dataset of
pairs (x,y) where

* Xis avector \/

e yisascalar BN S W R

21 29 37 45 1 9 17

R Epidemiological Week
— Learn a function (aka. curve

or line) y’ = h(x) that best fits
the training data me
Example Applications:

— Stock price prediction
— Forecasting epidemics
— Speech synthesis

— Generation of images (e.g.
Deep Dream)

Weighted %ILI
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Regression

Example: Dataset with only
one feature x and one scalar
outputy

Q: What is the function that
best fits these points?



K-NEAREST NEIGHBOR
REGRESSION



K-NN Regression

Example: Dataset with only

one feature x and one scalar k=1 Nearest Neighbor
output y Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
P in training data and return
itsy

® k=2 Nearest Neighbors Distance
® Weighted Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(" and x("2)
in training data and return

the weighted average of
their y values



DECISION TREE REGRESSION



Decision Tree Regression

Decision Tree for Classification

B
/\
A A
/\1 C/\
+ C C
/N 7\
+ + +

Decision Tree for Regression

B
/\
A A
N\
/5 21 C




Decision Tree Regression

Dataset for Regression Decision Tree for Regression
{4)17377)576)8)9}
4 1 0 0 B
0 1
1 1 0 1 {4,1,3,7}/\;{5,6,8,9}
3 1 0 o A A
7 ° 0 1 7} {41,3} {6} {5,8,9]
5 1 1 0 / 2.7 6 C
o 1
6 ©o 1 o VANE
8 1 1 0 65 19
9 1 1 1 During learning, choose the attribute that

minimizes an appropriate splitting
criterion (e.g. mean squared error, mean
absolute error)



LINEAR FUNCTIONS, RESIDUALS,
AND MEAN SQUARED ERROR



Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x®,yO)"  withx® € RM,y® € R

Y1 y=wx+b

/

>
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Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x®,yO)"  withx® € RM,y® € R

A
y Y =wiXx; +WyXx, + b

* Agenerallinear functionis
y=wix+b

* A generallinear decision boundary is
y = sign(w'x + b)

47



Regression Problems

Chalkboard

— Residuals
— Mean squared error



OPTIMIZATION FOR ML



Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the
true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might
not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for
regularization — discussed more next time)

50



min vs. argmin

v¥* = min, f(x)

x* = argmin, f(x)

51



Question 2

Join by Web

€) Goto PollEv.com

€) Enter10301601POLLS

a Respond to activity

@ Instructions not active. Log in to activate

SEart the pwesentation 10 see bve content. For screen share software, shave the entir soreen. Get help at pollev.comapp

.



Question 3

Join by Web

€) Goto PollEv.com

€) Enter10301601POLLS

a Respond to activity

@ Instructions not active. Log in to activate

SEart the pwesentation 10 see bve content. For screen share software, shave the entir soreen. Get help at pollev.comapp

.



Notation Trick:
Folding in the Intercept Term

xl
e 0
hw.p(X) = wlix+b

hg (x’) = HTX'

| T
1,z1,22,...,2Mm]

: T
b, wy, ..., W]

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without
explicitly writing out the intercept term every time).



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 87x,0 ¢ RM}




Contour Plots

Contour Plots

1.

Each level curve labeled
with value

Value label indicates the
value of the function for
all points lying on that
level curve

Just like a topographical
map, but for a function
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Optimization by Random Guessing

J(®)=J(B,6,)-= 0,-0.5))*+ (6(6,-0.4))
Optimization Method #o: (6)=1(8,,8,)=(10(6; - 0.5))* + (6(8, - 0.4))

Random Guessing 1'0 0.00Q
1.  Pickarandom ©
2. Evaluate J(0) .
3. Repeat steps1and 2 many
times 0.6 : :

4. Return O that gives 0, |¢

O

n
0i6

00p

000'0%
c?7

000'St
anl

UUU
000
15

20

smallest J(0)

0.4

)
S
S

0.2 1

0.0 Y T f
0.0 0.2 0.4 0.8 1.0
0,

t| 6 [ 6, | J6,6,)
1] 02 | 0.2 10.4
> | 0.3 | 0.7 7.2
3| 0.6 | 0.4 1.0
4| 0.9 | 0.7 16.2 o




Optimization by Random Guessing

Optimization Method #o:
Random Guessing

1. Pick arandom ©
2. Evaluate J(0)

3. Repeat steps1and 2 many
times

4. Return O that gives e,
smallest J(0)

For Linear Regression:

* objective function is Mean
Squared Error (MSE)

* MSE =J(w,b) 2

=J(6,,6,) = NZ_: (y(i) _eTx(i)))

* contour plot: each line [abeled with
MSE - lower means a better fit

* minimum corresponds to
parameters (w,b) = (8,, 6,) that
best fit some training dataset
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0.4
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0.0

J(8)=J(8,8,) = %Z (v - eTx(i)))z

/ 0000 \
S \ 5
O
S
0.0 0i2 0i4 0i6 0i8
0,
t | 6, 6, | J6,86,)
1 0.2 0.2 10.4
2 | 0.3 | 0.7 7.2
3| 0.6 | 0.4 1.0
4 | 0.9 | 0.7 16.2




# tourists (thousands)

\L

Linear Regression by Rand. Guessing

Optimization Method #o:
Random Guessing

1. Pick arandom ©
2. Evaluate J(0)

3. Repeat steps1and 2 many
times

4. Return O that gives

smallest J(O
(6) For Linear Regression:

y = h*(X) .t (f i . . .
(unknown) arget function h*(x) is unknown
/ « only have access to h*(x) through

7 training examples (x®,y(®)
- « want h(x; 8®) that best
e approximates h*(x)

>

@ / * enable generalization w/inductive
/ ~- @ bias that restricts hypothesis class
to linear functions

time



# tourists (thousands)

N

Linear Regression by Rand. Guessing

J(0)=J(0,0.)= =3 (y® —7x®))’
Optimization Method #o: (8) =100, 8,) = y ;(y )

. 1.0
Random Guessing 0.000
1.  Pickarandom ©
2. Evaluate J(8) o8
3. Repeat steps1and 2 many \
times 061 & S s N
4. Return 0 that gives 0, s 775
smallest J(0) 04 ®
y = h*(x) S
A h(x; 6¢) (unknown) | o
0.0 Y T T f
0.0 0.2 0.4 0.6 0.8 1.0
0,
t| 6, | 6, | J(6,6,)
/ 1] 0.2 | 0.2 10.4
h(x; 8) 2 | 0.3 | 0.7 7.2
o 3| 06 | 0.4 1.0
time > 41 0.9 | 07 16.2




OPTIMIZATION METHOD #1:
GRADIENT DESCENT



Optimization for ML
Chalkboard

— Unconstrained optimization
— Derivatives
— Gradient



by Jeff P/



https://flic.kr/p/azSZZG
https://creativecommons.org/licenses/by/2.0/
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1.0

Gradients
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These are the gradients that

Gradient Ascent would follow.
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(Negative) Gradients
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These are the negative gradients that
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Gradient Descent would follow.
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Shown are the paths that Gradient Descent
would follow if it were making infinitesimally
small steps.
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Gradient Descent

Chalkboard
— Gradient Descent Algorithm
— Details: starting point, stopping criterion, line
search



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 6'%)

1:

2 0« 0

% while not converged do
4 6 <6 'YVQJ(H)

5 return 6

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).




Gradient Descent

Algorithm 1 Gradient Descent

procedure GD (D, 69)
0 — 6

1:

2

% while not converged do
4 6 <6 'YVQJ(H)

5)

return 6

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)]]2 < ¢

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.



GRADIENT DESCENT FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 87x,0 ¢ RM}




Linear Regression by Gradient Desc.

J(8)=1J(8,,8,) = =3 (v —07xM))’
Optimization Method #1: (8)=(8,, 6.) N;(y )

Gradient Descent H0
1.  Pickarandom ©
2. Repeat: o8
a. Evaluate gradient VJ(0)
b. Step opposite gradient 0.6
3. Return © that gives 0,

smallest J(0)

0.4

0.2 1

t | 6, 0, J(6,6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1. Pick a random 6

2. Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

3. Return © that gives
smallest J(0)

y = h*(x)
A (unljnown)
//
d
2
”"//
&
/
-, ! t | 6, 6, | J6,6,)
’/ “*-g 1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
N > 4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1. Pick a random 6

2. Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

J(0)=1(6,6,)=

i

0.6 1

1.0

0.8

3. Return © that gives 0,

smallest J(0)

y = h*(x)

(unknown) |

4 4
/

h(x; 64)

h(x; 63))

¢
¥ — h(x; 60))
— h(x; 8)

>

0.4

0.0

0.00q

\

B
s
O
0.0 Of2 0f4 Of6 0f8
0,

t| 6, | 6, | J(6,6,)

1 | 0.01 | 0.02 25.2

2 | 0.30 | 0.12 8.7

3 | 0.51 | 0.30 1.5

4 | 0.59 | 0.43 0.2
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y = h*(x)
A (unljnown)
,
h(x; 64)
- 9B)
. h(x; 8))
’
¥ — h(x; 60))
4
— h(x; 1)
>

Linear Regression by Gradient Desc.

t | 6, 0, J(6,6,)
1 | 0.01 | 0.02 25.2

2 | 0.30 | 0.12 8.7

3 | 0.51 | 0.30 1.5

4 | 0.59 | 0.43 0.2
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Linear Regression by Gradient Desc.

J(0)=1(6,6,)=

~ A
| -
O
5 A
IS
Yo
8 S
3= A
c
@ A
= A 0,
. 0 >
Iiteration, t
y = h*(x)
A (unljnown)
’
h(x; 64)
. h(x; 63))

/
,/ — h(x; 6?)
— h(x; 6%)
>

1.0
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0.0

1
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i=

1 @) _ gT ()
5 (v0-07x0)

$
O
0.0 0f2 0f4 Of6 0f8 1.0
O,
t| 6, | 6, | J(6,6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2
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Optimization for Linear Regression

Chalkboard

— Computing the gradient for Linear Regression
— Gradient Descent for Linear Regression



GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression
procedure GDLR(D, 9(0))

1:

2 0 «— 60 > Initialize parameters
3 while not converged do

4 g — S (7% — y)x() > Compute gradient
5 0<—0—~g > Update parameters
6 return 6




