

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Linear Regression + Optimization for ML

Matt Gormley & Henry Chai Lecture 8 Sep. 22, 2021

Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Mon, Sep. 20
 - Due: Sun, Sep. 26 at 11:59pm
 - IMPORTANT: you may only use 2 grace days on Homework 3

OPTIMIZATION METHOD #1: GRADIENT DESCENT

Gradient Descent

Algorithm 1 Gradient Descent

1: procedure
$$GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$$

- 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
- 3: while not converged do 4: $\theta \leftarrow \theta - \gamma \nabla_{\theta} J(\theta)$

5: return θ

There are many possible ways to detect **convergence**. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

 $||\nabla_{\theta} J(\theta)||_2 \leq \epsilon$ Alternatively we could check that the reduction in the objective function from one iteration to the next is small.

GRADIENT DESCENT FOR LINEAR REGRESSION

Linear Regression as Function $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$ Approximation

1. Assume \mathcal{D} generated as:

$$\mathbf{x}^{(i)} \sim p^{*}(\cdot)$$

 $y^{(i)} = h^{*}(\mathbf{x}^{(i)})$

 Choose hypothesis space, H: all linear functions in M-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

 Choose an objective function: mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent
 - ...

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} J(\theta)$$

Test time: given a new x, make prediction ŷ

$$\hat{y} = h_{\hat{\theta}}(\mathbf{x}) = \hat{\theta}^T \mathbf{x}$$

Linear Regression by Gradient Desc.

Optimization Method #1: Gradient Descent

- 1. Pick a random θ
- 2. Repeat:
 a. Evaluate gradient ∇J(θ)
 b. Step opposite gradient
- Return θ that gives smallest J(θ)

Optimization for Linear Regression

Chalkboard

- Computing the gradient for Linear Regression
- Gradient Descent for Linear Regression

GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function

CONVEXITY

Convexity

Function $f : \mathbb{R}^M \to \mathbb{R}$ is **convex** if $\forall \mathbf{x}_1 \in \mathbb{R}^M, \mathbf{x}_2 \in \mathbb{R}^M, 0 \le t \le 1$:

 $f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \le tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$

Convexity

Suppose we have a function $f(x) : \mathcal{X} \to \mathcal{Y}$.

- The value x^* is a **global minimum** of f iff $f(x^*) \leq f(x), \forall x \in \mathcal{X}$.
- The value x^* is a local minimum of f iff $\exists \epsilon$ s.t. $f(x^*) \leq f(x), \forall x \in [x^* \epsilon, x^* + \epsilon]$.

 Each local minimum is a global minimum

Nonconvex Function

- A nonconvex function is not convex
- Each local minimum is not necessarily a global minimum

Convexity

Each local minimum of a convex function is also a global minimum.

Function $f : \mathbb{R}^{M} \to \mathbb{R}$ is strictly convex if $\forall \mathbf{x}_{1} \in \mathbb{R}^{M}, \mathbf{x}_{2} \in \mathbb{R}^{M}, 0 \leq t \leq 1$: $f(t\mathbf{x}_{1} + (1 - t)\mathbf{x}_{2}) < tf(\mathbf{x}_{1}) + (1 - t)f(\mathbf{x}_{2})$ $tf(x_{1}) + (1 - t)f(x_{2})$ $f(tx_{1} + (1 - t)x_{2})$

A strictly convex function has a unique global minimum.

CONVEXITY AND LINEAR REGRESSION

Convexity and Linear Regression

The Mean Squared Error function, which we minimize for learning the parameters of Linear Regression, is convex!

... but in the general case it is **not** strictly convex.

Gradient Descent & Convexity

- Gradient descent is a local optimization algorithm
- If the function is nonconvex, it will find a local minimum, not necessarily a global minimum
- If the function is convex, it will find a global minimum

Regression Loss Functions

In-Class Exercise:

Which of the following could be used as loss functions for training a linear regression model?

Select all that apply.

A.
$$\ell(\hat{y}, y) = ||\hat{y} - y||_2$$

B. $\ell(\hat{y}, y) = |\hat{y} - y|$
C. $\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$
D. $\ell(\hat{y}, y) = \frac{1}{4}(\hat{y} - y)^4$
E. $\ell(\hat{y}, y) = \begin{cases} \frac{1}{2}(\hat{y} - y)^2 & \text{if } |\hat{y} - y| \le \delta \\ \delta |\hat{y} - y| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}$
F. $\ell(\hat{y}, y) = \log(\cosh(\hat{y} - y))$

А	
В	
С	
D	
E	
F	

OPTIMIZATION METHOD #2: CLOSED FORM SOLUTION

Calculus and Optimization

In-Class Exercise Plot three functions:

1.
$$f(x) = x^3 - x$$

2. $f'(x) = \frac{\partial y}{\partial x}$
3. $f''(x) = \frac{\partial^2 y}{\partial x^2}$

Optimization: Closed form solutions

Chalkboard

- Zero Derivatives
- Example: 1-D function
- Example: higher dimensions

CLOSED FORM SOLUTION FOR LINEAR REGRESSION

Linear Regression as Function $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$ Approximation

1. Assume \mathcal{D} generated as:

$$\mathbf{x}^{(i)} \sim p^{*}(\cdot)$$

 $y^{(i)} = h^{*}(\mathbf{x}^{(i)})$

 Choose hypothesis space, H: all linear functions in M-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

 Choose an objective function: mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent
 - ...

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} J(\theta)$$

Test time: given a new x, make prediction ŷ

$$\hat{y} = h_{\hat{\theta}}(\mathbf{x}) = \hat{\theta}^T \mathbf{x}$$

36

Optimization for Linear Regression

Chalkboard

- Closed-form (Normal Equations)

COMPUTATIONAL COMPLEXITY

Computational Complexity of OLS

To solve the Ordinary Least Squares problem we compute:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$$

The resulting shape of the matrices:

Background: Matrix Multiplication Given matrices A and B

- If A is $q \times r$ and B is $r \times s$, computing AB takes O(qrs)
- If A and B are $q \times q$, computing AB takes $O(q^{2.373})$
- If A is $q \times q$, computing A^{-1} takes $O(q^{2.373})$.

Gradient Descent

Cases to consider gradient descent:

- 1. What if we **can not** find a closed-form solution?
- 2. What if we **can**, but it's inefficient to compute?
- 3. What if we **can**, but it's numerically unstable to compute?

Empirical Convergence

- Def: an epoch is a single pass through the training data
- 1. For GD, only **one update** per epoch
- 2. For SGD, N updates per epoch N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

LINEAR REGRESSION: SOLUTION UNIQUENESS

Question:

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

Question:

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

Question:

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

А	
В	
С	
D	

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w₁, w₂, b) are there for the given dataset?

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w₁, w₂, b) are there for the given dataset?

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w₁, w₂, b) are there for the given dataset?

To solve the Ordinary Least Squares
problem we compute:
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$$

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

- 1. If $(\mathbf{X}^T \mathbf{X})$ is invertible, then there is exactly one solution.
- 2. If $(\mathbf{X}^T \mathbf{X})$ is not invertible, then there are either no solutions or infinitely many solutions.

To solve the Ordinary Least Squares
problem we compute:
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$$

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

- 1. If $(\mathbf{X}^T \mathbf{X})$ is invertible, then there is exactly one solution. Invertability of $(\mathbf{X}^T \mathbf{X})$ is
- 2. If $(\mathbf{X}^T \mathbf{X})$ is not invite no solutions or inf

Invertability of $(\mathbf{X}^T \mathbf{X})$ is equivalent to X being full rank. That is, there is no feature that is a linear combination of the other features.

Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - h(\mathbf{x}^{(i)}))^2$) has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e. $\frac{1}{N} \sum_{i=1}^{N} |y^{(i)} - h(\mathbf{x}^{(i)})|$) must also have a unique minimizer.

Answer:

A		
В		
С		

OPTIMIZATION METHOD #3: STOCHASTIC GRADIENT DESCENT

Gradient Descent

Algorithm 1 Gradient Descent

- 1: procedure $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$
- 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
- 3: while not converged do

4:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\gamma} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

5: return θ

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

Per-example objective: $J^{(i)}(\boldsymbol{\theta})$

Original objective:
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

Per-example objective: $J^{(i)}(\boldsymbol{\theta})$

Original objective:
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

In practice, it is common to implement SGD using sampling **without** replacement (i.e. shuffle({1,2,...N}), even though most of the theory is for sampling **with** replacement (i.e. Uniform({1,2,...N}).

2

Expectations of Gradients

LINEAR REGRESSION: PRACTICALITIES

Empirical Convergence

- Def: an epoch is a single pass through the training data
- 1. For GD, only **one update** per epoch
- 2. For SGD, N updates per epoch N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

Convergence of Optimizers

SGD FOR LINEAR REGRESSION

Linear Regression as Function $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$ Approximation

1. Assume \mathcal{D} generated as:

$$\mathbf{x}^{(i)} \sim p^{*}(\cdot)$$

 $y^{(i)} = h^{*}(\mathbf{x}^{(i)})$

 Choose hypothesis space, H: all linear functions in M-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

 Choose an objective function: mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent
 - ...

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} J(\theta)$$

Test time: given a new x, make prediction ŷ

$$\hat{y} = h_{\hat{\theta}}(\mathbf{x}) = \hat{\theta}^T \mathbf{x}$$

Gradient Calculation for Linear Regression

Derivative of $J^{(i)}(\boldsymbol{\theta})$:

$$\begin{split} \frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) &= \frac{d}{d\theta_k} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 \\ &= \frac{1}{2} \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} \left(\sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)} \right) \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)} \end{split}$$

Gradient of $J^{(i)}(\boldsymbol{\theta})$ [used by SGD] $\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_{1}} J^{(i)}(\boldsymbol{\theta}) \\ \frac{d}{d\theta_{2}} J^{(i)}(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_{M}} J^{(i)}(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) x_{1}^{(i)} \\ (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) x_{2}^{(i)} \\ \vdots \\ (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) x_{N}^{(i)} \end{bmatrix}$ $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_{1}} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_{2}} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_{M}} J(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) x_{1}^{(i)} \\ \vdots \\ \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) x_{N}^{(i)} \end{bmatrix}$ N $= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$

Derivative of $J(\boldsymbol{\theta})$:

$$\begin{aligned} \frac{d}{d\theta_k} J(\boldsymbol{\theta}) &= \sum_{i=1}^N \frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) \\ &= \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)} \end{aligned}$$

Gradient of $J(\boldsymbol{\theta})$ [used by Gradient Descent] $=\sum_{i=1}^{N}(oldsymbol{ heta}^T\mathbf{x}^{(i)}-y^{(i)})\mathbf{x}^{(i)}$

SGD for Linear Regression

SGD applied to Linear Regression is called the "Least Mean Squares" algorithm

Algo	Algorithm 1 Least Mean Squares (LMS)					
1: p	procedure LMS($\mathcal{D}, \boldsymbol{\theta}^{(0)}$)					
2:	$oldsymbol{ heta} \leftarrow oldsymbol{ heta}^{(0)}$	Initialize parameters				
3:	while not converged do					
4:	for $i \in shuffle(\{1, 2, \dots, N\})$ do					
5:	$\mathbf{g} \leftarrow (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$	Compute gradient				
6:	$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \mathbf{g}$	Update parameters				
7:	return $ heta$					

Optimization Objectives

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

Linear Regression Objectives

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Distinguish the three sources of error identified by the bias-variance decomposition: bias, variance, and irreducible error.