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Reminders

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Sep. 20 
– Due: Sun, Sep. 26 at 11:59pm
– IMPORTANT: you may only use 2 grace days on

Homework 3
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OPTIMIZATION METHOD #1:
GRADIENT DESCENT
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.  
For example, we could check whether the L2 norm of 
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the 
objective function from one iteration to the next is small.

—



GRADIENT DESCENT FOR
LINEAR REGRESSION
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Linear Regression as Function 
Approximation
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Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2

t
1
2
3
4

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



Linear Regression by Gradient Desc.
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θ1
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θ1 θ2 J(θ1, θ2)
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0.30 0.12 8.7
0.51 0.30 1.5
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y

y = h*(x)
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h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2
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Optimization for Linear Regression

Chalkboard
– Computing the gradient for Linear Regression
– Gradient Descent for Linear Regression
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GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function
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Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg="></latexit>



CONVEXITY
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Convexity
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Convexity

Convex Function

• Each local minimum is a 
global minimum

Nonconvex Function

• A nonconvex function is not 
convex

• Each local minimum is not
necessarily a global minimum 20



Convexity
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Each local 
minimum of a 

convex function is 
also a global 

minimum.

A strictly convex 
function has a 
unique global 

minimum.



CONVEXITY AND LINEAR 
REGRESSION
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Convexity and Linear Regression
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The Mean Squared Error function, 
which we minimize for learning 

the parameters of Linear 
Regression, is convex!

…but in the general case it is not 
strictly convex.



Gradient Descent & Convexity
• Gradient 

descent is a 
local 
optimization 
algorithm

• If the function is 
nonconvex, it 
will find a local 
minimum, not 
necessarily a 
global minimum

• If the function is 
convex, it will 
find a global 
minimum
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Regression Loss Functions

In-Class Exercise:

Which of the following 
could be used as loss 
functions for training 
a linear regression 
model? 

Select all that apply.
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OPTIMIZATION METHOD #2:
CLOSED FORM SOLUTION
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Calculus and Optimization

In-Class Exercise
Plot three functions:
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Answer Here:



Optimization: Closed form solutions

Chalkboard
– Zero Derivatives
– Example: 1-D function
– Example: higher dimensions
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CLOSED FORM SOLUTION FOR 
LINEAR REGRESSION
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Linear Regression as Function 
Approximation
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Linear Regression: Closed Form
Optimization Method #2: 
Closed Form
1. Evaluate 

2. Return θMLE
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.59 0.43 0.2

x

y

y = h*(x)
(unknown)

t
MLE

h(x; θ(MLE))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



Optimization for Linear Regression

Chalkboard
– Closed-form (Normal Equations)
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COMPUTATIONAL COMPLEXITY
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Computational Complexity of OLS:

Computational Complexity of OLS
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To solve the Ordinary Least Squares 
problem we compute:

The resulting shape of the matrices:

Linear in # of examples, N
Polynomial in # of features, M



Gradient Descent

Cases to consider gradient descent:
1. What if we can not find a closed-form 

solution?
2. What if we can, but it’s inefficient to 

compute?
3. What if we can, but it’s numerically 

unstable to compute?

40



Empirical Convergence

• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization
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• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 

Gradient Descent

Closed-form 
(normal eq.s)
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LINEAR REGRESSION: SOLUTION 
UNIQUENESS
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Linear Regression: Uniqueness
Question:
Consider a 1D linear 
regression model 
trained to minimize 
MSE.

How many 
solutions (i.e. sets 
of parameters w,b) 
are there for the 
given dataset?

43

y

x

Two Points (Case 1)



Linear Regression: Uniqueness
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y

x

One Point
Question:
Consider a 1D linear 
regression model 
trained to minimize 
MSE.

How many 
solutions (i.e. sets 
of parameters w,b) 
are there for the 
given dataset?



Linear Regression: Uniqueness
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y

x

Two Points (Case 2)

Answer:
A: 0      B: 1     C: 2     D: +∞

Question:
Consider a 1D linear 
regression model 
trained to minimize 
MSE.

How many 
solutions (i.e. sets 
of parameters w,b) 
are there for the 
given dataset?
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Linear Regression: Uniqueness
Question:
• Consider a 2D

linear regression 
model trained to 
minimize MSE

• How many 
solutions (i.e.
sets of 
parameters w1, 
w2, b) are there 
for the given 
dataset?

48
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Linear Regression: Uniqueness
Question:
• Consider a 2D

linear regression 
model trained to 
minimize MSE

• How many 
solutions (i.e.
sets of 
parameters w1, 
w2, b) are there 
for the given 
dataset?
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Linear Regression: Uniqueness
Question:
• Consider a 2D

linear regression 
model trained to 
minimize MSE

• How many 
solutions (i.e.
sets of 
parameters w1, 
w2, b) are there 
for the given 
dataset?
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Linear Regression: Uniqueness
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These geometric intuitions align with the linear 
algebraic intuitions we can derive from the 
normal equations.
1. If               is invertible, then there is exactly one 

solution. 
2. If               is not invertible, then there are either 

no solutions or infinitely many solutions.

To solve the Ordinary Least Squares 
problem we compute:



Linear Regression: Uniqueness
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These geometric intuitions align with the linear 
algebraic intuitions we can derive from the 
normal equations.
1. If               is invertible, then there is exactly one 

solution. 
2. If               is not invertible, then there are either 

no solutions or infinitely many solutions.

To solve the Ordinary Least Squares 
problem we compute:

Invertability of               is 
equivalent to X being full rank. 
That is, there is no feature that 
is a linear combination of the 

other features.



Answer:

Solving Linear Regression
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Question:
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OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT
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Gradient Descent
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M

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—



Stochastic Gradient Descent (SGD)
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Per-example objective: ! ! "

Original objective: ! " =$
!"#

$
! ! "



Stochastic Gradient Descent (SGD)
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In practice, it is common 
to implement SGD using 

sampling without
replacement (i.e.

shuffle({1,2,…N}), even 
though most of the 

theory is for sampling 
with replacement (i.e.

Uniform({1,2,…N}).

Per-example objective: ! ! "

Original objective: ! " =$
!"#

$
! ! "
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Expectations of Gradients
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LINEAR REGRESSION: 
PRACTICALITIES
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Empirical Convergence

• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization
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Gradient Descent

SGD

Closed-form 
(normal eq.s)

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 
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Convergence of Optimizers
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SGD FOR
LINEAR REGRESSION
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Linear Regression as Function 
Approximation
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Gradient Calculation for Linear Regression
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[used by SGD]
[used by Gradient Descent]



SGD for Linear Regression
SGD applied to Linear Regression is called the “Least 
Mean Squares” algorithm
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Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to 

optimize a function
• Apply knowledge of zero derivatives to identify 

a closed-form solution (if one exists) to an 
optimization problem

• Distinguish between convex, concave, and 
nonconvex functions

• Obtain the gradient (and Hessian) of a (twice) 
differentiable function

73



Linear Regression Objectives
You should be able to…
• Design k-NN Regression and Decision Tree 

Regression
• Implement learning for Linear Regression using three 

optimization techniques: (1) closed form, (2) gradient 
descent, (3) stochastic gradient descent

• Choose a Linear Regression optimization technique 
that is appropriate for a particular dataset by 
analyzing the tradeoff of computational complexity 
vs. convergence speed

• Distinguish the three sources of error identified by 
the bias-variance decomposition: bias, variance, and 
irreducible error.

74


