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Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Mon, Sep. 20
— Due: Sun, Sep. 26 at 11:59pm



OPTIMIZATION METHOD #1:
GRADIENT DESCENT



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, H(O))
0 — 6

1:

2

3: while not converged do
4 6«06 —'YVQJ(H)

5)

return 0

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)]]2 < ¢

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.



GRADIENT DESCENT FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {hg : ho(x) = 87x,0 ¢ RM}




Linear Regression by Gradient Desc.
J(0) = J(91, 0,) = 1 i (y(z‘) _ eTx(i)))z

Optimization Method #1: i N
Gradient Descent 0.000
1.  Pickarandom ©
2. Repeat: 08// \\
a. Evaluate gradient VJ(0)
b. Step opposite gradient o6 I & -0
3. Return @ that gives 0, ?S 9 3 %*c;
smallest J(0) " Q,
é
@,
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
6,
t] 6 | 6, | J6,6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.

J(G) — J(e” ez) . Z (y(i) _ eTx(i)))z

Optimization Method #1: o N
Gradient Descent | 0.000
1.  Pickarandom ©
2. Repeat: %
a. Evaluate gradient VJ(0)
b. Step opposite gradient o6 I & =N
3. Return 0 that gives o, (<7 33
smallest J(0) ol Q
y =h*(x) 5 S
N (unljnown) . >
Ve
h(x; ©4)) O
0.0 . . . .
h(x; 83) 0.0 0.2 0.4 0.6 0.8 1.0
0,
t] 6 | 6 | JB,8,)
/' __ h(x;8) 1 | 0.01 | 0.02 25.2
‘ 2 | 0.30 | 0.12 8.7
— h(x; 6) 3 | 0.51 | 0.30 1.5
N > 4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.
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0,
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Iteration, t
y = h*(x)
N (unknown)
’
’
5 16)
o h(x; 60))
’
¥ — h(x; 6®)
/
— h(x; 8)
>

J(0)=J(6,6,) = %Z (v - eTx(i)))z
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os//
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0.000
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d ¢
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0.0 0.2 0.4 0.6 0.8 1.0
)
t] 6, [ 6, | J6,6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2
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Optimization for Linear Regression

Chalkboard

— Computing the gradient for Linear Regression
— Gradient Descent for Linear Regression



GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

i procedure GDLR(D, 6'V)
2 0 «— 6 > Initialize parameters
3 while not converged do

: N 9T x () — 4,(0))x () i
4: g+ > ._1(0°x y\)x > Compute gradient
5
6

0«0 —n~g > Update parameters
return 6




CONVEXITY



Convexity

Function f : RM — R s convex
if V x; ERM,XQ ERM,O <t<l1:

fltxy + (1 —t)x) < tf(x1) + (1 — 1) f(x2)

A

tf(z1) + (1 —t)f(z2)

f(til?l + (1 — t)xz)
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Convexity

Suppose we have a function f(z) : X — ).

e The value z* is a global minimum of f iff f(z*) < f(x),Vx € X.

e The value z* is a local minimum of fiff Je s.t. f(z*) < f(z),Vx € [z* — €, 2" + €.

Convex Function Nonconvex Function
A A
> >
e Each local minimum s a * A nonconvex function is not
global minimum convex

* Each local minimum is not
necessarily a global minimum



Convexity

Function f : RM — R is convex
ifVx e RM xo e RM 0<t<1:

f(tx1 + (1 — t)XQ) S tf(X1) + (1 — t)f(XQ)

A

tf(z1) + (1 —1) f(z2)

1

fltzy + (1 —t)z2) ..m...:
|

1

Z1 txy + (1 = t)l‘z )

Function f : RM — R s strictly convex
ifVx; eRM % e RM 0<t<1:

ftx1+ (1 —t)x2) < tf(x1) + (1 —1t)f(x2)

A

tf(z1) + (1 —1)f(z2)

flxy + (1 —t)xg) =

Each local
minimum of a
convex function is
also a global
minimum.

A strictly convex
function has a
unique global

minimum.
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CONVEXITY AND LINEAR
REGRESSION



Convexity and Linear Regression

The Mean Squared Error function,
which we minimize for learning
the parameters of Linear
Regression, is convex!

...but in the general case it is not
strictly convex.




Gradient Descent & Convexity

e (Gradient

* |f the functionis

* |f the functionis

descentis a
local
optimization
algorithm

nonconvex, it
will find a local
minimum, not
necessarily a
global minimum 7

convex, it will
find a global
minimum




Regression Loss Functions

In-Class Exercise: 6G,y) = 15—l

B. £(7,y) = |9 — vl

Which of the following & tgg) =] =)
- AGy) =50 -y
could be used as loss 2
[ [ [ . 1 .
fur.lcttons for trgmmg D. £(§,9) = 36— v)*
d linear regression
B 8|9 —y| — 30% otherwise

Select all that apply. F. £(9,y) = log(cosh(§ — y))
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Question 1

Start the presentation bo see bve Content, For screen share software, share the enire streen. Get belp ot poliev.com app




OPTIMIZATION METHOD #2:
CLOSED FORM SOLUTION



Calculus and Optimization

In-Class Exercise Answer Here:

Plot three functions: 3

A




Optimization: Closed form solutions

Chalkboard

— Zero Derivatives
— Example: 1-D function
— Example: higher dimensions



CLOSED FORM SOLUTION FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {hg : ho(x) = 87x,0 ¢ RM}




Linear Regression: Closed Form

1 & 2
2 ((i)_gT (i))

> (v x")
Ni:l

J(8)=J(8,,6,) =

Optimization Method #2: 1.0

Closed Form

1. Evaluate 0.8
BMLE — (XTx)—ley

2. Return OMLE s

0.000

06 g\g
EES 23
9. |g
0.4 O
y = h*(x) S
(=)
N (unljnown) . u)
Ve
h(x; 19)
0-0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
> B,
, t| 6 | 6, | J6,6,)
/ MLE | 0.59 | 0.43 0.2
4
’




Optimization for Linear Regression

Chalkboard

— Closed-form (Normal Equations)



COMPUTATIONAL COMPLEXITY



Computational Complexity of OLS

To solve the Ordinary Least Squares The resulting shape of the matrices:
problem we compute
a , T —1 T
6 = argmin = Z JwO - (X, X)X, X)
MXxN NxM MxN Nx1
L ]l ]
= (XTX) 'XTY) M x M M x1

Background: Matrix Multiplication Given matrices A and B
e If Aisqg x rand Bisr x s, computing AB takes O(grs)
e If A and B are g x g, computing AB takes O(¢*373)

e If Aisq x g, computing A~! takes O(¢*37).

Computational Complexity of OLS:

XTX O(M2N) - -
( N O(M2373) Linear in # of examples, N

MN) Polynomial in # of features, M

(
O(
O(M?)
total O(M?N + M*373) @



Gradient Descent

Cases to consider gradient descent:

1.

What if we can not find a closed-form
solution?

. What if we can, but it’s inefficient to

compute?

. What if we can, but it’s numerically

unstable to compute?



Mean Squared Error (Train)

Empirical Convergence

Log-log scale plot * Def:anepochis a
single pass through

the training data
Gradient Descent

1. For GD, only one
update per epoch

2. For SGD, N updates
per epoch
N = (# train examples)

* SGD reduces MSE
much more rapidly

CIosed-Torm than GD
(normal eq.s) + For GD / SGD, training
> MSE is initially large
Epochs due to uninformed

initialization



LINEAR REGRESSION: SOLUTION
UNIQUENESS



Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model
trained to minimize
MSE.

How many
solutions (i.e. sets
of parameters w,b)
are there for the
given dataset?

Y a

Two Points (Case 1)




Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model
trained to minimize
MSE.

Y a One Point

How many
solutions (i.e. sets
of parameters w,b)

are there for the
given dataset?



Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model

Y4  Two Points (Case 2)

I ®
MSE.
How many ¢

solutions (i.e. sets
of parameters w,b)

are there for the
given dataset? Answer:

A:0 B:i1 C2 D+



o @ When poll is active, respond at pollev.com/10301601polls

Question 2

Start the presentation bo see bve Content, For screen share software, share the enire streen. Get belp ot poliev.com app




Linear Regression: Uniqueness

Question:
° Consider a2D Y4 Points on alLine

linear regression
model trained to
minimize MSE

* How many
solutions (i.e.
sets of
parameters w,,

w.,, b) are there %
for the given /

dataset? %




Linear Regression: Uniqueness

Question:
° Consider a2D Y4 Points on a Line

linear regression
model trained to
minimize MSE

* How many
solutions (i.e.
sets of
parameters w,,
w.,, b) are there
for the given
dataset?
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Linear Regression: Uniqueness

Question:
° Consider a °D Y A POintS Oona Line

linear regression
model trained to
minimize MSE

* How many
solutions (i.e.
sets of
parameters w,,

w,, b) are there
for the given
dataset?

50



Linear Regression: Uniqueness

To solve the Ordinary Least Squares

problem we compute:

1 N

N 1 : .
0 = arg;nin — N Z 5(3/(1) _ (ng(z)))2

=1

= (XTX)"}(xXTY)

These geometric intuitions align with the linear
algebraic intuitions we can derive from the
normal equations.

1. If (X' X)is invertible, then there is exactly one
solution.

2. If (X*X)is not invertible, then there are either
no solutions or infinitely many solutions.



Linear Regression: Uniqueness

To solve the Ordinary Least Squares
problem we compute

6 = argmln = Z (y(z (07x(9))2

(XTX) L(XTY)

These geometric intuitions align with the linear
algebraic intuitions we can derive from the
normal equations.

1. If (X?X)is invertible, then there is exactly one
SOIUtlon m Invertability of (X'X) is

2. If XTX )is not equivalent to X being full rank.
no solutions or inf| That is, there is no feature that

is a linear combination of the
other features. -




Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. + S0, (y® — h(x(®))?)
has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e.

LSV [y® — h(x™)]) must also have a unique minimizer.

Answer:



o @ When poll is active, respond at pollev.com/10301601polls

Question 3

Start the presentation bo see bve Content, For screen share software, share the enire streen. Get belp ot poliev.com app



OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT



Gradient Descent

56



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)
procedure SGD(D, 8©)

1

2 0+« 09

3: while not converged do

4: i ~ Uniform({1,2,...,N})
5 0« 0 —7VeJ(0)

6 return 6

Per-example objective: /()

N
Original objective: J(0) = Z](i)(e)
i=1
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Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i procedure SGD(D, %)

x 0+ 0

3: while not converged do

4: for i € shuffle({1,2,...,N}) do
5 0« 0 —YVeJW(6)

6 return 6 %

Per-example objective: /()

N
Original objective: J(0) = z]@(e)
i=1

In practice, it is common
to implement SGD using
sampling without
replacement (i.e.
shuffle({1,2,... N}), even
though most of the
theory is for sampling
with replacement (i.e.
Uniform({1,2,... N}).







Expectations of Gradients

N —

/Rec« Il - S:-.r “ry J«‘Kwé, P-v. X

EXIFIT 2 = R(x=9 )

ALt o M v3.6) ¢

Let T U»iyo/n(y. 4= IU3>
= =D =5 Feedl-n

BTG = Py T76)

N e
+ CZ:‘V&(GS

* §




LINEAR REGRESSION:
PRACTICALITIES



Mean Squared Error (Train)

Empirical Convergence

Log-log scale plot * Def:anepochis a
single pass through

the training data
Gradient Descent

1. For GD, only one
update per epoch

2. For SGD, N updates
per epoch
N = (# train examples)

* SGD reduces MSE
much more rapidly

CIosed-Torm than GD
(normal eq.s) + For GD / SGD, training
> MSE is initially large
Epochs due to uninformed

initialization



Convergence of Optimizers

¥C‘>Mm>e.4c¢ Aulys?s N {-‘-m vuleman i
Db & Congeryomcs wew I(B) "'3@) S
pgg.,&\ Methods Skos fo Coere Corfohbnn por e
% 2 Neobore Meflod O(fa Lo ‘/e) V2 (8) V?I(G)«quﬁ
GD Ok %) VI () «— owh)
5D O( %) V3:(0) < oM)
‘("\“%\t;’:: ,{ot) o cevents Lvh? 4,
o and Coudibin g S QQM

’FJML ; 3@0 has twcls ¢ looer  as HJO_L( ) {.
M7 )?U'\' TS o&/en glskr th ﬁ)all-,i e
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SGD FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {hg : ho(x) = 87x,0 ¢ RM}




Gradient Calculation for Linear Regression
Derivative of J()(8): Derivative of J(8):

N
46 = __(eTx(') y®)? 4 ) =5 -1 0
dy 5.7 © ; 5.7 ®)

; dg (67x — 42 -
d _ 3O — O
= (67x9 —y©) (67 — y0) -

_ (oTx(i) (t)) (Z 9_,:1:(1) y (3) )

= (6"x® — y D)z

Gradient of J(8) [used by Gradient Descent]
Gradient of J(V)(8) [used by SGD] 4 j(9) SN (67 — )]
def, t=1 1
. _ - : : -\ d N (aT_ (i i)\ (7)
GIOO) OO ) | @IO| | ELETO -0
0 a5; 7" (6) (07x® — y@)af) : :
Ve J'"(0) = o = . v J(g) Zﬁ\(:l(oTx(z) y(z)) (1)
_ J(") 0 T (i) _ ,,(1)).(%) N
-df n 6). _(0 X Y )IN- Z aTx(t) y(i))x(i)

= (87 x() — 4)x(®
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SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)

procedure LMS(D, 8(?)
6+ 6 > Initialize parameters

1
2
3 while not converged do

4: fori € shuffle({1,2,...,N})do
5

6

7

g — (07 x() — (D)%) > Compute gradient
0«0 —n~g > Update parameters
return 6
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Optimization Objectives

You should be able to...
* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to
optimize a function

* Apply knowledge of zero derivatives to identify
a closed-form solution (if one exists) to an
optimization problem

* Distinguish between convex, concave, and
nonconvex functions

 Obtain the gradient (and Hessian) of a (twice)
differentiable function



Linear Regression Objectives

You should be able to...

Design k-NN Regression and Decision Tree
Regression

Implement learning for Linear Regression using three
optimization techniques: (1) closed form, (2) gradient
descent, (3) stochastic gradient descent

Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed



