

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Linear Regression + Optimization for ML

Matt Gormley & Henry Chai Lecture 8 Sep. 22, 2021

Reminders

- **Homework 3: KNN, Perceptron, Lin.Reg.**
	- **Out: Mon, Sep. 20**
	- **Due: Sun, Sep. 26 at 11:59pm**
	- **IMPORTANT: you may only use 2 grace days on Homework 3**

OPTIMIZATION METHOD #1: GRADIENT DESCENT

Gradient Descent

Algorithm 1 Gradient Descent

1: procedure
$$
GD(\mathcal{D}, \theta^{(0)})
$$

- 2: $\theta \leftarrow \theta^{(0)}$
- 3: while not converged do 4: $\theta \leftarrow \theta - \gamma \nabla_{\theta} J(\theta)$

There are many possible ways to detect **convergence**. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

 $||\nabla_{\boldsymbol{\theta}}J(\boldsymbol{\theta})||_2 \leq \epsilon$

Alternatively we could check that the reduction in the objective function from one iteration to the next is small.

GRADIENT DESCENT FOR LINEAR REGRESSION

Linear Regression as Function $\mathcal{D} = {\mathbf{x}^{(i)}, y^{(i)}}_{i=1}^N$ Approximation where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \mathbb{R}$

1. Assume D generated as:

$$
\mathbf{x}^{(i)} \sim p^*(\cdot)
$$

$$
y^{(i)} = h^*(\mathbf{x}^{(i)})
$$

2. Choose hypothesis space, H: all linear functions in M-dimensional space

$$
\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}
$$

3. Choose an objective function: mean squared error (MSE)

$$
J(\theta) = \frac{1}{N} \sum_{i=1}^{N} e_i^2
$$

= $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - h_{\theta}(\mathbf{x}^{(i)}))^{2}$
= $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^{T} \mathbf{x}^{(i)})^{2}$

- 4. Solve the unconstrained optimization problem via favorite method:
	- gradient descent
	- closed form
	- stochastic gradient descent
	- ~ 100

$$
\hat{\boldsymbol{\theta}} = \operatornamewithlimits{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

5. Test time: given a new x, make prediction \hat{y}

$$
\hat{y} = h_{\hat{\boldsymbol{\theta}}}(\mathbf{x}) = \hat{\boldsymbol{\theta}}^T \mathbf{x}
$$

Linear Regression by Gradient Desc.

Optimization Method #1: Gradient Descent

- 1. Pick a random **θ**
- 2. Repeat: a. Evaluate gradient ∇J(**θ**) b. Step opposite gradient
- 3. Return **θ** that gives smallest J(**θ**)

14

Optimization for Linear Regression

Chalkboard

- Computing the gradient for Linear Regression
- Gradient Descent for Linear Regression

GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function

CONVEXITY

Convexity

Function $f: \mathbb{R}^M \to \mathbb{R}$ is convex if \forall $\mathbf{x}_1 \in \mathbb{R}^M$, $\mathbf{x}_2 \in \mathbb{R}^M$, $0 \le t \le 1$:

 $f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \le tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$

Convexity

Suppose we have a function $f(x): \mathcal{X} \to \mathcal{Y}$.

- The value x^* is a global minimum of f iff $f(x^*) \leq f(x), \forall x \in \mathcal{X}$.
- The value x^* is a local minimum of f iff $\exists \epsilon$ s.t. $f(x^*) \leq f(x), \forall x \in [x^* \epsilon, x^* + \epsilon]$.

• Each **local minimum** is a **global minimum**

Nonconvex Function

- A *nonconvex* function is **not convex**
- Each **local minimum** is **not** necessarily a **global minimum** ²⁰

Convexity

Each **local minimum** of a **convex** function is also a **global minimum**.

Function $f: \mathbb{R}^M \to \mathbb{R}$ is strictly convex if \forall $\mathbf{x}_1 \in \mathbb{R}^M$, $\mathbf{x}_2 \in \mathbb{R}^M$, $0 \le t \le 1$: $f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) < tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$ $tf(x_1) + (1-t)f(x_2)$ $f(tx_1 + (1-t)x_2)$... $tx_1 + (1-t)x_2$ x_2 x_1

A **strictly convex** function has a **unique global minimum**.

CONVEXITY AND LINEAR REGRESSION

Convexity and Linear Regression

The **Mean Squared Error** function, which we minimize for learning the parameters of Linear Regression, **is convex**!

…but in the general case it is **not strictly convex**.

Gradient Descent & Convexity

- Gradient descent is a **local optimization algorithm**
- If the function is **nonconvex**, it will find a local minimum, not necessarily a global minimum
- If the function is **convex**, it will find a global minimum

Regression Loss Functions

In-Class Exercise:

Which of the following could be used as loss functions for training a linear regression model?

Select all that apply.

A.
$$
\ell(\hat{y}, y) = ||\hat{y} - y||_2
$$
\nB. $\ell(\hat{y}, y) = |\hat{y} - y|$ \nC. $\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$ \nD. $\ell(\hat{y}, y) = \frac{1}{4}(\hat{y} - y)^4$ \nE. $\ell(\hat{y}, y) = \begin{cases} \frac{1}{2}(\hat{y} - y)^2 & \text{if } |\hat{y} - y| \le \delta \\ \delta|\hat{y} - y| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}$ \nF. $\ell(\hat{y}, y) = \log(\cosh(\hat{y} - y))$

@ When poll is active, respond at pollev.com/10301601polls

Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app

29

OPTIMIZATION METHOD #2: CLOSED FORM SOLUTION

Calculus and Optimization

In-Class Exercise Plot three functions:

1.
$$
f(x) = x^3 - x
$$

\n2. $f'(x) = \frac{\partial y}{\partial x}$
\n3. $f''(x) = \frac{\partial^2 y}{\partial x^2}$

Optimization: Closed form solutions

Chalkboard

- Zero Derivatives
- Example: 1-D function
- Example: higher dimensions

CLOSED FORM SOLUTION FOR LINEAR REGRESSION

Linear Regression as Function $\mathcal{D} = {\mathbf{x}^{(i)}, y^{(i)}}_{i=1}^N$ Approximation where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \mathbb{R}$

1. Assume D generated as:

$$
\mathbf{x}^{(i)} \sim p^*(\cdot)
$$

$$
y^{(i)} = h^*(\mathbf{x}^{(i)})
$$

2. Choose hypothesis space, H : all linear functions in M-dimensional space

$$
\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}
$$

3. Choose an objective function: mean squared error (MSE)

$$
J(\theta) = \frac{1}{N} \sum_{i=1}^{N} e_i^2
$$

= $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - h_{\theta}(\mathbf{x}^{(i)}))^2$
= $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$

- 4. Solve the unconstrained optimization problem via favorite method:
	- gradient descent
	- closed form
	- stochastic gradient descent
	- ~ 100

$$
\hat{\boldsymbol{\theta}} = \operatornamewithlimits{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

5. Test time: given a new x, make prediction \hat{y}

$$
\hat{y} = h_{\hat{\boldsymbol{\theta}}}(\mathbf{x}) = \hat{\boldsymbol{\theta}}^T \mathbf{x}
$$

36

Optimization for Linear Regression

Chalkboard

– Closed-form (Normal Equations)

COMPUTATIONAL COMPLEXITY

Computational Complexity of OLS

To solve the Ordinary Least Squares problem we compute:

$$
\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}))^2
$$

$$
= (\mathbf{X}^{T} \mathbf{X})^{-1} (\mathbf{X}^{T} \mathbf{Y})
$$

The resulting shape of the matrices:

Background: Matrix Multiplication Given matrices A and B

- If A is $q \times r$ and B is $r \times s$, computing AB takes $O(qrs)$
- If A and B are $q \times q$, computing AB takes $O(q^{2.373})$
- If **A** is $q \times q$, computing A^{-1} takes $O(q^{2.373})$.

Gradient Descent

Cases to consider gradient descent:

- 1. What if we **can not** find a closed-form solution?
- 2. What if we **can**, but it's inefficient to compute?
- 3. What if we **can**, but it's numerically unstable to compute?

Empirical Convergence

- *Def*: an **epoch** is a single pass through the training data
- 1. For GD, only **one update** per epoch
- 2. For SGD, *N* **updates** per epoch *N = (# train examples)*
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

LINEAR REGRESSION: SOLUTION UNIQUENESS

Question:

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

Question:

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

@ When poll is active, respond at pollev.com/10301601polls

46

Question:

- Consider a **2D** linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w_1 , w_2 , b) are there for the given dataset?

Question:

- Consider a **2D** linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w_1 , w_2 , b) are there for the given dataset?

Question:

- Consider a **2D** linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w_1 , w_2 , b) are there for the given dataset?

To solve the Ordinary Least Squares
problem we compute:

$$
\hat{\theta} = \underset{\theta}{\text{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\theta^T \mathbf{x}^{(i)}))^2
$$

$$
= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})
$$

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

- 1. If $(\mathbf{X}^T \mathbf{X})$ is invertible, then there is exactly one solution.
- 2. If $(\mathbf{X}^T \mathbf{X})$ is not invertible, then there are either no solutions or infinitely many solutions.

To solve the Ordinary Least Squares
problem we compute:

$$
\hat{\theta} = \underset{\theta}{\text{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\theta^T \mathbf{x}^{(i)}))^2
$$

$$
= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})
$$

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

- 1. If $(\mathbf{X}^T \mathbf{X})$ is invertible, then there is exactly one
- solution.
2. If $(\mathbf{X}^T\mathbf{X})$ is not inv

2. If $(X^T X)$ is not invertible and integrated X being full rank. no solutions or inf That is, there is **no feature that** Invertability of $(X^T X)$ is **is a linear combination of the other features**.

52

Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. $\frac{1}{N}\sum_{i=1}^{N}(y^{(i)}-h(\mathbf{x}^{(i)}))^2$) has a unique minimizer (i.e. \argmin), then Mean Absolute Error (i.e. $\frac{1}{N}\sum_{i=1}^{N}|y^{(i)} - h(\mathbf{x}^{(i)})|$) must also have a unique minimizer.

Answer:

@ When poll is active, respond at pollev.com/10301601polls

Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app

54

OPTIMIZATION METHOD #3: STOCHASTIC GRADIENT DESCENT

Gradient Descent

Algorithm 1 Gradient Descent

- 1: **procedure** $GD(\mathcal{D}, \theta^{(0)})$
2: $\theta \leftarrow \theta^{(0)}$
- 2: $\theta \leftarrow \theta^{(0)}$
3: while no
- while not converged do

4:
$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\gamma} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

5: return θ

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

Per-example objective: $I^{(i)}(\boldsymbol{\theta})$

Original objective:
$$
J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})
$$

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

Per-example objective: $I^{(i)}(\boldsymbol{\theta})$

Original objective:
$$
J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})
$$

In practice, it is common to implement SGD using sampling **without** replacement (i.e. shuffle $(\{1,2,...N\})$, even though most of the theory is for sampling **with** replacement (i.e. Uniform({1,2,…N}).

2

Expectations of Gradients

LINEAR REGRESSION: PRACTICALITIES

Empirical Convergence

- *Def*: an **epoch** is a single pass through the training data
- 1. For GD, only **one update** per epoch
- 2. For SGD, *N* **updates** per epoch *N = (# train examples)*
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

Convergence of Optimizers

SGD FOR LINEAR REGRESSION

Linear Regression as Function $\mathcal{D} = {\mathbf{x}^{(i)}, y^{(i)}}_{i=1}^N$ Approximation where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \mathbb{R}$

1. Assume D generated as:

$$
\mathbf{x}^{(i)} \sim p^*(\cdot)
$$

$$
y^{(i)} = h^*(\mathbf{x}^{(i)})
$$

2. Choose hypothesis space, H: all linear functions in M-dimensional space

$$
\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}
$$

3. Choose an objective function: mean squared error (MSE)

$$
J(\theta) = \frac{1}{N} \sum_{i=1}^{N} e_i^2
$$

= $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - h_{\theta}(\mathbf{x}^{(i)}))^{2}$
= $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^{T} \mathbf{x}^{(i)})^{2}$

- 4. Solve the unconstrained optimization problem via favorite method:
	- gradient descent
	- closed form
	- stochastic gradient descent
	- ~ 100

$$
\hat{\boldsymbol{\theta}} = \operatornamewithlimits{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
$$

5. Test time: given a new x, make prediction \hat{y}

$$
\hat{y} = h_{\hat{\boldsymbol{\theta}}}(\mathbf{x}) = \hat{\boldsymbol{\theta}}^T \mathbf{x}
$$

Gradient Calculation for Linear Regression

Derivative of $J^{(i)}(\boldsymbol{\theta})$:

$$
\frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) = \frac{d}{d\theta_k} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2
$$

\n
$$
= \frac{1}{2} \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2
$$

\n
$$
= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})
$$

\n
$$
= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} \left(\sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)} \right)
$$

\n
$$
= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)}
$$

ent of $J^{(i)}(\theta)$
 $\nabla_{\theta}J^{(i)}(\theta) = \begin{bmatrix} \frac{d}{d\theta_1}J^{(i)}(\theta) \\ \frac{d}{d\theta_2}J^{(i)}(\theta) \\ \vdots \\ \frac{d}{d\theta_M}J^{(i)}(\theta) \end{bmatrix} = \begin{bmatrix} (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_1^{(i)} \\ (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_2^{(i)} \\ \vdots \\ (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_N^{(i)} \end{bmatrix}$
 $= (\theta^T\mathbf{x}^{$ Gradient of $J^{(i)}(\boldsymbol{\theta})$ $\mathbf{y} = (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$

Derivative of $J(\boldsymbol{\theta})$:

$$
\frac{d}{d\theta_k}J(\boldsymbol{\theta})=\sum_{i=1}^N\frac{d}{d\theta_k}J^{(i)}(\boldsymbol{\theta})\\=\sum_{i=1}^N(\boldsymbol{\theta}^T\mathbf{x}^{(i)}-y^{(i)})x_k^{(i)}
$$

Gradient of $J(\boldsymbol{\theta})$ [used by Gradient Descent] $\mathbf{y} = \sum_{i=1}^N (\boldsymbol{\theta}^T\mathbf{x}^{(i)} - y^{(i)})\mathbf{x}^{(i)}$

SGD for Linear Regression

SGD applied to Linear Regression is called the "Least Mean Squares" algorithm

Optimization Objectives

You should be able to…

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

Linear Regression Objectives

You should be able to…

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Distinguish the three sources of error identified by the bias-variance decomposition: bias, variance, and irreducible error.