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Reminders
• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Sep. 20 
– Due: Sun, Sep. 26 at 11:59pm
– IMPORTANT: you may only use 2 grace days on

Homework 3 
• last possible moment to submit HW3: Tue, Sep. 28 at 11:59pm

• Practice for Exam
– Mock Exam 1

• Released Sun, Sep. 26
• Due Wed, Sep. 29 at 11:59pm
• See @491 for participation point details

– Practice problems released on course website
• Midterm Exam 1
– Thu, Sep. 30, 6:30pm – 8:30pm
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https://piazza.com/class/kjvu0xh54r72d1?cid=261


MIDTERM EXAM LOGISTICS
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Midterm Exam
• Time / Location

– Time: Thursday, September 30, at 6:30pm - 8:30pm
– Location & Seats: You have all been split across 5 rooms: 

McConomy auditorium, DH 2315, DH 2210, DH 2105 & DH 2122. 
Everyone has an assigned seat in one of these rooms; see
@506 for details.

– Please watch Piazza carefully for announcements.
• Logistics

– Covered material: Lecture 1 – Lecture 8
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper
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Midterm Exam

• How to Prepare
– Attend the midterm review lecture

(right now!)

– Participate in the Mock Exam

– Review exam practice problems

– Review this year’s homework problems

– Consider whether you have achieved the 

“learning objectives” for each lecture / section

– Write your one-page cheat sheet (back and 

front)
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Midterm Exam
• Advice (for during the exam)
– Solve the easy problems first 

(e.g. multiple choice before derivations)
• if a problem seems extremely complicated you’re likely 

missing something
– Don’t leave any answer blank!
– If you make an assumption, write it down
– If you look at a question and don’t know the 

answer:
• we probably haven’t told you the answer
• but we’ve told you enough to work it out
• imagine arguing for some answer and see if you like it
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Topics for Midterm 1
• Foundations
– Probability, Linear 

Algebra, Geometry, 
Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression
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SAMPLE QUESTIONS
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Sample Questions
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Now we will apply K-Nearest Neighbors using Euclidean distance to a binary classifi-
cation task. We assign the class of the test point to be the class of the majority of the
k nearest neighbors. A point can be its own neighbor.

Figure 5

3. [2 pts] What value of k minimizes leave-one-out cross-validation error for the dataset
shown in Figure 5? What is the resulting error?

4. [2 pts] Sketch the 1-nearest neighbor boundary over Figure 5.

5. [2 pts] What value of k minimizes the training set error for the dataset shown in
Figure 5? What is the resulting training error?
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4 K-NN [12 pts]

In this problem, you will be tested on your knowledge of K-Nearest Neighbors (K-NN), where
k indicates the number of nearest neighbors.

1. [3 pts] For K-NN in general, are there any cons of using very large k values? Select

one. Briefly justify your answer.

(a) Yes (b) No

2. [3 pts] For K-NN in general, are there any cons of using very small k values? Select

one. Briefly justify your answer.

(a) Yes (b) No
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4 SVM, Perceptron and Kernels [20 pts. + 4 Extra Credit]

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D
(1) and D

(2) where D
(1) = {(x(1)

1 , y
(1)
1 ), ..., (x(1)

n , y
(1)
n )}

and D
(2) = {(x(2)

1 , y
(2)
1 ), ..., (x(2)

m , y
(2)
m )} such that x(1)

i 2 Rd1 , x(2)
i 2 Rd2 . Suppose d1 > d2

and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D(1) than on dataset D(2).

(b) [2 pts.] Suppose �(x) is an arbitrary feature mapping from input x 2 X to �(x) 2 RN

and let K(x, z) = �(x) · �(z). Then K(x, z) will always be a valid kernel function.

(c) [2 pts.] Given the same training data, in which the points are linearly separable, the
margin of the decision boundary produced by SVM will always be greater than or equal
to the margin of the decision boundary produced by Perceptron.

4.2 Multiple Choice

(a) [3 pt.] If the data is linearly separable, SVM minimizes kwk2 subject to the constraints
8i, yiw · xi � 1. In the linearly separable case, which of the following may happen to the
decision boundary if one of the training samples is removed? Circle all that apply.

• Shifts toward the point removed

• Shifts away from the point removed

• Does not change

(b) [3 pt.] Recall that when the data are not linearly separable, SVM minimizes kwk2 +
C
P

i ⇠i subject to the constraint that 8i, yiw · xi � 1 � ⇠i and ⇠i � 0. Which of the
following may happen to the size of the margin if the tradeo↵ parameter C is increased?
Circle all that apply.

• Increases

• Decreases

• Remains the same
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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(a) Adding one outlier to the
original data set.

(b) Adding two outliers to the original data
set.

(c) Adding three outliers to the original data
set. Two on one side and one on the other
side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and
adding four points that lie on the trajectory
of the original regression line.

Figure 3: New data set Snew.

Dataset
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real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
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(a) Adding one outlier to the
original data set.

(b) Adding two outliers to the original data
set.

(c) Adding three outliers to the original data
set. Two on one side and one on the other
side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and
adding four points that lie on the trajectory
of the original regression line.

Figure 3: New data set Snew.
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OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT

25



Stochastic Gradient Descent (SGD)

28

In practice, it is common 
to implement SGD using 

sampling without
replacement (i.e. 

shuffle({1,2,…N}), even 
though most of the 

theory is for sampling 
with replacement (i.e. 

Uniform({1,2,…N}).

Per-example objective: ! " #

Original objective: ! # =%
"&'

(
! " #
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Expectations of Gradients
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LINEAR REGRESSION: 
PRACTICALITIES

32



Empirical Convergence

• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization

33

Gradient Descent

SGD

Closed-form 
(normal eq.s)

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 
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Convergence of Optimizers
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SGD FOR
LINEAR REGRESSION
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Linear Regression as Function 
Approximation

36



Gradient Calculation for Linear Regression

38

[used by SGD]
[used by Gradient Descent]



SGD for Linear Regression
SGD applied to Linear Regression is called the “Least 
Mean Squares” algorithm

39



GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function

40

Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg="></latexit>



Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to 

optimize a function
• Apply knowledge of zero derivatives to identify 

a closed-form solution (if one exists) to an 
optimization problem

• Distinguish between convex, concave, and 
nonconvex functions

• Obtain the gradient (and Hessian) of a (twice) 
differentiable function
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Linear Regression Objectives
You should be able to…
• Design k-NN Regression and Decision Tree 

Regression
• Implement learning for Linear Regression using three 

optimization techniques: (1) closed form, (2) gradient 
descent, (3) stochastic gradient descent

• Choose a Linear Regression optimization technique 
that is appropriate for a particular dataset by 
analyzing the tradeoff of computational complexity 
vs. convergence speed

• Distinguish the three sources of error identified by 
the bias-variance decomposition: bias, variance, and 
irreducible error.
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PROBABILISTIC LEARNING

45



Probabilistic Learning

Function Approximation
Previously, we assumed that our 
output was generated using a 
deterministic target function:

Our goal was to learn a 
hypothesis h(x) that best 
approximates c*(x)

Probabilistic Learning
Today, we assume that our 
output is sampled from a 
conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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Robotic Farming

47

Deterministic Probabilistic

Classification
(binary output)

Is this a picture of 
a wheat kernel?

Is this plant 
drought resistant?

Regression
(continuous 
output)

How many wheat 
kernels are in this 
picture?

What will the yield 
of this plant be?



Bayes Optimal Classifier
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MAXIMUM LIKELIHOOD 
ESTIMATION

50



MLE

51

Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)



MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability 

mass as possible to the things we have 
observed…

…at the expense of the things we have not
observed
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Maximum Likelihood Estimation
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