

#### 10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

# Stochastic Gradient Descent + Probabilistic Learning (Binary Logistic Regression)

Matt Gormley & Henry Chai Lecture 9 Sep. 27, 2021

#### Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
  - Out: Mon, Sep. 20
  - Due: Sun, Sep. 26 at 11:59pm
  - IMPORTANT: you may only use 2 grace days on Homework 3
    - last possible moment to submit HW3: Tue, Sep. 28 at 11:59pm
- Practice for Exam
  - Mock Exam 1
    - Released Sun, Sep. 26
    - Due Wed, Sep. 29 at 11:59pm
    - See <u>@491</u> for participation point details
  - Practice problems released on course website
- Midterm Exam 1
  - Thu, Sep. 30, 6:30pm 8:30pm

#### MIDTERM EXAM LOGISTICS

#### Midterm Exam

- Time / Location
  - Time: Thursday, September 30, at 6:30pm 8:30pm
  - Location & Seats: You have all been split across 5 rooms: McConomy auditorium, DH 2315, DH 2210, DH 2105 & DH 2122. Everyone has an assigned seat in one of these rooms; see @506 for details.
  - Please watch Piazza carefully for announcements.
- Logistics
  - Covered material: Lecture 1 Lecture 8
  - Format of questions:
    - Multiple choice
    - True / False (with justification)
    - Derivations
    - Short answers
    - Interpreting figures
    - Implementing algorithms on paper

### Midterm Exam

#### How to Prepare

- Attend the midterm review lecture (right now!)
- Participate in the Mock Exam
- Review exam practice problems
- Review this year's homework problems
- Consider whether you have achieved the "learning objectives" for each lecture / section
- Write your one-page cheat sheet (back and front)

#### Midterm Exam

- Advice (for during the exam)
  - Solve the easy problems first
    (e.g. multiple choice before derivations)
    - if a problem seems extremely complicated you're likely missing something
  - Don't leave any answer blank!
  - If you make an assumption, write it down
  - If you look at a question and don't know the answer:
    - we probably haven't told you the answer
    - but we've told you enough to work it out
    - imagine arguing for some answer and see if you like it

# Topics for Midterm 1

- Foundations
  - Probability, Linear
    Algebra, Geometry,
    Calculus
  - Optimization
- Important Concepts
  - Overfitting
  - Experimental Design

- Classification
  - Decision Tree
  - KNN
  - Perceptron
- Regression
  - Linear Regression

### SAMPLE QUESTIONS

#### 5.2 Constructing decision trees

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we have the training examples described in the Table 5.2.

| Snowstorm | Holiday      | Weekend      | Closed |
|-----------|--------------|--------------|--------|
| Т         | Т            | F            | F      |
| Т         | Т            | $\mathbf{F}$ | Т      |
| F         | Т            | $\mathbf{F}$ | F      |
| T         | Т            | $\mathbf{F}$ | F      |
| F         | $\mathbf{F}$ | $\mathbf{F}$ | F      |
| F         | $\mathbf{F}$ | $\mathbf{F}$ | Т      |
| T         | $\mathbf{F}$ | $\mathbf{F}$ | Т      |
| F         | $\mathbf{F}$ | $\mathbf{F}$ | Т      |

Table 1: Training examples for decision tree

- [2 points] What would be the effect of the Weekend attribute on the decision tree if it were made the root? Explain in terms of information gain.
- [8 points] If we cannot make Weekend the root node, which attribute should be made the root node of the decision tree? Explain your reasoning and show your calculations. (You may use  $\log_2 0.75 = -0.4$  and  $\log_2 0.25 = -2$ )









Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app

#### 4 K-NN [12 pts]

Now we will apply K-Nearest Neighbors using Euclidean distance to a binary classification task. We assign the class of the test point to be the class of the majority of the k nearest neighbors.



Figure 5

3. **[2 pts]** What value of k minimizes leave-one-out cross-validation error for the dataset shown in Figure 5? What is the resulting error?

#### 4.1 True or False

Answer each of the following questions with **T** or **F** and **provide a one line justification**.

(a) [2 pts.] Consider two datasets  $D^{(1)}$  and  $D^{(2)}$  where  $D^{(1)} = \{(x_1^{(1)}, y_1^{(1)}), ..., (x_n^{(1)}, y_n^{(1)})\}$ and  $D^{(2)} = \{(x_1^{(2)}, y_1^{(2)}), ..., (x_m^{(2)}, y_m^{(2)})\}$  such that  $x_i^{(1)} \in \mathbb{R}^{d_1}, x_i^{(2)} \in \mathbb{R}^{d_2}$ . Suppose  $d_1 > d_2$ and n > m. Then the maximum number of mistakes a perceptron algorithm will make is higher on dataset  $D^{(1)}$  than on dataset  $D^{(2)}$ .







#### 3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets  $S^{\text{new}}$  plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

| Dataset         | (a) | (b) | (c) | (d) | (e) |
|-----------------|-----|-----|-----|-----|-----|
| Regression line |     |     |     |     |     |



Figure 1: An observed data set and its associated regression line.



Figure 2: New regression lines for altered data sets  $S^{\text{new}}$ .

#### Dataset



(a) Adding one outlier to the original data set.

#### 3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets  $S^{\text{new}}$  plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

| Dataset         | (a) | (b) | (c) | (d) | (e) |
|-----------------|-----|-----|-----|-----|-----|
| Regression line |     |     |     |     |     |



Figure 1: An observed data set and its associated regression line.







(c) Adding three outliers to the original data set. Two on one side and one on the other side.

#### 3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets  $S^{\text{new}}$  plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

| Dataset         | (a) | (b) | (c) | (d) | (e) |
|-----------------|-----|-----|-----|-----|-----|
| Regression line |     |     |     |     |     |



Figure 1: An observed data set and its associated regression line.



Figure 2: New regression lines for altered data sets  $S^{\text{new}}$ .

#### Dataset



(d) Duplicating the original data set.

#### 3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets  $S^{\text{new}}$  plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

| Dataset         | (a) | (b) | (c) | (d) | (e) |
|-----------------|-----|-----|-----|-----|-----|
| Regression line |     |     |     |     |     |



Figure 1: An observed data set and its associated regression line.





Dataset



(e) Duplicating the original data set and adding four points that lie on the trajectory of the original regression line.



### **OPTIMIZATION METHOD #3: STOCHASTIC GRADIENT DESCENT**

# Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)



Per-example objective:  $J^{(i)}(\boldsymbol{\theta})$ 

Original objective: 
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

In practice, it is common to implement SGD using sampling **without** replacement (i.e. shuffle({1,2,...N}), even though most of the theory is for sampling **with** replacement (i.e. Uniform({1,2,...N}).





#### **Expectations of Gradients**



(d)

# LINEAR REGRESSION: PRACTICALITIES

# **Empirical Convergence**



- Def: an epoch is a single pass through the training data
- 1. For GD, only **one update** per epoch
- For SGD, N updates per epoch N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

#### **Convergence of Optimizers**



# SGD FOR LINEAR REGRESSION

# Linear Regression as Function $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$ Approximation

1. Assume  $\mathcal{D}$  generated as:

$$\begin{aligned} \mathbf{x}^{(i)} &\sim p^*(\cdot) \\ y^{(i)} &= h^*(\mathbf{x}^{(i)}) \end{aligned}$$

2. Choose hypothesis space,  $\mathcal{H}$ : all linear functions in *M*-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

3. Choose an objective function: mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left( y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left( y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- 4. Solve the unconstrained optimization problem via favorite method:
  - gradient descent
  - closed form
  - stochastic gradient descent
  - ...

$$\hat{\boldsymbol{ heta}} = \operatorname*{argmin}_{\boldsymbol{ heta}} J(\boldsymbol{ heta})$$

5. Test time: given a new x, make prediction  $\hat{y}$ 

$$\hat{y} = h_{\hat{\theta}}(\mathbf{x}) = \hat{\boldsymbol{\theta}}^T \mathbf{x}$$

#### Gradient Calculation for Linear Regression

Derivative of  $J^{(i)}(\boldsymbol{\theta})$ :  $\frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) = \frac{d}{d\theta_k} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2$   $= \frac{1}{2} \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2$   $= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})$   $= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} \left( \sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)} \right)$   $= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)}$ 

Gradient of  $J^{(i)}(\boldsymbol{\theta})$  [used by SGD]  $\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_1} J^{(i)}(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J^{(i)}(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J^{(i)}(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_1^{(i)} \\ (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_2^{(i)} \\ \vdots \\ (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_N^{(i)} \end{bmatrix}$   $= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$  Derivative of  $J(\boldsymbol{\theta})$ :

$$\begin{aligned} \frac{d}{d\theta_k} J(\boldsymbol{\theta}) &= \sum_{i=1}^N \frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) \\ &= \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)} \end{aligned}$$

$$\begin{aligned} & \mathsf{Gradient} \text{ of } J(\boldsymbol{\theta}) \qquad [\text{used by Gradient Descent}] \\ & \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_1} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_1^{(i)} \\ \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_2^{(i)} \\ \vdots \\ \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}_N^{(i)} \end{bmatrix} \\ & = \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)} \end{aligned}$$

# SGD for Linear Regression

SGD applied to Linear Regression is called the "Least Mean Squares" algorithm

| Algorithm 1 Least Mean Squares (LMS) |                                                                                             |                       |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| 1: P                                 | procedure LMS( $\mathcal{D}, \boldsymbol{\theta}^{(0)}$ )                                   |                       |  |  |  |
| 2:                                   | $oldsymbol{	heta} \leftarrow oldsymbol{	heta}^{(0)}$                                        | Initialize parameters |  |  |  |
| 3:                                   | while not converged do                                                                      |                       |  |  |  |
| 4:                                   | for $i \in shuffle(\{1, 2, \dots, N\})$ do                                                  |                       |  |  |  |
| 5:                                   | $\mathbf{g} \leftarrow (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$ | Compute gradient      |  |  |  |
| 6:                                   | $oldsymbol{	heta} \leftarrow oldsymbol{	heta} - \gamma \mathbf{g}$                          | Update parameters     |  |  |  |
| 7:                                   | return $\theta$                                                                             |                       |  |  |  |

### GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function



# **Optimization Objectives**

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

# Linear Regression Objectives

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Distinguish the three sources of error identified by the bias-variance decomposition: bias, variance, and irreducible error.

#### **PROBABILISTIC LEARNING**

## **Probabilistic Learning**

#### **Function Approximation**

Previously, we assumed that our output was generated using a **deterministic target function**:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$
$$y^{(i)} = c^*(\mathbf{x}^{(i)})$$

Our goal was to learn a hypothesis h(x) that best approximates c<sup>\*</sup>(x)

#### **Probabilistic Learning**

Today, we assume that our output is **sampled** from a conditional **probability distribution**:

$$\begin{aligned} \mathbf{x}^{(i)} &\sim p^*(\cdot) \\ y^{(i)} &\sim p^*(\cdot | \mathbf{x}^{(i)}) \end{aligned}$$

Our goal is to learn a probability distribution  $p(y|\mathbf{x})$  that best approximates  $p^*(y|\mathbf{x})$ 

# **Robotic Farming**

|                                      | Deterministic                                     | Probabilistic                         |
|--------------------------------------|---------------------------------------------------|---------------------------------------|
| Classification<br>(binary output)    | Is this a picture of a wheat kernel?              | Is this plant<br>drought resistant?   |
| Regression<br>(continuous<br>output) | How many wheat<br>kernels are in this<br>picture? | What will the yield of this plant be? |





#### **Bayes Optimal Classifier** Groully Def: an oracle knows enoughly (e.g. p\*(y|x)) Q: What is the optimal classifier in this setting? YE 20,3 A: $\hat{y} = h(\vec{x}) = \begin{cases} 1 & \text{if } p(y=1|x) \ge p(y=0|x) \\ 0 & \text{otherwise} \end{cases}$ p(y=1|x) S(y=olx = argmix p(y/x) ye EO,13 p(y/x) reducible error Bayes Optimal Classifier х for 9/1 loss function

### MAXIMUM LIKELIHOOD ESTIMATION

# MLE

Suppose we have data  $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$ 

#### **Principle of Maximum Likelihood Estimation:**

Choose the parameters that maximize the likelihood of the data.  $\theta^{\text{MLE}} = \operatorname{argmax} \prod p(\mathbf{x}^{(i)} | \theta)$ 



θ





## MLE

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...

... at the expense of the things we have not observed

#### Maximum Likelihood Estimation

