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Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Mon, Sep. 20
— Due: Sun, Sep. 26 at 11:59pm

 Practice for Exam

— Mock Exam 1
* Released Sun, Sep. 26
* Due Wed, Sep. 29 at 11:59pm
* See (@491 for participation point details

— Practice problems released on course website

e Midterm Exam 1
— Thu, Sep. 30, 6:30pm - 8:30pm



https://piazza.com/class/kjvu0xh54r72d1?cid=261

MIDTERM EXAM LOGISTICS



Midterm Exam

* Time /Location
— Time: Thursday, September 30, at 6:30pm - 8:30pm
— Location & Seats: You have all been split across 5 rooms:

McConomy auditorium, DH 2315, DH 2210, DH 2105 & DH 2122.

Everyone has an assigned seat in one of these rooms; see
(@506 for details.

— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 1 — Lecture 8
— Format of questions:
* Multiple choice
* True / False (with justification)
* Derivations
* Short answers

* Interpreting figures
* Implementing algorithms on paper



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Participate in the Mock Exam
— Review exam practice problems

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section

— Write your one-page cheat sheet (back and
front)



Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something

— Don’t leave any answer blank!
— If you make an assumption, write it down
— If you look at a question and don’t know the
answer:
* we probably haven’t told you the answer

* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it




Topics for Midterm 1

 Foundations e (lassification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization -
* Regression

* Important Concepts — Linear Regression

— Overfitting
— Experimental Design



SAMPLE QUESTIONS



Sample Questions

5.2 Constructing decision trees

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm Holiday Weekend Closed
T T F F
T T F T
F T F F
T T F F
F F F F
F F F T
T F F T
F F F T

Table 1: Training examples for decision tree

¢ |2 points| What would be the effect of the Weekend attribute on the decision tree if it were made the root? Explain
in terms of information gain.

e [8 points] If we cannot make Weekend the root node, which attribute should be made the root node of the decision
tree? Explain your reasoning and show your calculations. (You may use log, 0.75 = —0.4 and log, 0.25 = —2)



Question 1

Join by Web

€) Goto PollEv.com

€) Enter10301601POLLS

a Respond to activity

@ Instructions not active. Log in to activate

SEart the pwesentation 10 see bve content. For screen share software, shave the entir soreen. Get help at pollev.comapp

.



Sample Questions




Sample Questions

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets DO and D@ where DO = {(z{", 4V}, .., (@, y")
and D@ = {(z\?,y?), .., @, y2)} such that xgl) € R4, :13,52) € R%. Suppose d; > d;
and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D) than on dataset D®.



.. € When poll is active, respond at pollev.com/10301601polls J

Question 2

.. STart the presentation 10 see bve content. For screen share software, shave the enter soreen. Get help at pollev.comapp -.









Sample Questions




Sample Questions




Q&A



OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

’
2
3
4:
p
6

. procedure SGD(D, 8'*)

6« 6
while not converged do
for i € shuffle({1, 2,.
0«6 — 'YVgJ

return 6

,N})do

) (0) %

Per-example objective: J()(8)

N
Original objective: J(0) = Z](i) (9)

In practice, it is common
to implement SGD using
sampling without

lacement (i.e.
shuffF ({1,2,...-N}), even
though most of the
theory is for sampling
with replacement (i.e.
Uniform({1,2,... N}).







30



Expectations of Gradients
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LINEAR REGRESSION:
PRACTICALITIES



Mean Squared Error (Train)

Empirical Convergence

Log-log scale plot * Def:an epochis a
single pass through

the training data
Gradient Descent

1. For GD, only one
update per epoch
2. For SGD, N updates

per epoch
N = (# train examples)

* SGD reduces MSE
much more rapidly
than GD

— * For GD /SGD, training

ClosedXorm
(normal

> MSE is initially large
Epochs due to uninformed
initialization



Convergence of Optimizers
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SGD FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 87x,0 ¢ RM}




Gradient Calculation for Linear Regression

Derivative of J(*)(8):
d d 1 .
(1) — T (z) (1) 2
deJ () = d9 2(9 )
L d g7 ) _ oy
~ 2d6 a0, 9 x )
d

— T, (i) _ ,,(%)
(0" x" —y )d9

= (OTx('i) _ y(z))ﬂ?;:
Gradient of J()(0)
25:79(6)
vorie) = | @7 |

[(0Tx(®

- (eTx(i) _ y(,;))

[used by SGD]

— y(’) ).’Egi)-

(OTx® — @)z

oTx(t) () .(3)
( Y\

Derivative of J(6):

Z

d d
LITO
A ngkJ (6)

(gT (4) _ (z'))wg)

MZ Il

1

o~
Il

Gradient of J(6) [used by Gradient Descent]
2-J0)] [T (07x® — y®)z{]
VoJ(8) = d92 iy (6) _ S 1(9:rx(z;) _ y®)z®
ﬁJ @ [N 1((,'ﬂ"x(z) y )z |

—ZOT () _ ()5
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SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)

procedure LMS(D, 6'?)
6 + 6% > Initialize parameters

1.
2
3: while not converged do

4: fori € shuffle({1,2,...,N})do
5

6

7

g « (0" x() — y()x() > Compute gradient
0«0 —ng > Update parameters
return 6
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GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression
procedure GDLR(D, 9(0))

1:

2 0 «— 60 > Initialize parameters
3 while not converged do

4 g — S (7% — y)x() > Compute gradient
5 0<—0—~g > Update parameters
6 return 6




Optimization Objectives

You should be able to...

* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to
optimize a function

* Apply knowledge of zero derivatives to identify
a closed-form solution (if one exists) to an
optimization problem

* Distinguish between convex, concave, and
nonconvex functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function




Linear Regression Objectives

You should be able to...

Design k-NN Regression and Decision Tree
Regression

mplement learning for Linear Regression using three
optimization techniques: (1) closed form, (2) gradient
descent, (3) stochastic gradient descent

Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VsS. convergence speed




PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation Probabilistic Learning
Previously, we assumed that our Today, we assume that our
output was generated using a output is sampled from a
deterministic target function: conditional probability
distribution:
x(" ~ p*(-) x(" ~ p*(-)
(%) — o*(x (%) (%) * (|5 (%)

y = (x) y ~p([x™)
Our goal was to learn a Our goal is to learn a probability
hypothesis h(x) that best distribution p(y[x) that best

approximates c*(x) approximates p*(y|x)



Robotic F?rming

Deterministic

Probabilistic

Classification

‘N (binary output)

Is this a picture of
a wheat kernel?

Is this plant
drought resistant?

Regression
(continuous

How many wheat
kernels are in this
picture?

What will the yield
of this plant be?

,'V




Bayes Optimal Classifier

X) s (' S f(Y'”")?P(TO\x)
O othewas

: a; t?oj:l ?(Y,X)

\'2 es O‘;.LNl Cl«ng"u
% Rk
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MAXIMUM LIKELIHOOD
ESTIMATION



MLE

Suppose we have data D = {z(V}N

Principle of Maximum Likelihood Estimation:
Choose the parameters that maXImlze the likelihood

of the data.
""" = argmax Hp ()]0)

0 1=1
Maximum Likelihood Estimate (MLE)

A

/\L@

>

MLE

D k-



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Maximum Likelihood Estimation
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