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Reminders

• Exam 1
– Mon, Sep. 30, 6:30pm – 8:30pm

• Homework 4: Logistic Regression
– Out: Fri, Feb 17
– Due: Sun, Feb. 26 at 11:59pm
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STOCHASTIC GRADIENT DESCENT
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Recall: 
Gradient 
Descent for 
Logistic 
Regression

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

 and step size 𝛾

1. Initialize 𝜽 %  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 ' =
1
𝑁.
!"#

$

𝒙 ! 𝑃 𝑌 = 1 𝒙 ! , 𝜽 ' − 𝑦 !

b. Update 𝜽: 𝜽 '(# ← 𝜽 ' − 𝛾∇𝜽𝐽 𝜽 '

c. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 '
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Stochastic
Gradient 
Descent (SGD)
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� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

 and step size 𝛾

1. Initialize 𝜽 %  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 ! , 𝑦 !

b. Compute the pointwise gradient:

∇𝜽𝐽 ! 𝜽 ' = 𝒙 ! 𝑃 𝑌 = 1 𝒙 ! , 𝜽 ' − 𝑦 !

c. Update 𝜽: 𝜽 '(# ← 𝜽 ' − 𝛾∇𝜽𝐽 ! 𝜽 '

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 '



Stochastic
Gradient 
Descent (SGD)

 

� If the example is sampled uniformly at random, the expected 

value of the pointwise gradient is the same as the full gradient!

𝐸 ∇𝜽𝐽 ! 𝜽 =.
!"#

$

probability	of	selecting	𝒙 ! , 𝑦 ! ∇𝜽𝐽 ! 𝜽

𝐸 ∇𝜽𝐽 ! 𝜽 =.
!"#

$
1
𝑁 ∇𝜽𝐽 ! 𝜽 =

1
𝑁.
!"#

$

∇𝜽𝐽 ! 𝜽 = ∇𝜽𝐽 𝜽

� In practice, the data set is randomly shuffled then looped 

through so that each data point is used equally often
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Stochastic
Gradient 
Descent (SGD) 
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� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

 and step size 𝛾

1. Initialize 𝜽 %  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. For 𝑖 ∈ shufMle 1, … ,𝑁

i. Compute the pointwise gradient:

∇𝜽𝐽 " 𝜽 # = 𝒙 " 𝑃 𝑌 = 1 𝒙 " , 𝜽 # − 𝑦 "

ii. Update 𝜽: 𝜽 #$% ← 𝜽 # − 𝛾∇𝜽𝐽 " 𝜽 #

iii. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 '



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent

9/23/24 16

Gradient Descent Stochastic Gradient Descent



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent

� An epoch is a single pass through the entire training dataset

� Gradient descent updates the parameters once per epoch

� SGD updates the parameters 𝑁 times per epoch

� Theoretical comparison:

� Define convergence to be when 𝐽 𝜽 𝒕 − 𝐽 𝜽∗ < 𝜖

9/23/24 17

Method
Steps to 

Convergence
Computation 

per Step

Gradient descent 𝑂 log Q1 𝜖 𝑂 𝑁𝐷

SGD 𝑂 Q1 𝜖 𝑂 𝐷

(with high probability under certain assumptions)



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent
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SGD

Gradient 
Descent

Empirically, SGD 

reduces the negative 
conditional log-
likelihood much 

faster than gradient 
descent

� An epoch is a single pass through the entire training dataset

� Gradient descent updates the parameters once per epoch

� SGD updates the parameters 𝑁 times per epoch



Optimization 
for ML 
Learning 
Objectives

You should be able to…
� Apply gradient descent to optimize a function
� Apply stochastic gradient descent (SGD) to optimize a 

function
� Apply knowledge of zero derivatives to identify a 

closed-form solution (if one exists) to an optimization 
problem

� Distinguish between convex, concave, and nonconvex 
functions

� Obtain the gradient (and Hessian) of a (twice) 
differentiable function

9/23/24 19



Logistic 
Regression 
Learning 
Objectives

You should be able to…
� Apply the principle of maximum likelihood estimation 

(MLE) to learn the parameters of a probabilistic 
model 

� Given a discriminative probabilistic model, derive the 
conditional log-likelihood, its gradient, and the 
corresponding Bayes Classifier 

� Explain the practical reasons why we work with the 
log of the likelihood 

� Implement logistic regression for binary (and 
multiclass) classification 

� Prove that the decision boundary of binary logistic 
regression is linear

9/23/24 20



PERCEPTRON, LINEAR REGRESSION, AND 
LOGISTIC REGRESSION

Linear Models

21



Question:
Match the Algorithm to its Update Rule 

Answer:

Matching Game

23

1. SGD for Logistic Regression

2. Least Mean Squares

3. Perceptron

4.

5.

6.

�k � �k +
1

1 + exp �(h�(x(i)) � y(i))

�k � �k + (h�(x(i)) � y(i))

�k � �k + �(h�(x(i)) � y(i))x(i)
k

h�(x) = p(y|x)

h�(x) = �T x

h�(x) = sign(�T x)

A. 1=5, 2=4, 3=6
B. 1=5, 2=6, 3=4
C. 1=6, 2=4, 3=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6
F. 1=6, 2=5, 3=5
G. 1=5, 2=5, 3=5
H. 1=4, 2=5, 3=6

I. None of the above



Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

Gradient Descent

25

In order to apply GD to Logistic 
Regression all we need is the 
gradient of the objective 
function (i.e. vector of partial 
derivatives). 

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

Recall…



Stochastic Gradient Descent (SGD)
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Recall…

We need a per-example objective:

We can also apply SGD to solve the MCLE 
problem for Logistic Regression.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = � HQ; p�(yi|ti).

—



Answer:

Logistic Regression vs. Perceptron

27

Question:
True or False: Just like Perceptron, one 
step (i.e. iteration) of SGD for Logistic 
Regression will result in a change to the 
parameters only if the current example is 
incorrectly classified.



BAYES OPTIMAL CLASSIFIER
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Bayes Optimal Classifier

Function Approximation
Previously, we assumed that our output 
was generated using a deterministic target 
function:

Our goal was to learn a hypothesis h(x) that 
best approximates c*(x)

Probabilistic Learning
Today, we assume that our output is 
sampled from a conditional probability 
distribution:

Our goal is to learn a probability distribution 
p(y|x) that best approximates p*(y|x)

29

Suppose you knew the 
distribution p*(y | x) or had 
a good approximation to 
it. 

Question: 
How would you design a 
function y = h(x) to predict 
a single label?

Answer: 
You’d use the Bayes 
optimal classifier!



Bayes Optimal Classifier

30

Suppose you have an oracle that knows the data generating distribution, p*(y|x).
Q: What is the optimal classifier in this setting?
A: The Bayes optimal classifier! This is the best classifier for the distribution p* and 
the loss function.

Definition: The reducible error is the expected loss of a hypothesis h(x) that could 
be reduced if we knew p*(y|x) and picked the optimal h(x) for that p*.

Definition: The irreducible error is the expected loss of a hypothesis h(x) that 
could not be reduced if we knew p*(y|x) and picked the optimal h(x) for that p*.



OPTIMIZATION METHOD #4:
MINI-BATCH SGD

32



Mini-Batch SGD

• Gradient Descent: 
Compute true gradient exactly from all N examples

• Stochastic Gradient Descent (SGD): 
Approximate true gradient by the gradient of one randomly 
chosen example

• Mini-Batch SGD: 
Approximate true gradient by the average gradient of K 
randomly chosen examples

33



Mini-Batch SGD

34

Three variants of first-order optimization:



FEATURE ENGINEERING

35



Handcrafted Features

36

NNP : VBN NNP VBD

PERLOC

Egypt - born Proyas directed

S

NP VP

ADJP VPNP

egypt - born proyas direct

p(y|x) ∝
     exp(Θy�f( ))

born-in



Where do features come from?
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Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005

First word before M1
Second word before M1
Bag-of-words in M1
Head word of M1
Other word in between
First word after M2
Second word after M2
Bag-of-words in M2
Head word of M2
Bigrams in between
Words on dependency path
Country name list
Personal relative triggers
Personal title list
WordNet Tags
Heads of chunks in between
Path of phrase labels
Combination of entity types



Where do features come from?
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Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

CBOW model in Mikolov et al. (2013)

input
(context words) embedding missing word

Look-up table Classifier

0.13 .26 … -.52

0.11 .23 … -.45

dog:

cat:similar words,
similar embeddings

unsupervised
learning



Where do features come from?
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Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

string
embeddings

Collobert & Weston, 
2008

Socher, 2011

Convolutional Neural Networks 
(Collobert and Weston 2008)

The [movie] showed [wars]

pooling

CNN

Recursive Auto Encoder 
(Socher 2011)

The [movie] showed [wars]

RAE



Where do features come from?

40

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

tree
embeddings

Socher et al.,
2013

Hermann & Blunsom, 
2013

string
embeddings

Collobert & Weston, 
2008

Socher, 2011

The [movie] showed [wars]

WNP,VP

WDT,NN WV,NN

S

NP VP



Where do features come from?
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word
embeddings

tree
embeddings

hand-crafted
features

string
embeddings
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Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston, 
2008

Socher, 2011

Socher et al.,
2013

Hermann & Blunsom, 
2013

Hermann et al.
2014

word embedding 
features

Turian et al. 
2010

Koo et al. 
2008

Refine embedding

features with

semantic/syntactic info



Where do features come from?
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word
embeddings

tree
embeddings

word embedding 
featureshand-crafted

features

best of both 
worlds?

string
embeddings

Fe
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Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston, 
2008

Socher, 2011

Socher et al.,
2013

Turian et al. 
2010

Koo et al. 
2008

Hermann et al.
2014

Hermann & Blunsom, 
2013



Feature Engineering for NLP

Suppose you build a logistic regression model to predict a part-
of-speech (POS) tag for each word in a sentence.

What features should you use?

43
The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb



Per-word Features:

Feature Engineering for NLP

44
The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb

is-capital(wi)
endswith(wi,“e”)
endswith(wi,“d”)
endswith(wi,“ed”)
wi == “aardvark”
wi == “hope”

…

1
1
0
0
0
0
…

0
1
0
0
0
0
…

1
0
0
0
0
0
…

0
0
1
1
0
0
…

0
0
1
1
0
0
…

0
1
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)



Context Features:

Feature Engineering for NLP

45
The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb

…
wi == “watched”
wi+1 == “watched”
wi-1 == “watched”
wi+2 == “watched”
wi-2 == “watched”

…

…
0
0
0
0
0
…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)



Context Features:

Feature Engineering for NLP

46
The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb

…
wi == “I”
wi+1 == “I”
wi-1 == “I”
wi+2 == “I”
wi-2 == “I”

…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

…
0
0
0
0
0
…

x(1) x(2) x(3) x(4) x(5) x(6)



Feature Engineering for NLP

47
The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb

Table from Manning (2011)



Background: Word Embeddings

One-hot vectors
• Standard representation of a word in NLP: 

1-hot vector (aka. a string)
• Vectors representing related words share 

nothing in common

Word embeddings
• Word embedding: real-valued vector 

representation of a word in M dimensions
• Related words have similar vectors
• Long history in NLP: Term-doc frequency 

matrices, Reduce dimensionality with {LSA, 
NNMF, CCA, PCA}, Brown clusters, Vector 
space models, Random projections, Neural 
networks / deep learning

48

0 0 0 1 0 … 0 0cat:

a an
d

be ca
t

do
g

yo
u

ze
br
a

0 0 0 0 1 … 0 0dog:

0.13 .26 … -.52cat:

0.11 .23 … -.45dog:



Background: Word Embeddings
•  It’s common to use neural-network trained embeddings

– Key idea: learn embeddings which are good at reconstructing the 
context of a word

– Popular across HLT (speech, NLP)
• The Continuous Bag-of-words Model (CBOW) (Mikolov et al., 

2013) maximizes the likelihood of a word given its context:

49

-.32 .99 … 1.0

the
.13 .26 … -.52

do
g

-.32 .99 … 1.0

the
.01 .13 … -.75

fence

.36 -.01 … 2.7 … -1.5 -7.0

-.48 2.1 … -.05(SUM)

INPUT:

PROJECTION
:

OUTPUT: an
d

be jum
pe
d

yo
u

ze
br
a



Feature Engineering for CV
Edge detection (Canny)

50
Figures from http://opencv.org

Corner Detection (Harris)



Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

51
Figure from Lowe (1999) and Lowe (2004)



Feature Engineering
Question:
Suppose you are 
building a classification 
model to predict the 
reason that CMU’s 
campus has so many 
building entrances 
closed off by security 
this morning.

What features would 
you use?

53

Answer:



NON-LINEAR FEATURES

54



Nonlinear Features
• aka. “nonlinear basis functions”
• So far, input was always
• Key Idea: let input be some function of x

– original input:
– new input:
– define 

• Examples: (M = 1)

55

For a linear model: 
still a linear function 
of b(x) even though a 
nonlinear function of 
x
Examples:
- Perceptron
- Linear regression
- Logistic regression



Example: Linear Regression

56x

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

i y x

1 2.0 1.2

2 1.3 1.7

… … …

10 1.1 1.9

y



Example: Linear Regression

57x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

i y x

1 2.0 1.2

2 1.3 1.7

… … …

10 1.1 1.9



Example: Linear Regression

58x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

i y x x2

1 2.0 1.2 (1.2)2

2 1.3 1.7 (1.7)2

… … … …

10 1.1 1.9 (1.9)2



Example: Linear Regression

59x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

i y x x2 x3

1 2.0 1.2 (1.2)2 (1.2)3

2 1.3 1.7 (1.7)2 (1.7)3

… … … … …

10 1.1 1.9 (1.9)2 (1.9)3



Example: Linear Regression

60x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

i y x … x5

1 2.0 1.2 … (1.2)5

2 1.3 1.7 … (1.7)5

… … … … …

10 1.1 1.9 … (1.9)5



Example: Linear Regression

61x

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

y

i y x … x8

1 2.0 1.2 … (1.2)8

2 1.3 1.7 … (1.7)8

… … … … …

10 1.1 1.9 … (1.9)8



Example: Linear Regression

62x

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

y

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

… … … … …

10 1.1 1.9 … (1.9)9



Over-fitting

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen



Polynomial Coefficients   

Slide courtesy of William Cohen



Example: Linear Regression

65x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

… … … … …

10 1.1 1.9 … (1.9)9

• With just N = 10 
points we overfit!

• But with N = 100 
points, the 
overfitting 
(mostly) 
disappears

• Takeaway: more 
data helps 
prevent 
overfitting



Example: Linear Regression

66x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

• With just N = 10 
points we overfit!

• But with N = 100 
points, the 
overfitting 
(mostly) 
disappears

• Takeaway: more 
data helps 
prevent 
overfitting

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian 
noise

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

3 0.1 2.7 … (2.7)9

4 1.1 1.9 … (1.9)9

… … … … …

… … … … …

… … … … …

98 … … … …

99 … … … …

100 0.9 1.5 … (1.5)9



REGULARIZATION

67



Overfitting
Definition: The problem of overfitting is when the model 
captures the noise in the training data instead of the 
underlying structure 

Overfitting can occur in all the models we’ve seen so far: 
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)

68



Motivation: Regularization

• Occam’s Razor: prefer the simplest hypothesis

• What does it mean for a hypothesis (or model) to be simple?
1. small number of features (model selection)
2. small number of “important” features (shrinkage)

70



Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff 
between fitting the data and keeping the model 
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm):

71

𝜽 + = .
,"#

-

𝜃, +

#
+



Regularization Examples

72

Add an L1 regularizer to Linear Regression (aka. LASSO)

Add an L2 regularizer to Linear Regression (aka. Ridge Regression)



Regularization Examples

73

Add an L1 regularizer to Logistic Regression

Add an L2 regularizer to Logistic Regression



Regularization

74

Question:
Suppose we are minimizing J’(θ) where

As λ increases, the minimum of J’(θ) 
will…

A. …move towards the midpoint 
between J(θ) and r(θ)

B. …move towards the minimum of J(θ) 
C. …move towards the minimum of r(θ)
D. …move towards a theta vector of 

positive infinities
E. …move towards a theta vector of 

negative infinities
F. …stay the same



Regularization

79

Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is 

usually denoted by 𝜃% -- that is, the parameter for which 
we fixed 𝑥% = 1 

• Regularizers always avoid penalizing this bias / intercept 
parameter

• Why? Because otherwise the learning algorithms wouldn’t 
be invariant to a shift in the y-values

Standardizing Data
• It’s common to standardize each feature by subtracting its 

mean and dividing by its standard deviation
• For regularization, this helps all the features be penalized 

in the same units 
(e.g. convert both centimeters and kilometers to z-scores)



REGULARIZATION EXAMPLE: 
LOGISTIC REGRESSION

85



Example: Logistic Regression
• For this example, we 

construct nonlinear features 
(i.e. feature engineering)

• Specifically, we add 
polynomials up to order 9 of 
the two original features x1 
and x2

• Thus our classifier is linear in 
the high-dimensional 
feature space, but the 
decision boundary is 
nonlinear when visualized in 
low-dimensions (i.e. the 
original two dimensions)

86

Training 
Data

Test
Data



Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression

100

lambda

er
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OPTIMIZATION FOR L1 REGULARIZATION

101



Optimization for L1 Regularization

Can we apply SGD to the LASSO learning 
problem?
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JLASSO(�) = J(�) + �||�||1

=
1

2

N�

i=1

(�T x(i) � y(i))2 + �
K�

k=1

|�k|

�MAP = argmax
�

N�

i=1

log p�(y(i)|x(i)) + log p(�)

= argmax
�

JLASSO(�)argmin



Optimization for L1 Regularization

• Consider the absolute value function:
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r(�) = �
K�

k=1

|�k|

• The L1 penalty is subdifferentiable (i.e. not 
differentiable at 0)



Optimization for L1 Regularization
• The L1 penalty is subdifferentiable (i.e. not 

differentiable at 0)
• An array of optimization algorithms exist to handle 

this issue:
– Subgradient descent
– Stochastic subgradient descent
– Coordinate Descent
– Othant-Wise Limited memory Quasi-Newton (OWL-QN) 

(Andrew & Gao, 2007)  and provably convergent variants
– Block coordinate Descent (Tseng & Yun, 2009)
– Sparse Reconstruction by Separable Approximation 

(SpaRSA) (Wright et al., 2009)
– Fast Iterative Shrinkage Thresholding Algorithm (FISTA) 

(Beck & Teboulle, 2009)
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Basically the same as GD 
and SGD, but you use 

one of the subgradients 
when necessary



Takeaways

1. Nonlinear basis functions allow linear models (e.g. Linear 
Regression, Logistic Regression) to capture nonlinear 
aspects of the original input

2. Nonlinear features are require no changes to the model 
(i.e. just preprocessing)

3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are equivalent for 

appropriately chosen priors
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Feature Engineering / Regularization Objectives
You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and remove 

irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to combat 

overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly separable 

dataset in higher dimensions
• Describe feature engineering in common application areas
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