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Reminders

* Exam 1
— Mon, Sep. 30, 6:30pm - 8:30pm

* Homework 4: Logistic Regression

— Out: Fri, Feb 17
— Due: Sun, Feb. 26 at 11:59pm




EXAM 1 LOGISTICS



Exam 1

 Time /Location
— Time: Mon, Sep 30, at 6:30pm - 8:30pm
— Location & Seats: You have all been split across multiple rooms. Everyone has an assigned
seat in one of these room.
— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 1 — Lecture 7
— Format of questions:
* Multiple choice
* True/ False (with justification)
* Derivations
» Short answers
* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Exam 1

* How to Prepare
— Attend the Exam OHs on Friday
— Review exam practice problems
— Review this year’s homework problems

— Consider whether you have achieved the “learning objectives” for
each lecture [ section

— Write your one-page cheat sheet (back and front)



Exam 1

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely missing something
— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the answer:
* we probably haven’t told you the answer

* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Exam 1

e Foundations

— Probability, Linear Algebra,
Geometry, Calculus

— Optimization

* Important Concepts
— Overfitting
— Experimental Design

e (lassification

— Decision Tree
— KNN
— Perceptron

* Regression

— KNN Regression
— Decision Tree Regression
— Linear Regression
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STOCHASTIC GRADIENT DESCENT



Recall:
Gradient

Descent for
Logistic
Regression

9/23/24

. N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8@ to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
O(ND){ Ve](g(t)) = %z x@ (P(Y = 1|x(i), g(t)) — y(i))
=1

b. Update 8: 9t « 9 —yy,7(9W1)

c. Incrementt:t<t+1

- Qutput: 80
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* Input: training dataset D = {(x(i),y(i))}li\lzl and step size y

1. Initialize 8 to all zeros and sett = 0

Stochastic 2. While TERMINATION CRITERION is not satisfied
Gradient a. Randomly sample a data point from D, (x(i),y(i))

Descent (SGD) b. Compute the pointwise gradient:
Vej(i)(g(t)) — x(i)(p(y — 1|x(i), e(t)) _ y(i))
c. Update 8: 00+D 9O _ yVej(i)(e(t))

d. Incrementt:t < t+1

- Qutput: 8®

9/23/24
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* If the example is sampled uniformly at random, the expected

value of the pointwise gradient is the same as the full gradient!

Stochastic N
Gradient E [ng (0 (9)] = Z(probability of selecting x®, y(i)) Vo D(0)
Descent (SGD) o 1 1N

- Z () v = NZ 7/ ©(8) = Vg (6)

* In practice, the data set is randomly shuffled then looped

through so that each data point is used equally often

9/23/24



Stochastic
Gradient
Descent (SGD)

9/23/24

. N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied
a. Fori € shuffle({1,...,N})
I.  Compute the pointwise gradient:
v9]<i>(9<t>) — x(i)(p(y — 1|x(i)’9(t)) _ y(i))
i. Update 8: 0*D « ) — yy,j0 (1)

iii. Incrementt:t < t+1

- Qutput: 80
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Stochastic
Gradient

Descent vs.

Gradient
Descent

9/23/24

Gradient Descent

Stochastic Gradient Descent
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Stochastic
Gradient

Descent vs.

Gradient
Descent

9/23/24

* An epoch is a single pass through the entire training dataset

* Gradient descent updates the parameters once per epoch

- SGD updates the parameters N times per epoch

* Theoretical comparison:

- Define convergence to be when ](H(t)) —J(0%) < €

Convergence per Step

Gradient descent 0 (log 1/¢) O(ND)
SGD 0(1/¢) 0(D)

\/_/

(with high probability under certain assumptions)
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Stochastic
Gradient

Descent vs.

Gradient
Descent

9/23/24

* An epoch is a single pass through the entire training dataset

* Gradient descent updates the parameters once per epoch

- SGD updates the parameters N times per epoch

A

Gradient Empirically, SGD
Descent reduces the negative
conditional log-
likelihood much

faster than gradient
SGD

Negative conditional
log-likelihood

descent

epochs
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Optimization
for ML

Learning
Objectives

9/23/24

You should be able to...

* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to optimize a
function

* Apply knowledge of zero derivatives to identify a
closed-form solution (if one exists) to an optimization
problem

* Distinguish between convex, concave, and nonconvex
functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function

19



You should be able to...
* Apply the principle of maximum likelihood estimation
(MLE) to learn the parameters of a probabilistic

model
Logistic * Given a discriminative probabilistic model, derive the
Regression conditional log-likelihood, its gradient, and the

corresponding Bayes Classifier
* Explain the practical reasons why we work with the

Learning

Objectives log of the likelihood

* Implement logistic regression for binary (and
multiclass) classification

* Prove that the decision boundary of binary logistic
regression is linear

9/23/24 20



PERCEPTRON, LINEAR REGRESSION, AND
LOGISTIC REGRESSION



Matching Game

Question:
Match the Algorithm to its Update Rule

1. SGD for Logistic Regression 4. 0, « 0, + (he(X(i)) _ y(i)>
he(x) = p(y|z)

2. Least Mean Squares 5. 0, « 0, + 1
k k : .
ho(x) = 01x 1 + exp A(ho(x(")) — y(9)
3. Perceptron 6.

(1)) _ 4,1} (D)
he(x) = sign(0”" x) Or = O + Alho(x™) — 4" )z,

Answer: A.1=5, 2=4, 3=6 E.1=6, 2=6, 3=6 |. None of the above
B. 1=5, 2=6, 3=4 F.1=6, 2=5, 3=5
C.1=6, 2=4,3=4 G. 1=5, 2=5, 3=5

D. 1=5, 2=6, 3=6 H. 1=4, 2=5, 3=6



Gradient Descent
Algorithm 1 Gradient Descent
procedure GD(D, H(O))

1:

2 6« 6%

% while not converged do

4 00— "7VeJ(O)

5 return 6
In order to apply GD to Logistic | % J(H) ]
Regression all we need is the % J(0)

2

gradient of the objective VOJ(O) _
function (i.e. vector of partial

derivatives). d 7(6)




Stochastic Gradient Descent (SW

Algorithm 1 Stochastic Gradient Descent (SG D)

= procedure SGD(D, )

x 0« Y

B while not converged do

4: fori € shuffle({1,2,...,N}) do
5:

6

060 —1VeJD(O)
return 0

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = .1, J)(6)
where J()(0) = — log pe (y'|x?).



Logistic Regression vs. Perceptron

Question:

True or False: Just like Perceptron, one
step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the

N —
parameters only if the current example is u
incorrectly classified. + +

T %
Answer: T 4+ +




BAYES OPTIMAL CLASSIFIER



Bayes Optimal Classifier
({ Suppose you knew the

Functiq distribution p*(y | X) or had Probabilistic Learning
Previous ?chOd AR PIOAIEINGL) S Today, we assume that our output is
was ger| t sampled from a conditional probability
functior : distribution:

Question:

How would you design a ( P)

function y = h(x) to predlct ~ P ( )

a single Iabel’ ;

E() p*(-[x'*)

Answer: Our goal is to learn a probability distribution
Our goal you’d use the Bayes it p(y|x) that best approximates p*(y|x)
best aPI| optimal classifier!




Bayes Optimal Classifier

Suppose you have an oracle that knows the data generating distribution, p*(y|x).
Q: What is the optimal classifier in this setting?
A: The Bayes optimal classifier! This is the best classifier for the distribution p* and

the loss function.

A

Definition: The reducible error is the expected loss of a hypothesis h(x) that could
be reduced if knew a p*(y|x) and picked a the optimal h(x) for that p*.

Definition: The irreducible error is the expected loss of a hypothesis h(x) that
could not be reduced if knew a p*(y|x) and picked a the optimal h(x) for that p*.



OPTIMIZATION METHOD #4:
MINI-BATCH SGD



Mini-Batch SGD

* Gradient Descent:
Compute true gradient exactly from all N examples

» Stochastic Gradient Descent (SGD):

Approximate true gradient by the gradient of one randomly
chosen example

e Mini-Batch SGD:

Approximate true gradient by the average gradient of K
randomly chosen examples



Mini-Batch SGD

while not converged: 0 <~ 0 — g

Three variants of first- order optimization:

Gradient Descent: g = V.J (6 Z vJ® (6
SGD: g = VJ('L)(H) where ¢ sampled uniformly

Mini-batch SGD: g = 5 Z vJs)(9) where is sampled uniformly Vs
s=1



FEATURE ENGINEERING



Handcrafted Features

p(y|x) o
exp(O,°f




ineering

Feature Eng

Where do features come from?

A

hand-crafted
features

Sun et al., 2011

O

3

O

Zhou et al.,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning
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Feature Engineering

Where do features come from?

A

hand-crafted
features

O

Sun et al., 2011

O

3

O

Zhou et al.,
2005

O

Look-up table Classifier
(contI:xl?cL\:\fords) embedding F——> missing word
unsupervised
learning
similar words, cat:{o.11 | .23 45
similar embeddings
dog:| 0.13 | .26 -.52

CBOW model in Mikolov et al. (2013)

word /
embeddings

O Mikolov et al.,

2013

Feature Learning
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Feature Engineering

Where do features come from?

A pooling ——1 A
// \\
l ] 1 ] | ] | | l ] 1 ] 1 ]
| er IR IN 1N N
O s [ s e |
The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A\ "4
Zhou et al., .
2005 word strlng
. embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al,, O Collobert & Weston,
2013 2008

Feature Learning



Feature Engineering

Where do features come from?

A

Ve N
NP VP ?
R
WpranZ Wynn 7
/ \

t ot 0

The [movie] showed [wars]

tree

S ®) embeddings

Socher et al.,

O 2013

4 Hermann & Blunsom,
1

U
; 2013

/

O

2005

word

embeddings

O Mikolov et al.,
2013

J string

!/~ embeddings
Socher, 2011

O Collobert & Weston,

2008

Feature Learning

40



Feature Engineering

Where do features come from?

A e
) en. e Sy 9’776
word embedding ’776/; Uy, Cqy.
P e, S,
hand-crafted eatures \/Syh "l’lfb &
features o ----- >0 t"q-
= Turian et al. c,
O~ O 2010 O s,
: Hermann et al. o
Sun et al., 2011 Koo etal. 2014
O 2008
? tree
; ®) embeddings
! Socher et al.,
8 I O 2013
H A Hermann & Blunsom,
i / 2013
O :
Zhou et al., 1: / .
2005 ! word ,'I strlng
. / embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning
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Feature Engineering

Where do features come from?

A

word embedding best of both
hand-crafted features 5
worlds:

features A~ ----- >O e s O

e Turian et al. O
O O 2010 Hermann et al. A

. Koo et al.
Sun et al., 2011 2014

O 4‘2008

3

tree
®) embeddings

Socher et al.,

O 2013

4 Hermann & Blunsom,
1

O ! 2013
U
U4
Zhou et al., / tri
2005 word ,'I S rlng
. / embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning

42



Feature Engineering for NLP

Suppose you build a logistic regression model to predict a part-
of-speech (POS) tag for each word in a sentence.

What features should you use?

[deter.} [ noun } [ noun } [ verb }

The movie | watched depicted hope




Feature Engineering for NLP

Per-word Features:

x(1) x(2) x3) x(4) x(5) x(6)
is-capital (w;) 1 1
endswith (wy, “e”) 1 1 1
endswith (w;, “d”) 1 1
endswith (w;, “ed”) 1 1
w; == “aardvark”
w; == “hope” 1

[deter. } [ noun } [ noun } [ verb }

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x(2) x3) x(4) x(5) x(6)
w; == “watched” 1
Wiy == “watched” 1
w;i_1 == “watched” 1
Wi == “watched” 1
Wi_, == “watched” 1

[deter. } [ noun } [ noun } [ verb }

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x(2) x(3) x(4) x(5) x(6)
w. == N7 1
Wiy == “I7 1
Wiy == 17 1
Wi == VI 1
Wi, == “I1” 1

[deter. } [ noun } [ noun } [ verb }

The movie | watched depicted hope




Table from Manning (2011)
Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token  Unk.

Feats Acc. Acc. Acc.
3GRAMMEMM See text 248,798 52.07% 96.92% 88.99%
NAACL 2003  See text and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication’  +rareFeatureThresh =5 482,364 55.67% 97.19% 88.96%
oW +<to, ’w_2>, (to, ’w2> 730,178 56.23% 97.20% 89.03%
SWSHAPES +<t0, S_1>, <t0, 80>, <t0, S+1> 731,661 56.52% 97.25% 89.81%

5WSHAPESDS + distributional similarity 737,955 56.79% 97.28% 90.46%

[deter.} [ noun } [ noun ] [ verb }

The movie | watched depicted hope




Background: Word Embeddings

One-hot vectors Word embeddings

* Standard representation of a word in NLP: *  Word embedding: real-valued vector
1-hot vector (aka. a string) representation of a word in M dimensions

* Vectors representing related words share * Related words have similar vectors
nothing in common .

Long history in NLP: Term-doc frequency
matrices, Reduce dimensionality with {LSA,
NNMF, CCA, PCA}, Brown clusters, Vector
space models, Random projections, Neural
networks [ deep learning

o

> X, & S )

> & ¢ & P L 0
cat:| o 0 0 1 0 0 0 cat: | 0.13 | .26 |... -.52

dog:| © 0 0 0 1 0 0 dog: | 0.1 | .23 ... -.45




Background: Word Embeddings

* It’s common to use neural-network trained embeddings
— Key idea: learn embeddings which are good at reconstructing the

context of a word

— Popular across HLT (speech, NLP)
* The Continuous Bag-of-words Model (CBOW) (Mikolov et al.,

2013) maximizes the likelihood of a word given its context:

Qab o
N \
S ¢ '\”‘& & &
OUTPUT:
36 | -.01 2.7 15 | -7.0
A
PROJECTION (SUM) [ -a8 |2 05
INPUT: -32 [ .99 | .. 1.0 3 | .26 | .. -52 -32 .99 | .. 1.0 01 | .13 -75
the do the fence




Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Figures from http://opencv.org
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Feature Engineering for CV

Scale Invariant

Figure 3: Model images of planar objects are shown in the
oprow. Recognitionresults below show model outlines and
mage kevs used for matching.

~eature Transform (SIFT)

V
\/

sale | o >

(next

octave) w
=

Scale >@———>
(first
octave) >@

\4

y

Difference of
Gaussian Gaussian (DOG)

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

Figure from Lowe (1999) and Lowe (2004)
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Feature Engineering

Question: Answer:
Suppose you are

building a classification

model to predict the

reason that CMU'’s

campus has so many

building entrances

closed off by security

this morning.

What features would
you use?



NON-LINEAR FEATURES



aka. “nonlinear basis functions”

Nonlinear Features

For a linear model:

So far, input was always X=|T1,...,TM still a linear function
1P , Y , 215 | of b(x) even though a
Key Idea: let input be some function of x nonlinear function of
— original input: xR ~ where M’ > M (usually) )é los:
— new input: x' ¢ RM Xamples:
— define x' = b(x) = [b1(x), ba(x), . . ., bar (X)] - Perceptron

where b; : RM — Ris any function

Examples: (M = 1)

polynomial
radial basis function
sigmoid

log

bj(r) =27 Vje{l,...,J}

bj (CIJ) = exp ((%20-2,[@)2)

J
1
bi(x) =
() 1 + exp(—w;x)

bj(z) = log(z)

Linear regression
Logistic regression



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial

basis function .

L lals
2.0 -

1 2.0 1.2

2 13 17 15
10 11 1.9 1.0 -
0.5 -

true “unknown”
target function is

linear with 0-0-
negative slope

and gaussian 0.5 -
noise Lo

1.5

2.0

2.5

3.0

56



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=1)

2.0 -
L lals

1 2.0 1.2
1.5 -

2 13 1.7
Y 10
10 11 1.9
0.5 -
true “unknown”
target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=2)

[y [ [

y
1 20 12 (1.2)

1.5 -
2 1.3 1.7 (1.7)
Y 10
10 11 1.9 (1.9)
0.5 -
true “unknown”
target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example:

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

1

1.2 (1.2)> (1.2)3

> 13 17 (172 (.7)

y
10 11 1.9 (1.9)>(1.9)3

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Linear Regression

Linear Regression (poly=3)

15 2.0 2.5

59



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)

y
1 20 12 .. (1.2

2 1.3 1.7 ... (1.7
10 11 19 .. (19p

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

60



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

y
8
1 20 12 .. (1.2) s
2 13 1.7 ... (1.7)8
y 1.0
10 11 19 .. (1.9)8
0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
~0.5 -

and gaussian
noise

1.5

Linear Regression (poly=8)

2.0 2.5

3.0
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Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

y
1 20 12 .. (1.2)° s
2 1.3 1.7 ... (1.7)?
y 1.0

10 11 19 .. (1.9)°

0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope

-0.5 -

and gaussian
noise

1.5

Linear Regression (poly=9)

2.0

2.5

3.0

62



Over-fitting

—©— Training
—O— Test

M 6 9

Root-Mean-Square (RMS) Error:  Erus = V2E(w*)/N

Slide courtesy of William Cohen



Polynomial Coefficients

M=0 M=1 M=3 M=9
% 0.19  0.82  0.31 0.35
0, 127 7.99 232.37
0, -95.43 _5321.83
6, 17.37 48568.31
04 -231639.30
05 640042.26
6 -1061800.52
0, 1042400.18
0 -557682.99
0 125201.43

Slide courtesy of William Cohen



Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial
basis function

2.0 - !
L lls]e ]
1 20 12 .. (1.2)° s
2 1.3 1.7 ... (1.7)°
y 1.0 -
10 11 19 .. (1.9)°
0.5 -
0.0 -
-0.5 -

1.5

Linear Regression (poly=9)

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0
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Example: Linear Regression

Goal: Learny =w' f(x) +b
where f(.) is a polynomial

basis function

2.5 -
|y x|
2.0 -
1 20 12 .. (1.2)°
2 13 17 .. (1.7)° 15 -
01 27 ... (2.7)°
1.0 -
4 11 19 .. (1.9)?
0.5 -
0.0 -
98 -0.5
99

100 0.9 15 ... (1.5)°

Linear Regression (poly=9)

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0



REGULARIZATION



Overfitting

Definition: The problem of overfitting is when the model
captures the noise in the training data instead of the
underlying structure

Overtfitting can occur in all the models we’ve seen so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

* Occam’s Razor: prefer the simplest hypothesis

* What does it mean for a hypothesis (or model) to be simple?
1. small number of features (model selection)
2. small number of “important” features (shrinkage)



Regularization

Given objective function: J(0)
Goal is to find: 0 = argmin J(0) + Ar(0)
0

Key idea: Define regularizer r(0) s.t. we tradeoff

between fitting the data and keeping the model
simple

1
Choose form of r(0): M q
— Example: g-norm (usually p-norm): [|8]|,; = (Z |8m|q>

m=1

q 7(0) yields parame- name  optimization notes
ters that are...
0 |[|8]lo =>_1(0, #0) zero values Loreg. no good computa-
tional solutions
L |8]]1 =) |0m] zero values Lireg. subdifferentiable

2 (||0]]2)% = > 02, small values L2reg. differentiable




Regularization Examples

Add an L2 regularizer to Linear Regression (aka. Ridge Regression)

Tua(8) = 7 (8) + N6
1 <1 . . M
=~ Z 5 (6T xD) — y®)2 4| Z 62
1=1 m=1

Add an L1 regularizer to Linear Regression (aka. LASSO)

Jiasso(0) = J(0) +|A||0]|1

1 L] | | M
=N Z 5(9Tx(7’) — )% HA Z [
=1 m=1




Regularization Examples

Add an L2 regularizer to Logistic Regression

7'(0) = 7(0) A|10]

1

==Y —logp(y® | x,6) +

N

1=1

Add an L1 regularizer to Logistic Regression

J'(6) =

J(0) +

N . . M
> —logp(y™ | xD,0) HA D (O]
m=1

1
N

1=1

All6]l1
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Regularization

Question:

Suppose we are minimizing J’(8) where

J' () = J(6) + Ar(8)

As A increases, the minimum of J’(0)

will...
A.

... move towards the midpoint
between J(0) and r(0)

...move towards the minimum of J(8)
... move towards the minimum of r(6)
...Mmove towards a theta vector of
positive infinities

...move towards a theta vector of
negative infinities

... stay the same

<

S




Regularization

Don’t Regularize the Bias (Intercept) Parameter!

In our models so far, the bias / intercept parameter is
usually denoted by 6, -- that is, the parameter for which
we fixed xg = 1

Regularizers always avoid penalizing this bias [ intercept
parameter

Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Standardizing Data

It’s common to standardize each feature by subtracting its
mean and dividing by its standard deviation

For regularization, this helps all the features be penalized
in the same units
(e.g. convert both centimeters and kilometers to z-scores)




REGULARIZATION EXAMPLE:
LOGISTIC REGRESSION



Example: Logistic Regression
. * For this example, we

construct nonlinear features
(i.e. feature engineering)

2-

Training .

bata * Specifically, we add
: , polynomials up to order 9 of
| | the two original features x,
L L 5 ; ; ; . and X5
* Thus our classifier is linear in
. . the high-dimensional
: eI feature space, but the
§ ol decision boundary is
Test LLUTSRRMEDES nonlinear when visualized in
Data =~ lodmgenRlat o low-dimensions (i.e. the
O original two dimensions)



Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e-05)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.0001)
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Example: Logistic Regression

- Classjfication with Logistic Regression (lambda=0.001)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)

o1



Example: Logistic Regression

Classification with Logistic Regression (lambda=1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=10)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=10000)
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Example: Logistic Regression

~ Classification with Logistic Regression (lambda=100000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+06)
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Example: Logistic Regression

~ Classification with Logistic Regression (lambda=1e+07)
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error

Example: Logistic Regression
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OPTIMIZATION FOR L1 REGULARIZATION



Optimization for L1 Regularization

Can we apply SGD to the LASSO learning
problem?

argmin  Jy, o550 (0)
V)

Jrasso(0) = J(0) +|A||0]]1

S SIS

1=1 k:l




Optimization for L1 Regularization

e Consider the absolute value function:
A

r(6) =) |0l

< >

* The L1 penalty is subdifferentiable (vi.e. not
differentiable at 0)

Def: A vector g € RM is called a subgradient of a function f(x) :
RM — R at the point x if, for all x’ € R, we have:

fx) > f(x)+g" (x' —x)



Optimization for L1 Regularization

* The L1 penalty is subdifferentiable (i.e. not
differentiable at 0)

* An array of optimization algorithms exist to handle

this issue: . Basically the same as GD
— Subgradient descent and SGD, but you use

— Stochastic subgradient descent | ©n€ OLthe subgradients
— Coordinate Descent when necessary

— Othant-Wise Limited memory Quasi-Newton (OWL-QN)
(Andrew & Gao, 2007) and provably convergent variants

— Block coordinate Descent (Tseng & Yun, 2009)

— Sparse Reconstruction by Separable Approximation
(SpaRSA) (Wright et al., 2009)

— Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
(Beck & Teboulle, 2009)



Takeaways

1. Nonlinear basis functions allow linear models (e.g. Linear
Regression, Logistic Regression) to capture nonlinear
aspects of the original input

2. Nonlinear features are require no changes to the model
(i.e. just preprocessing)
3. Regularization helps to avoid overfitting

4. Regularization and MAP estimation are equivalent for
appropriately chosen priors



Feature Engineering [ Regularization Objectives

You should be able to...

Engineer appropriate features for a new task

Use feature selection techniques to identify and remove
irrelevant features

Identify when a model is overfitting

Add a regularizer to an existing objective in order to combat
overfitting

Explain why we should not regularize the bias term

Convert linearly inseparable dataset to a linearly separable
dataset in higher dimensions

Describe feature engineering in common application areas



