M 10-301/10-601 Introduction to Machine Learning

Machine Learning Department

| —] School of Computer Science

MACHINE LEARNING : o
EEEEEEEEEE Carnegie Mellon University

%

Neural Networks
o=
Backpropagation

Matt Gormley & Henry Chai
Lecture 12
Oct. 2, 2024

Reminders

Scaling Up

* Post-Exam Followup: 400

300
— Exam Viewing I I I I

— Exit Poll: Exam 1 T
—_— Grade Summary 1 m OH attendance m Exam Viewing attendance

* Homework 4: Logistic Regression
— Out: Mon, Sep 30
— Due: Wed, Oct 9 at 11:59pm

ARCHITECTURES

Neural Network Architectures

Even for a basic Neural Network, there are many design
decisions to make:

1. # of hidden layers (depth)

2. # of units per hidden layer (width)

3. Type of activation function (nonlinearity)
4. Form of objective function

5. How to initialize the parameters

Neural Network

Example: Neural Network with 2
Hidden Layers and 2 Hidden Units

1 1 1 1 1
Z§) - G(Q:El)xl + agz)xz + a§3)X3 + ago)
1 1 1 1 1
2 2 1 2 1 2
Zé) = 0(6(2(1)2](_) + a£2)2§) + ago))

2 2
y = 0B 22+ Bp 237 + By)

Neural Network (Matrix Form)

Example: Arbitrary Feed-forward Neural Network

p € RP2
2
B, €R y = o((B)T2 + By)
(2)
@ a”’ € RMXDz Z(Z) _ G((a(z))Tz(l) + b(Z))
b2 € RP2

zP = o((@™)x + bW)
a(l) € RM*Dy

pD e RP1

11

Neural Network (Vector Form)

Neural Network with 1 Hidden Layers
and 2 Hidden Units (Matrix Form

Output Y= U(’BTZ)
Weights

2o = O'(ag:x)
Hidden Layer 21 — U(a,{ X)

13

LOSS FUNCTIONS & OUTPUT LAYERS

Neural Network for Classification

[(E) Output (silgmoid)

Output Y= Trexp(—p)

f

(D) Output (linear)
b=3"1"0Bz

Hidden Layer

?

(C) Hidden (sigmoid)
% = Treway))

?

(B) Hidden (linear)
aj = it ajitti, Vi

[(A) Inzut]

Given x;, V1

24

Output

Hidden Layer

Neural Network for Regression

(D) Output (Iilnear)
y =082

?

(C) Hidden (sigmoid)
% = Treway) V)

?

(B) Hidden (linear)
aj = Yty iis Vi

[(A) Inzut]

Given x;, V1

25

Objective Functions for NNs

1. Quadratic Loss:
— the same objective as Linear Regression
— i.e. mean squared error

1

J = Loy, y?) = 1, —y(9))2
aJ)

2. Binary Cross-Entropy:
— the same objective as Binary Logistic Regression
— i.e. negative log likelihood
— This requires our output y to be a probability in [0,1]

dJ Ny : 1
oY (i) = I () AN
— Y + (1)
2 y (1—y)y_1

Objective Functions for NNs

Cross-entropy vs. Quadratic loss

Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,
W, respectively on the first layer and W5 on the second,
output layer.

Figure from Glorot & Bentio (2010)

Multiclass Output

Multiclass Output

Softmax:

Output

Hidden Layer

[(F) Loss

J =Y, v log(ys)

f

(E) Output (softmax)

_ _ exp(bg)
[Yk = ZLK:1 exp(b;

)

|

f

[(D) Output (linear)

b = 350 Brjz; Vk

|

f

[(C) Hidden (nonlinear)
<j = O(Gj)a Vj

f

[(B) Hidden (linear)

M .
aj = i_oQjiTi, Vj

f

[(A) Input

Given x;, V1

|

Objective Functions for NNs

3. Cross-Entropy for Multiclass Outputs:

i.e. negative log likelihood for multiclass outputs
Suppose output is a random variable Y that takes one of K values
Let y() represent our true label as a one-hot vector:

yO=1o|lo|o|1|o|lo0]...|0
1 2 3 4 5 6 .. K

Assume our model outputs a length K vector of probabilities:

y = softmax(fscores(X, 0))

Then we can write the log-likelihood of a single training example (x®, y®)
as:

K
J=Llep(y,y?)=—Y_ y log(yx)
k=1

30

Deeper Networks

Q: How many layers should we use?

Deeper Networks

Q: How many layers should we use?

Hidden Layer 1

~
—
u
©
—
c
[}
o
S
T

To'n'n

RO KNe

B

e

Deeper Networks

dd
dd
Hidden Layer

Q: How many layers sho we use?

33

Deeper Networks

Q: How many layers should we use?

34

Feature Learning

II decision |

| objects

| lines

Figures from Lee et al. (ICML 2009)

Loblects |
II parts |
[fines |

pixels

Traditional feature

engineering: build up

levels of abstraction
by hand

Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data

— eachlayerisa
learned feature
representation

— sophistication
increases in higher
layers

35

Feature Learning

CBDN on Faces

el 12 BLE]
BERSRCE
EEA =

RUEREYV=NN
b -=whe

Figures from Lee et al. (ICML 2009)

Traditional feature

engineering: build up

levels of abstraction
by hand

Deep networks (e.g.
convolution
networks): learn the
increasingly higher
levels of abstraction
from data

— eachlayerisa
learned feature
representation

— sophistication
increases in higher
layers

36

Neural Network Errors

Question X: For which of the datasets below Question Y: For which of the datasets

does there exist a one-hidden layer neural
network that achieves zero classification
error? Select all that apply.

A A) 4 B)
+ ++
4 -+
> >
40 4D) ++_+
++ =
+ =+, + =+ T
4+ T+ o+
> >

below does there exist a one-hidden layer
neural network for regression that achieves
nearly zero MSE? Select all that apply.

AA) AB)
®
,. o.o
> >
40O 4 D)
®
o o .' e
e o °

Neural Networks Objectives

You should be able to...

Explain the biological motivations for a neural network

Combine simpler models (e.g. linear regression, binary logistic
regression, multinomial logistic regression) as components to
build up feed-forward neural network architectures

Explain the reasons why a neural network can model nonlinear
decision boundaries for classification

Compare and contrast feature engineering with learning
features

Identify (some of) the options available when designing the
architecture of a neural network

Implement a feed-forward neural network

APPROACHES TO DIFFERENTIATION

A Recipe for

Background : :
5 Machine Learning

1. Given training data: 3. Define goal:

(s, y N X

iy Yifi=1 0" = arg mein;é(fe(wi)ayi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (337,) (take small steps

opposite the gradient)
— Loss function

((9.y;) €ER 00D = 00 — VU fo(w:), ;)

Bec

41

Training Approaches to Differentiation

* Question 1:
When can we compute the gradients for an arbitrary neural

network?

* Question 2:
When can we make the gradient computation efficient?

Given f : R* — RB, f(x)

Compute

8£Uj

1. Finite Difference Method

Pro: Great for testing
implementations of
backpropagation

Con: Slow for high dimensional
inputs [outputs

Required: Ability to call the function
f(x) on any input x

vis Approaches to Differentiation

2. Symbolic Differentiation

Note: The method you learned in high-
school

Note: Used by Mathematica / Wolfram
Alpha [Maple

Pro: Yields easily interpretable
derivatives

Con: Leads to exponential computation
time if not carefully implemented

Required: Mathematical expression
that defines f(x)

43

Given f : R4 = RE, f(x)

Compute

Of (x)i

a.’I?j

vis Approaches to Differentiation

3. Automatic Differentiation — Reverse Mode 4. Automatic Differentiation - Forward Mode

Note: Called Backpropagation when
applied to Neural Nets

Pro: Computes partial derivatives of
one output f(x), with respect to all
inputs x; in time proportional to
computation of f(x)

Con: Slow for high dimensional

outputs (e.g. vector-valued
functions)

Required: Algorithm for computing

f(x)

Note: Easy to implement. Uses dual
numbers.

Pro: Computes partial derivatives of
all outputs f(x), with respect to one
input x; in time proportional to
computation of f(x)

Con: Slow for high dimensional
inputs (e.g. vector-valued x)

Required: Algorithm for computing

f(x)

44

THE FINITE DIFFERENCE METHOD

Training Finite Difference Method

The centered finite difference approximation is:

0 _(JO+e-d;)—J(O —¢€-d,;))

(1)

where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1. N

Notes:

* Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon

Training

Differentiation Quiz

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = explaz) - log(x) | Tz

Answer: Answers below are in the form [dy/dx, dy/dz]

A. [42,-72] E. [1208, 810]
B. [72,-42] F. [810,1208]
C. [100,127] G. [1505, 94]
D. [127,100 H. [94,1505]

47

Training Differentiation Quiz

Differentiation Quiz #2:

A neural network with 2 hidden layers can be written as:
y=a(B"o((a®)o((aV)x))

where y € R, x € RP” 3 ¢ RP® and a® isa D@ x DGE-1)
matrix. Nonlinear functions are applied elementwise:

o(a) = [o(a1),...,0(ar)]"
Let o be sigmoid: o(a) = 1—|—e;p—a

.0 9 7
What is 6—52 and 8041‘{7;) forall i, j.

50

THE CHAIN RULE OF CALCULUS

Given

Computation
Graph

Chain Rule

Training

Definition 1:

Chain Rule

Definition 2:

Definition 3:

Training Chain Rule

e

Training Chain Rule

FORWARD COMPUTATION FOR A
COMPUTATION GRAPH

Training Backpropagation

Whiteboard
— From equation to forward computation
— Representing a simple function as a computation graph

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(2) A log(x) | Tz

Training

Backpropagation

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = explaz) - log(x) | Tz

Now let’s solve this in a different way!

58

Tz sin(log(x
Given: Yy = exp(zz)+ 4+ (log(z))
log(x) Tz

Forward Computation: Computation Graph: Backward Computation

Training

Updates for
Backpropagation:
= 9y duy

Backpropagation

_ 9y _
gx_@:z;_ Our Ox
k=1

K 3uk
= ou 5
k=1

Backprop is efficient
b/c of reuse in the
forward pass and
the backward pass.

