10-301/601: Introduction to Machine Learning Lecture 15 – Learning Theory (Finite Case)

Matt Gormley & Henry Chai

10/21/24

Front Matter

Announcements

• HW5 released 10/9, due 10/27 at 11:59 PM

What is Machine Learning 10-301/601?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks

- Unsupervised Learning
- Ensemble Methods
- Deep Learning & Generative Al
- Learning Theory
- Reinforcement Learning
- Important Concepts
 - Feature Engineering
 - Regularization and Overfitting
 - Experimental Design
 - Societal Implications

What is Machine Learning 10-301/601?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks

- Unsupervised Learning
- Ensemble Methods
- Deep Learning & Generative Al
- Learning Theory
- Reinforcement Learning
- Important Concepts
 - Feature Engineering
 - Regularization and Overfitting
 - Experimental Design
 - Societal Implications

Statistical Learning Theory Model 1. Data points are generated i.i.d. from some *unknown* distribution

 $\boldsymbol{x}^{(n)} \sim p^*(\boldsymbol{x})$

- 2. Labels are generated from some *unknown* function $y^{(n)} = c^*(x^{(n)})$
- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest *training* error rate from a specified hypothesis set, \mathcal{H}
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Types of Error

- True error rate
 - Actual quantity of interest in machine learning
 - How well your hypothesis will perform on average across all possible data points
- Test error rate
 - Used to evaluate hypothesis performance
 - Good estimate of your hypothesis's true error
- Validation error rate
 - Used to set hypothesis hyperparameters
 - Slightly "optimistic" estimate of your hypothesis's true error
- Training error rate
 - Used to set model parameters
 - Very "optimistic" estimate of your hypothesis's true error

Types of Risk (a.k.a. Error) • Expected risk of a hypothesis h (a.k.a. true error) $R(h) = P_{x \sim p^*} (c^*(x) \neq h(x))$

R

• Empirical risk of a hypothesis *h* (a.k.a. training error)

$$(h) = P_{\boldsymbol{x} \sim \mathcal{D}} \left(c^*(\boldsymbol{x}) \neq h(\boldsymbol{x}) \right)$$
$$= \frac{1}{N} \sum_{\substack{n=1 \\ N}}^N \mathbb{1} \left(c^*(\boldsymbol{x}^{(n)}) \neq h(\boldsymbol{x}^{(n)}) \right)$$
$$= \frac{1}{N} \sum_{\substack{n=1 \\ n=1}}^N \mathbb{1} \left(y^{(n)} \neq h(\boldsymbol{x}^{(n)}) \right)$$

where $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$ is the training data set and $x \sim \mathcal{D}$ denotes a point sampled uniformly at random from \mathcal{D}

Three Hypotheses of Interest

1. The *true function*, *c**

2. The *expected risk minimizer,*

 $h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h)$

3. The *empirical risk minimizer,*

 $\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}(h)$

Poll Question 1: Which of the following are *always* true?

A. $c^* = h^*$ B. $c^* = \hat{h}$ C. $h^* = \hat{h}$ D. $c^* = h^* = \hat{h}$ E. None of the above F. **TOXIC** • The *true function, c**

- The expected risk minimizer,
 - $h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h)$

H = Eall linear decision

boundaries.

• The empirical risk minimizer,

 $\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{R}(h)$

Key Question

• Given a hypothesis with zero/low training error, what can we say about its true error?

PAC Learning

PAC = <u>P</u>robably <u>A</u>pproximately <u>C</u>orrect

• PAC Criterion:

 $P(|R(h) - \hat{R}(h)| \le \epsilon) \ge 1 - \delta \forall h \in \mathcal{H}$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

• We want the PAC criterion to be satisfied for

 ${\mathcal H}$ with small values of ε and δ

Sample Complexity

- The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ
- Four cases
 - Realizable vs. Agnostic
 - Realizable $\rightarrow c^* \in \mathcal{H}$
 - Agnostic $\rightarrow c^*$ might or might not be in \mathcal{H}
 - Finite vs. Infinite
 - Finite $\rightarrow |\mathcal{H}| < \infty$
 - Infinite $\rightarrow |\mathcal{H}| = \infty$

Theorem 1: Finite, Realizable Case • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \le \epsilon$

P(AUB) = $\leq P(A) + P(B)$

Proof of Theorem 1: Finite, **Realizable Case**

1. Assume three are K "bed" hypotheses mH P(A) + P(B)-P(ANB) Eh, , , h, S that all have R(h;)>E 2. Prek one bud hypothesis hi A. P(h: correctly classifier the first training data point) < $1 - \epsilon$ B. P(hi correctly classifies all M training deta points) < (I-E) 3. Plat least one bad hypothesis correctly classifies all M training data points) = P(h, correctly Classifies all M training data points $\int h_2 \int h_2$

4. $P(\hat{R}(h_1) = O \cup \hat{R}(h_2) = O \cup \dots \cup \hat{R}(h_k) = 0)$ $\leq \sum_{i=1}^{K} P(\hat{R}(h_i) = 0) < \sum_{i=1}^{K} (1-\epsilon)^{M}$ = K(I-E) $< M (1-\epsilon)^{M}$ 5. Plat least one bud hypothesis correctly classifies all M training date pointr) $< [H](1-\epsilon)^{M}$ 6. We want $|H|(1-\epsilon)^{M} \leq \delta$

7. Using the fact that $1 - x \leq \exp(-x) \forall x$ $|H|(C_1 - \epsilon)^{M} \leq |H| \exp(-\epsilon)^{M}$ = $|H| \exp(-\epsilon M) \leq \delta$ $\exp\left(-\epsilon M\right) \leq \frac{\delta}{1H1}$ =) $-\epsilon M \leq \log \frac{\delta}{|H|}$ =2) $\in M \geq \log \frac{|H|}{c}$ $GM \ge \log |H| + \log \frac{1}{\varsigma}$ \Rightarrow $M \geq \frac{1}{e} (\log(1H1) + \log \frac{1}{5})$ =)

8. Given $M \ge \frac{1}{\epsilon} (\log |H| + \log \frac{1}{\delta})$ labelled training data points, the probability \overline{f} a bad hypothesis hie H where $R(hi) \ge C = A \widehat{R}(hi) = D \le S$ Given $M \ge \frac{1}{E}(\log |H| + \log \frac{1}{5})$ labelled training data points, the probability that all bad hypotheses hie H with R(hi) > Ehave $\hat{R}(hi) > O$ is $\ge 1 - S$

Aside: Proof by Contrapositive • The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$

- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"

is the same as saying

"Henry didn't bring an umbrella ⇒ it's not raining"

7. Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\epsilon}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in$ \mathcal{H} with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 - \delta$ D R 7B => 7A Given $M \ge \frac{1}{\epsilon} (\log |H| + \log \frac{1}{5})$ training data points, the probability that all hypotheses he EH with R(hk)=0 have R(h_L) < E is 21-8

Theorem 1: Finite, Realizable Case • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

 $M \stackrel{?}{=} \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \le \epsilon$

• Making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \leq \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Theorem 2: Finite, Agnostic Case • For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy $|R(h) - \hat{R}(h)| \leq \epsilon$

- Bound is inversely quadratic in *e*, e.g., halving *e* means
 we need four times as many labelled training data points
- Again, making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary • For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$?

• For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \widehat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}$$

with probability at least $1 - \delta$.