
Matt Gormley & Henry Chai

10/21/24

10-301/601: Introduction 
to Machine Learning
Lecture 15 – Learning 
Theory (Finite Case)



Front Matter
 Announcements
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What is 
Machine 
Learning
10-301/601?

10/21/24

 Supervised Models

 Decision Trees

 KNN

 Naïve Bayes

 Perceptron

 Logistic Regression

 Linear Regression

 Neural Networks

 Unsupervised Learning

 Ensemble Methods

 Deep Learning & 
Generative AI

 Learning Theory

 Reinforcement Learning

 Important Concepts

 Feature Engineering 

 Regularization and 
Overfitting

 Experimental Design

 Societal Implications
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Statistical 
Learning 
Theory Model

1. Data points are generated i.i.d. from some unknown 

distribution

𝒙 𝑛 ∼ 𝑝∗ 𝒙

2. Labels are generated from some unknown function

𝑦 𝑛 = 𝑐∗ 𝒙 𝑛

3. The learning algorithm chooses the hypothesis (or 

classifier) with lowest training error rate from a 

specified hypothesis set, ℋ

4. Goal: return a hypothesis (or classifier) with low true 

error rate
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Types of Error

 True error rate

 Actual quantity of interest in machine learning

 How well your hypothesis will perform on average across all 
possible data points

 Test error rate

 Used to evaluate hypothesis performance

 Good estimate of your hypothesis’s true error

 Validation error rate

 Used to set hypothesis hyperparameters

 Slightly “optimistic” estimate of your hypothesis’s true error

 Training error rate

 Used to set model parameters

 Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk 
(a.k.a. Error)

 Expected risk of a hypothesis ℎ (a.k.a. true error)

𝑅 ℎ = 𝑃𝒙 ∼ 𝑝∗ 𝑐∗ 𝒙 ≠ ℎ 𝒙

 Empirical risk of a hypothesis ℎ (a.k.a. training error) 

𝑅 ℎ = 𝑃𝒙 ∼ 𝒟 𝑐∗ 𝒙 ≠ ℎ 𝒙

𝑅 ℎ =
1

𝑁


𝑛=1

𝑁

𝟙 𝑐∗ 𝒙 𝑛 ≠ ℎ 𝒙 𝑛

𝑅 ℎ =
1

𝑁


𝑛=1

𝑁

𝟙 𝑦 𝑛 ≠ ℎ 𝒙 𝑛

where 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
 is the training data set and 

𝒙 ∼ 𝒟 denotes a point sampled uniformly at random from 𝒟 
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Three 
Hypotheses of 
Interest

10/21/24

1. The true function, 𝑐∗

2. The expected risk minimizer, 

ℎ∗ = argmin
ℎ ∈ ℋ

𝑅 ℎ

3. The empirical risk minimizer, 

ℎ = argmin
ℎ ∈ ℋ

𝑅 ℎ  
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Poll Question 1:
Which of the 
following are always 
true?

A. 𝑐∗ = ℎ∗

B. 𝑐∗ = ℎ

C. ℎ∗ = ℎ
D. 𝑐∗ = ℎ∗ = ℎ
E. None of the above
F. TOXIC

 The true function, 𝑐∗

 The expected risk minimizer, 

ℎ∗ = argmin
ℎ ∈ ℋ

𝑅 ℎ

 The empirical risk minimizer, 

ℎ = argmin
ℎ ∈ ℋ

𝑅 ℎ  
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Key Question  Given a hypothesis with zero/low training error, what 

can we say about its true error? 
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PAC Learning

 PAC = Probably Approximately Correct

 PAC Criterion:

𝑃 𝑅 ℎ − 𝑅 ℎ ≤ 𝜖 ≥ 1 − 𝛿 ∀ ℎ ∈ ℋ

for some 𝜖 (difference between expected and empirical 

risk) and 𝛿 (probability of “failure”) 

 We want the PAC criterion to be satisfied for 

ℋ with small values of ϵ and δ
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Sample 
Complexity

10/21/24

 The sample complexity of an algorithm/hypothesis set, ℋ, 

is the number of labelled training data points needed to 

satisfy the PAC criterion for some 𝛿 and 𝜖

 Four cases

 Realizable vs. Agnostic

 Realizable → 𝑐∗ ∈ ℋ

 Agnostic → 𝑐∗ might or might not be in ℋ

 Finite vs. Infinite

 Finite → ℋ < ∞

 Infinite → ℋ = ∞
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Theorem 1: 
Finite, 
Realizable Case

10/21/24

 For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

13



Proof of
Theorem 1: 
Finite, 
Realizable Case

1. Assume there are 𝐾 “bad” hypotheses in ℋ, i.e., 

ℎ1, ℎ2, … , ℎ𝐾  that all have 𝑅 ℎ𝑘 > 𝜖

2. Pick one bad hypothesis, ℎ𝑘

A. Probability that ℎ𝑘  correctly classifies the first 

training data point < 1 − 𝜖

B. Probability that ℎ𝑘  correctly classifies all 𝑀 

training data points < 1 − 𝜖 𝑀

3. Probability that at least one bad hypothesis correctly 

classifies all 𝑀 training data points =

𝑃(ℎ1 correctly classifies all 𝑀 training data points ∪

 ℎ2 correctly classifies all 𝑀 training data points ∪

⋮

 ∪ ℎ𝐾  correctly classifies all 𝑀 training data points)
10/21/24 14



Proof of
Theorem 1: 
Finite, 
Realizable Case

𝑃(ℎ1 correctly classifies all 𝑀 training data points ∪

 ℎ2 correctly classifies all 𝑀 training data points ∪

⋮

 ∪ ℎ𝐾  correctly classifies all 𝑀 training data points)

≤ 

𝑘=1

𝐾

𝑃 ℎ𝑘 correctly classifies all 𝑀 training data points

by the union bound: 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵

by the union bound: 𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
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Proof of
Theorem 1: 
Finite, 
Realizable Case



𝑘=1

𝐾

𝑃 ℎ𝑘 correctly classifies all 𝑀 training data points

< 𝑘 1 − 𝜖 𝑀 ≤ ℋ 1 − 𝜖 𝑀

because 𝑘 ≤ ℋ

3. Probability that at least one bad hypothesis correctly 

classifies all 𝑀 training data points ≤ ℋ 1 − 𝜖 𝑀

4. Using the fact that 1 − 𝑥 ≤ exp −𝑥  ∀ 𝑥, 

ℋ 1 − 𝜖 𝑀 ≤ ℋ exp −𝜖 𝑀 = ℋ exp −𝑀𝜖

5. Probability that at least one bad hypothesis correctly 

classifies all 𝑀 training data points ≤ ℋ exp −𝑀𝜖 , 

which we want to be low, i.e., ℋ exp −𝑀𝜖 ≤ 𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case

ℋ exp −𝑀𝜖 ≤ 𝛿 → exp −𝑀𝜖 ≤
𝛿

ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → −𝑀𝜖 ≤ ln
𝛿

ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1

𝜖
− ln

𝛿

ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1

𝜖
ln

ℋ

𝛿

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case

6. Given 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
 labelled training 

data points, the probability that ∃ a bad hypothesis 

ℎ𝑘 ∈ ℋ with 𝑅 ℎ𝑘 > 𝜖 and 𝑅 ℎ𝑘 = 0 is ≤ 𝛿

⇕

Given 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
 labelled training data 

points, the probability that all hypotheses ℎ𝑘 ∈ ℋ with 

𝑅 ℎ𝑘 > 𝜖 have 𝑅 ℎ𝑘 > 0 is ≥ 1 − 𝛿
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Aside: Proof by 
Contrapositive

 The contrapositive of a statement 𝐴 ⇒ 𝐵 is ¬𝐵 ⇒ ¬𝐴 

 A statement and its contrapositive are logically equivalent, 

i.e., 𝐴 ⇒ 𝐵 means that ¬𝐵 ⇒ ¬𝐴 

 Example: “it’s raining ⇒ Henry brings am umbrella”

is the same as saying 

“Henry didn’t bring an umbrella ⇒ it’s not raining ” 
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Proof of
Theorem 1: 
Finite, 
Realizable Case

7. Given 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
 labelled training 

data points, the probability that all hypotheses ℎ𝑘 ∈

ℋ with 𝑅 ℎ𝑘 > 𝜖 have 𝑅 ℎ𝑘 > 0 is ≥ 1 − 𝛿

⇕

Given 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
 labelled training data 

points, the probability that all hypotheses ℎ𝑘 ∈ ℋ with 

𝑅 ℎ𝑘 = 0 have 𝑅 ℎ𝑘 ≤ 𝜖 is ≥ 1 − 𝛿

(proof by contrapositive) 
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Theorem 1: 
Finite, 
Realizable Case

10/21/24

 For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

 Making the bound tight and solving for 𝜖 gives... 
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Statistical 
Learning 
Theory 
Corollary

10/21/24

 For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 

all ℎ ∈ ℋ with 𝑅 ℎ = 0 have

𝑅 ℎ ≤
1

𝑀
ln ℋ + ln

1

𝛿

with probability at least 1 − 𝛿.
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Theorem 2: 
Finite,  
Agnostic Case

10/21/24

 For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1

2𝜖2
ln ℋ + ln

2

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − 𝑅 ℎ ≤ 𝜖

 Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points

 Again, making the bound tight and solving for 𝜖 gives…
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Statistical 
Learning 
Theory 
Corollary

10/21/24

 For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ 

have

𝑅 ℎ ≤ 𝑅 ℎ +
1

2𝑀
ln ℋ + ln

2

𝛿

with probability at least 1 − 𝛿.
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10/21/24

 For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ 

have

𝑅 ℎ ≤ 𝑅 ℎ +
1

2𝑀
ln ℋ + ln

2

𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?
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