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Statistical

Learning
Theory Model
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Data points are generaterom some unknown

distribution
x™ ~ p*(x)

Labels are generated from some unknown function
y(n) — c*(x("))

The learning algorithm chooses the hypothesis (or
classifier) with lowest training error rate from a
specified hypothesis set, H

Goal: return a hypothesis (or classifier) with low true
error rate



* True error rate
* Actual quantity of interest in machine learning

* How well your hypothesis will perform on average across all
possible data points

* Test error rate
- Used to evaluate hypothesis performance

Types of Error

- Good estimate of your hypothesis’s true error

* Validation error rate
- Used to set hypothesis hyperparameters

- Slightly “optimistic” estimate of your hypothesis’s true error

* Training error rate
- Used to set model parameters

* Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk

(a.k.a. Error)
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* Expected risk of a hypothesis h (a.k.a. true error)
R(h) = P, . p+(c*(x) # h(x))

* Empirical risk of a hypothesis h (a.k.a. training error)
R(h) = Px~D(c*(x) +* h(x))

- %Z 1(c"(x™) = h(x™))
— %i 1 (y<n> " h(xm)))

N
where D = {(x™, y("))}n=1 is the training data set and
x ~ D denotes a point sampled uniformly at random from D



1. The true function, c*

Three 2. The expected risk minimizer,
Hypotheses of h* = argmin R(h)

[EEN nen
3. The empirical risk minimizer,

h = argmin R(h)
heH
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H: 20\” \Y\rtv-\f Q\QC_\S\’O’\

Poll Question 1: \Dowémfl —— c*
Which of the o N —
following are always  The true function, c
P
true: = ) + JV it
. * The expected risk minimizer, . N
e h* = nR(h)
(55
C.h* * The empirical risk minimizer,
D. ¢’ h = argmin R(h)
heH

E. None of the above
F. TOXIC
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Key Question
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* Given a hypothesis with zero/low training error, what

can we say about its true error?
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PAC Learning
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* PAC = Probably Approximately Correct

* PAC Criterion:

P(|[R(K) —R(W)| <€) = 1—&Vhe§

for some € (difference between expected and empirical
risk) and 6 (probability of “failure”)

- We want the PAC criterion to be satisfied for

H with small values of € and 6
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Sample

Complexity
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* The sample complexity of an algorithm/hypothesis set,
is the number of labelled training data points needed to

satisfy the PAC criterion for some 6 and €
* Four cases
* Realizable vs. Agnostic
° Realizable » ¢c* € H
* Agnostic = ¢* might or might not be in H
* Finite vs. Infinite
* Finite = |H| < o

* Infinite - |H| = o
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

1 1
M > —(1n(|}[|) +1n (_))
€ o)

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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Proof of
Theorem 1:

Finite,
Realizable Case
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Proof of
Theorem 1:

Finite,
Realizable Case
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Aside: Proof by

Contrapositive
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* The contrapositive of a statement A = Bis =B = -4

- A statement and its contrapositive are logically equivalent,

i.,e., A = B meansthat =B = =4

* Example: “it’s raining = Henry brings am umbrella”

is the same as saying

“Henry didn’t bring an umbrella = it’s not raining ”
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7. Given M > E(ln(l}[l) + In (%)) labelled training

data points, the probability that all hypotheses h;, €
Proof of H with R(hy,) > € have R(hy,) > 0is=>1—6
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

;1 | | 1
s+ )

then with probab%t least 1 — 6, all h € H with
R(h) =0haveR(h) <€

- Making the bound tight and solving for € gives...
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, given a training data set S s.t. |S| = M,
Statistical all h € I with R(h) = 0 have

Learning

1 1
R(h) < —(ln(l}[l) + In (—))
Theory M 0
Corollary with probability at least 1 — §.
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Theorem 2:

Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution

p”, if the number of labelled training data points satisfies

1 2
M > = (1n(|7—[|)+ln(5)>

then with probability at least 1 — §, all h € HH satisfy

[R(h) — R(W)| £&)

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Again, making the bound tight and solving for € gives...
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Statistical
Learning

Theory
Corollary
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. [S| =M, allh € H

have

R(h) < R(h) + V ﬁ (ln(lf]—[l) +In (g))

with probability at least 1 — 6.

24



What happens

when
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?

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. [S| =M, allh € H

have

R(h) < R(h) + V ﬁ (ln(l?—[l) +In (g))

with probability at least 1 — 6.
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