10-301/601: Introduction to Machine Learning Lecture 2 – ML as Function Approximation

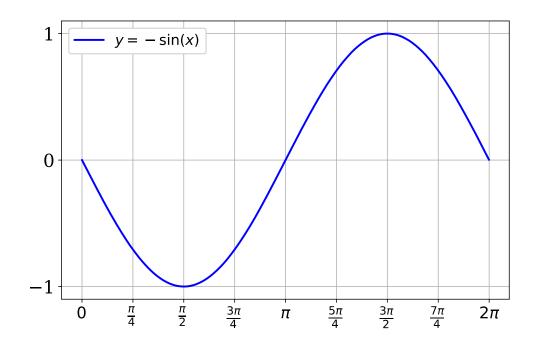
Matt Gormley & Henry Chai

8/28/24

Front Matter

- Announcements:
 - HW1 released 8/26, due 9/4 (next Wednesday) at 11:59 PM
 - Two components: written and programming
 - Separate assignments on Gradescope
 - Unique policies specific to HW1:
 - Two opportunities to submit the written portion (see write-up for details)
 - Unlimited submissions to the autograder for the (really, just keep submitting until you get 100%)
 - We will grant (almost) any extension request

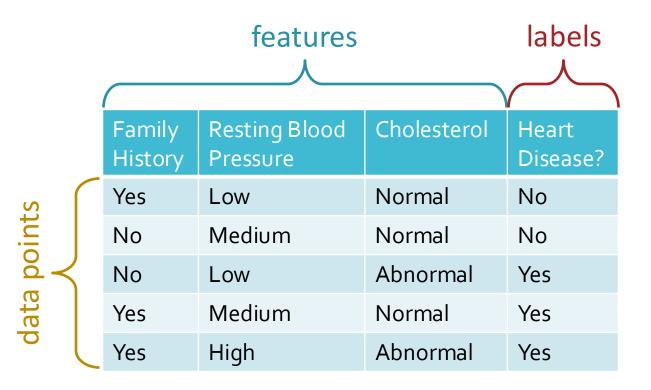
Warm-up Activity • Challenge: implement a function that computes $-\sin(x)$ for $x \in [0, 2\pi]$



- You may not call any trigonometric functions
- You may call an existing implementation of sin(x) a few times (e.g., 100) to check your work

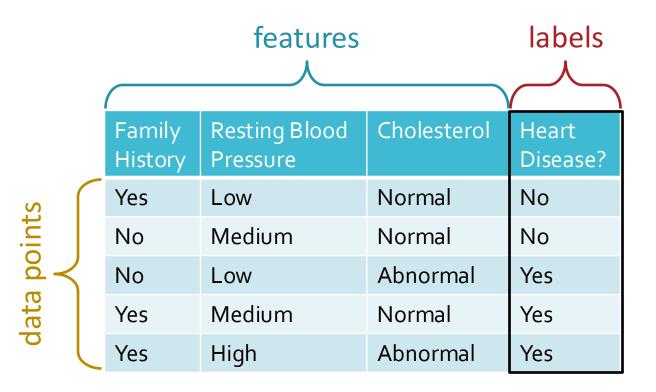
• Learning to diagnose heart disease

as a (supervised) binary classification task



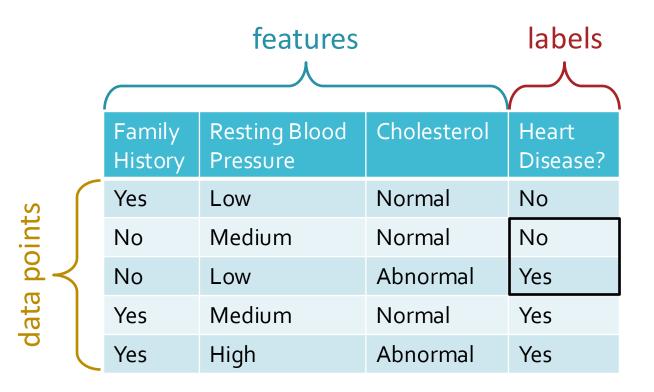
• Learning to diagnose heart disease

as a (supervised) binary classification task



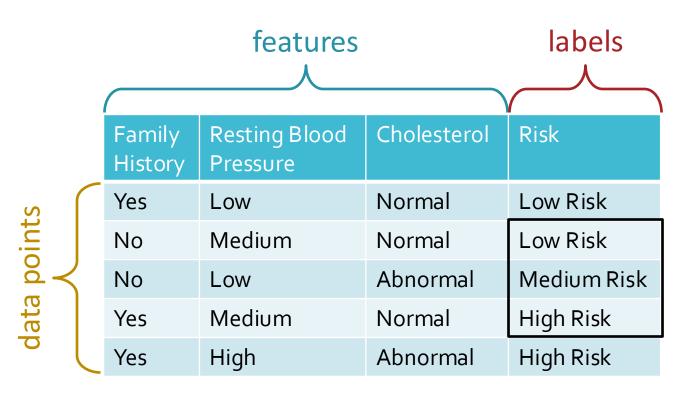
• Learning to diagnose heart disease

as a (supervised) binary classification task



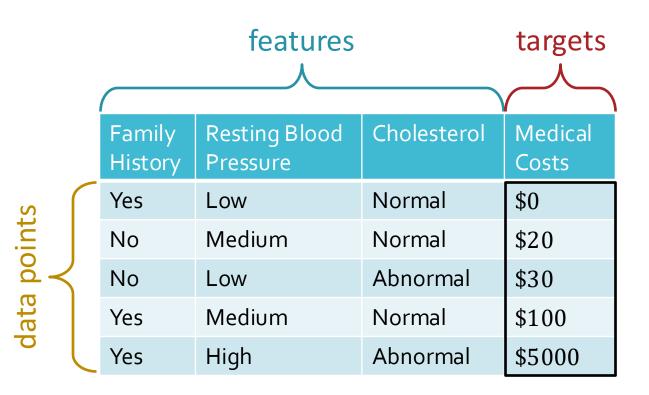
• Learning to diagnose heart disease

as a (supervised) <u>classification</u> task



• Learning to diagnose heart disease

as a (supervised) <u>regression</u> task



Notation

- Feature space, $\boldsymbol{\chi}$
- Label space, *Y*
- (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
- Training dataset:

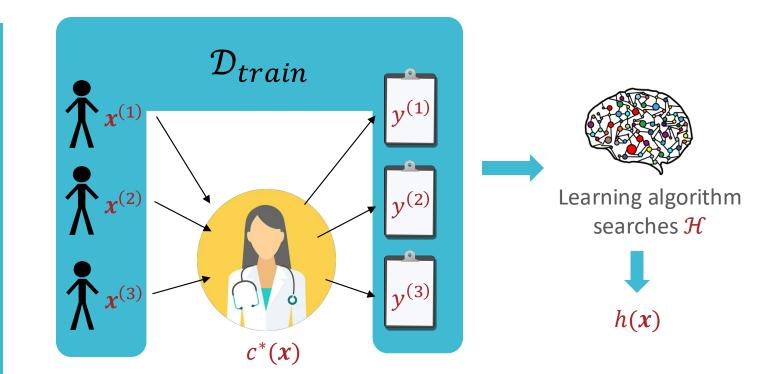
$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, c^*(\mathbf{x}^{(1)}) = y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}) \dots, (\mathbf{x}^{(N)}, y^{(N)}) \}$$

- Example: $(\mathbf{x}^{(n)}, y^{(n)}) = (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}, y^{(n)})$
- Hypothesis space: \mathcal{H}
- Goal: find a classifier, $h \in \mathcal{H}$, that best approximates c^*

Notation: Example

•
$$N = 5$$
 and $D = 3$
• $\mathbf{x}^{(2)} = \left(x_1^{(2)} = \text{"No"}, x_2^{(2)} = \text{"Medium"}, x_3^{(2)} = \text{"Normal"}\right)$

	x ₁ Family History	x ₂ Resting Blood Pressure	x ₃ Cholesterol	y Heart Disease?	\hat{y} Predictions
	Yes	Low	Normal	No	Yes
x ⁽²⁾	No	Medium	Normal	No	Yes
	No	Low	Abnormal	Yes	Yes
	Yes	Medium	Normal	Yes	Yes
	Yes	High	Abnormal	Yes	Yes



Evaluation

- Loss function, $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Defines how "bad" predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$
 - Common choices
 - 1. Squared loss (for regression): $\ell(y, \hat{y}) = (y \hat{y})^2$
 - 2. Binary or 0-1 loss (for classification): $\ell(y, \hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{otherwise} \end{cases}$

Evaluation

- Loss function, $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Defines how "bad" predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$
 - Common choices
 - 1. Squared loss (for regression): $\ell(y, \hat{y}) = (y \hat{y})^2$
 - 2. Binary or 0-1 loss (for classification):

 $\ell(y,\hat{y}) = \mathbb{1}(y \neq \hat{y})$

• Error rate:

$$err(h,\mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(y^{(n)} \neq \hat{y}^{(n)}\right)$$

Different Kinds of Error

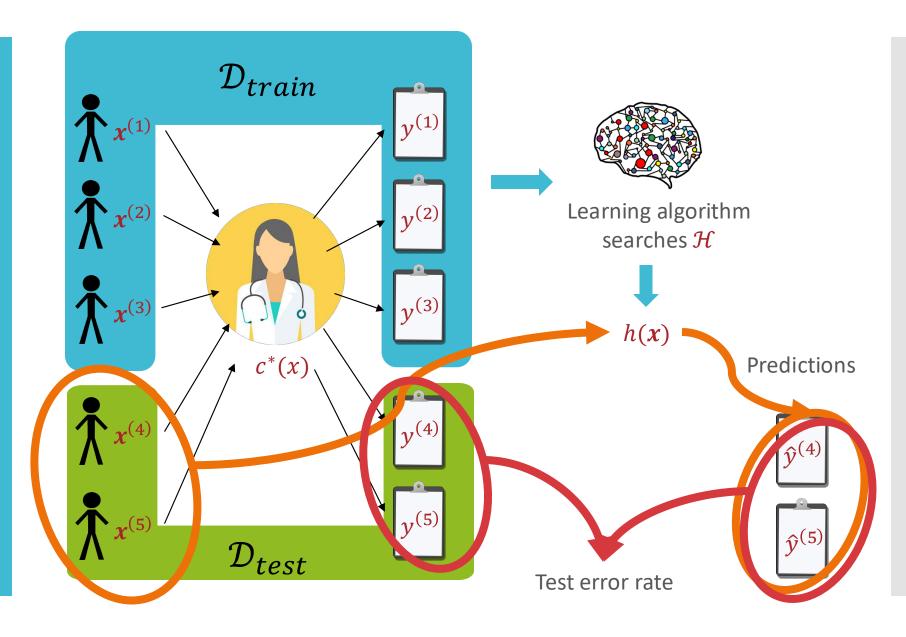
• Training error rate = $err(h, D_{train})$

• Test error rate = $err(h, D_{test})$

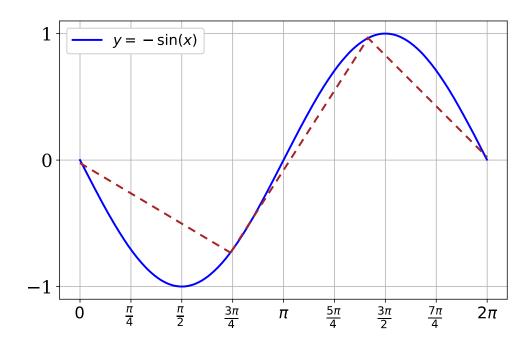
• True error rate = err(h)

= the error rate of h on all possible examples

 In machine learning, this is the quantity that we care about but, in most cases, it is unknowable.



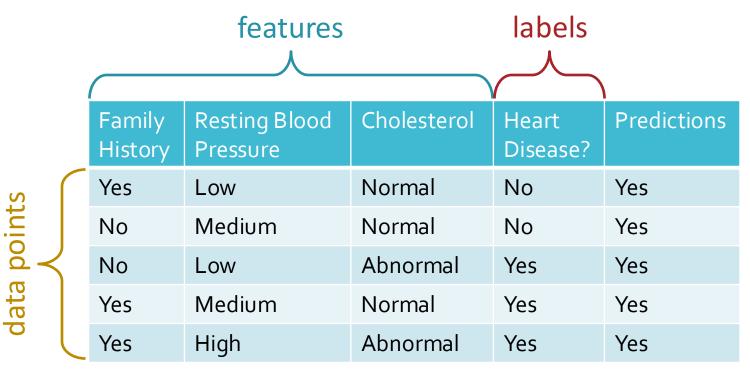
Function Approximation: Example • Challenge: implement a function that computes $-\sin(x)$ for $x \in [0, 2\pi]$



- You may not call any trigonometric functions
- You may call an existing implementation of sin(x) a few times (e.g., 100) to check your work

Recall: Our first Machine Learning Classifier

- A **classifier** is a function that takes feature values as input and outputs a label
- Majority vote classifier: always predict the most common label in the **training** dataset



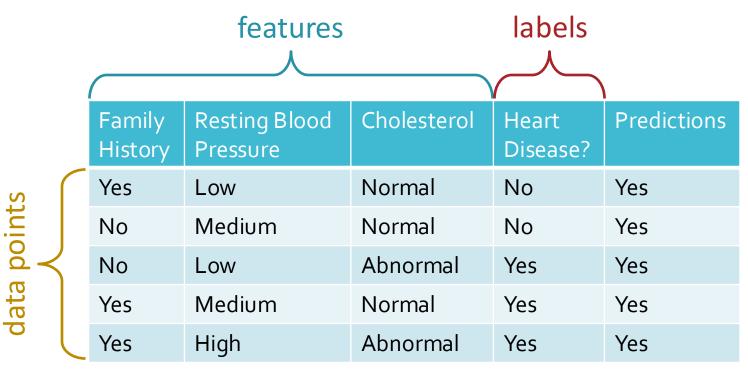
Our first Machine Learning Classifier: Pseudocode • Majority vote classifier: def train(\mathcal{D}_{train}): store v = mode($y^{(1)}, y^{(2)}, ..., y^{(N)}$) def h(x'): return v def predict(\mathcal{D}_{test}): for $(x^{(n)}, y^{(n)}) \in \mathcal{D}_{test}$: $\hat{y}^{(n)} = h(\boldsymbol{x}^{(n)})$

Test your understanding

<i>x</i> ₁	<i>x</i> ₂	у
1	0	-
1	0	-
1	0	+
1	0	+
1	1	+
1	1	+
1	1	+
1	1	+

 What is the training error of the majority vote
 classifier on this dataset?

- A **classifier** is a function that takes feature values as input and outputs a label
- Majority vote classifier: always predict the most common label in the training dataset



• This classifier completely ignores the features...

- A **classifier** is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

- A **classifier** is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?	Predictions
Yes	Low	Normal	No	No
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	Yes
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes

• The training error rate is 0!

- A **classifier** is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?	Predictions
Yes	Low	Normal	No	No
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	Yes
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes

• The training error rate is 0...

Is the memorizer "learning"?

- A **classifier** is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?	Predictions
Yes	Low	Normal	No	No
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	Yes
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes

• The training error rate is 0...

- A **classifier** is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote
- The memorizer (typically) does not **generalize** well, i.e., it does not perform well on unseen data points
- In some sense, good generalization, i.e., the ability to make accurate predictions given a small training dataset, is the whole point of machine learning!

Our second Machine Learning Classifier: Pseudocode • Memorizer: def train(\mathcal{D}): store \mathcal{D} def h(x'): if $\exists x^{(n)} \in \mathcal{D}$ s.t. $x' = x^{(n)}$: return $y^{(n)}$ else return mode($y^{(1)}, y^{(2)}, ..., y^{(N)}$)

• Alright, let's actually (try to) extract a pattern from the data

x ₁ Family History	x ₂ Resting Blood Pressure	x ₃ Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

• Decision stump: based on a single feature, x_d , predict the most common label in the **training** dataset among all data points that have the same value for x_d

• Alright, let's actually (try to) extract a pattern from the data

x ₁ Family History	x ₂ Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

• Decision stump on x_1 :

$$h(\mathbf{x}') = h(x'_1, ..., x'_D) = \begin{cases} ??? & \text{if } x'_1 = "\text{Yes"} \\ ??? & \text{otherwise} \end{cases}$$

• Alright, let's actually (try to) extract a pattern from the data

x ₁ Family History	x ₂ Resting Blood Pressure	x ₃ Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

• Decision stump on x_1 :

$$h(\mathbf{x}') = h(x'_1, \dots, x'_D) = \begin{cases} "Yes" \text{ if } x'_1 = "Yes" \\ ??? \text{ otherwise} \end{cases}$$

• Alright, let's actually (try to) extract a pattern from the data

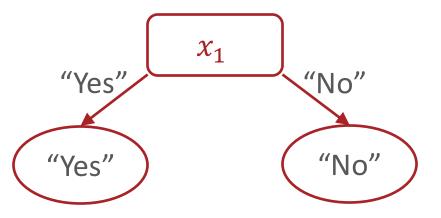
x ₁ Family History	x ₂ Resting Blood Pressure	x ₃ Cholesterol	y Heart Disease?	\hat{y} Predictions
Yes	Low	Normal	No	Yes
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	No
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes

• Decision stump on x_1 :

$$h(\mathbf{x}') = h(x'_1, \dots, x'_D) = \begin{cases} "Yes" \text{ if } x'_1 = "Yes" \\ "No" \text{ otherwise} \end{cases}$$

• Alright, let's actually (try to) extract a pattern from the data

x ₁ Family History	x ₂ Resting Blood Pressure	x ₃ Cholesterol	y Heart Disease?	\hat{y} Predictions
Yes	Low	Normal	No	Yes
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	No
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes



Decision Stumps: Pseudocode

def train(\mathcal{D}):

- 1. pick a feature, x_d
- 2. split \mathcal{D} according to x_d

for v in $V(x_d)$, all possible values of x_d :

$$\mathcal{D}_{\nu} = \left\{ \left(\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)} \right) \in \mathcal{D} \mid \boldsymbol{x}_{d}^{(n)} = \nu \right\}$$

3. Compute the majority vote for each split for v in $V(x_d)$:

```
\hat{y}_v = \text{mode}(\text{labels in } \mathcal{D}_v)
```

```
def h(x'):
for v in V(x_d):
if x'_d = v: return \hat{y}_v
```

Decision Stumps: Questions 1. How can we pick which feature to split on?

- 2. Why stop at just one feature?
 - a) If we split on more than one feature, how do we decide the order to spilt on?