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Front Matter

 Announcements

 Exam 2 on 11/7 (tomorrow!)

 Please review the seating chart on Piazza and make 

sure you have a seat / know where you’re going 

 HW7 to be released 11/7, due 11/17 at 11:59 PM 

 Please be mindful of your grace day usage 

(see the course syllabus for the policy)

 If you have not used PyTorch before, I strongly

encourage you to go to recitation on Friday (11/8)
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https://piazza.com/class/lzr0hlf6ktr1hw/post/623
https://www.cs.cmu.edu/~hchai2/courses/10601/


Recall: 
Transformers
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Okay, but how 
on earth do we 
go about 
training these 
things? 
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Recall: 
Mini-batch
Stochastic
Gradient 
Descent…
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to 

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙  ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙  ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿



Mini-batch
Stochastic 
Gradient 
Descent is a lie!
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to 

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙  ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙
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𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙  ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿



Mini-batch
Stochastic 
Gradient 
Descent is a lie!
just the 
beginning!
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
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𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙  ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿



Traditional 
Supervised 
Learning
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 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset



Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high
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• “gradient-based 

optimization starting 

from random initialization 

appears to often get 

stuck in poor solutions for 

such deep networks.” 
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf
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• Idea: if shallow 

networks are easier to 

train, let’s just 

decompose our deep 

network into a series 

of shallow networks!
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset

 Start at the input layer 

and move towards the 

output layer

 Once a layer has been 

trained, fix its weights 

and use those to train 

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
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2006)
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and use those to train 

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset

 Use the pre-trained 

weights as an 

initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Supervised
Pre-training
(Bengio et al., 
2006)
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 Use the pre-trained weights as 

an initialization and fine-tune 

the entire network e.g., via SGD 

with the training dataset

 Train each layer of the 

network iteratively using 

the training dataset

 Use the pre-trained 

weights as an 

initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r 

(%
) Classification error on MNIST handwritten digit dataset 



 Train each layer of the 

network iteratively using 

the training dataset to 

predict the labels

 Use  pre-trained weights 

as an initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

Supervised
Pre-training
(Bengio et al., 
2006)
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 Use the pre-trained weights as 

an initialization and fine-tune 

the entire network e.g., via SGD 

with the training dataset



 Train each layer of the 

network iteratively using 

the training dataset to 

predict the labels

 Use  pre-trained weights 

as an initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

Is this the only 
thing we could 
do with the 
training data? 
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 Use the pre-trained weights as 

an initialization and fine-tune 

the entire network e.g., via SGD 

with the training dataset



Unsupervised
Pre-training
(Bengio et al., 
2006)
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 Idea: a good representation is 

one preserves a lot of 

information and could be used 

to recreate the inputs

 Train each layer of the 

network iteratively using 

the training dataset to 

learn useful representations

 Use  pre-trained weights as 

an initialization and 

fine-tune the entire network 

e.g., via SGD with the 

training dataset
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 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯
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2nd hidden layer

Reconstructed
hidden layer
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 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
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(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re 

effectively swapping out 

the last layer and fitting 

all the weights to the 

training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 
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the last layer and fitting 
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 Idea: a good representation is 

one preserves a lot of 

information and could be used 

to recreate the inputs



Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high
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• Problem: what if you 

don’t even have 

enough data to train a 

single layer/fine-tune 

the pre-trained 

network? 
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 Ideally, you want to use a large dataset related to your 

goal task
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Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 GPT-3 pre-training data:
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 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task 

i.e., not every input has a “correct” label e.g., chatbots?

Another 
dose of
Reality
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In-context 
Learning

 Problem: given their size, effectively fine-tuning LLMs 

can require lots of labelled data points. 

 Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 

without performing any updates to the parameters

 Intuition: during training, the LLM is exposed to a 

massive number of examples/tasks and the input 

conditions the model to “locate” the relevant concepts 

11/6/24 30Source: https://arxiv.org/pdf/2111.02080.pdf 

https://arxiv.org/pdf/2111.02080.pdf


Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

 Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 

without performing any updates to the parameters
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

 Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 

without performing any updates to the parameters
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• Key Takeaway: LLMs can perform well on novel tasks 

without having to fine-tune the model, sometimes even 

with just one or zero labelled training data points! 

https://arxiv.org/pdf/2005.14165.pdf


Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

 Insight: for many machine learning tasks, there is no 

universal ground truth, e.g., there are lots of possible 

ways to respond to a question or prompt.

 Idea: use human feedback to determine how good or 

bad some prediction/response is! 

 Issue: if the input space is huge (e.g., all possible chat 

prompts), to train a good model, we might need tons 

and tons of (potentially expensive) human annotation…

 Idea: use a small number of annotations to learn a 

“reward” function!
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Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

11/6/24 36Source: https://openai.com/blog/chatgpt 

 RLHF is a form of fine-tuning that uses reinforcement learning 

where the reward function is learned from human preferences

https://openai.com/blog/chatgpt
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 RLHF is a form of fine-tuning that uses reinforcement learning 

where the reward function is learned from human preferences

- What the heck is 
“Reinforcement 
- Learning”?

https://openai.com/blog/chatgpt


Learning 
Paradigms

 Supervised learning - 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁

 Regression - 𝑦 𝑛 ∈ ℝ

 Classification - 𝑦 𝑛 ∈ 1, … , 𝐶

 Reinforcement learning - 𝒟 = 𝒔 𝑛 , 𝒂 𝑛 , 𝑟 𝑛
𝑛=1

𝑁
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Reinforcement 
Learning: 
Examples

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
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Reinforcement 
Learning: 
Problem 
Formulation

 State space, 𝒮

 Action space, 𝒜

 Reward function 

 Stochastic, 𝑝 𝑟 𝑠, 𝑎)

 Deterministic, 𝑅:  𝒮 ×  𝒜 → ℝ

 Transition function

 Stochastic, 𝑝 𝑠′ 𝑠, 𝑎)

 Deterministic, 𝛿:  𝒮 ×  𝒜 → 𝒮
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Reinforcement 
Learning: 
Problem 
Formulation

 Policy, 𝜋 ∶ 𝒮 → 𝒜

 Specifies an action to take in every state

 Value function, 𝑉𝜋:  𝒮 → ℝ

 Measures the expected total payoff of starting in 

some state 𝑠 and executing policy 𝜋, i.e., in every 

state, taking the action that 𝜋 returns 
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Toy Example

 𝒮 = all empty squares in the grid

 𝒜 = {up, down, left, right}

 Deterministic transitions

 Rewards of +1 and -1 for entering 
the labelled squares

 Terminate after receiving either 
reward
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Toy Example: Policy
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Optimal policy given a 

reward of -2 per step
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Toy Example
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Optimal policy given a 

reward of -0.1 per step

11/6/24

Toy Example
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Markov 
Decision 
Process (MDP)

 Assume the following model for our data:

1. Start in some initial state 𝑠0

2. For time step 𝑡:

1. Agent observes state 𝑠𝑡

2. Agent takes action 𝑎𝑡 = 𝜋 𝑠𝑡

3. Agent receives reward 𝑟𝑡 ∼ 𝑝 𝑟 𝑠𝑡 , 𝑎𝑡)

4. Agent transitions to state 𝑠𝑡+1 ∼ 𝑝 𝑠′ 𝑠𝑡 , 𝑎𝑡) 

3. Total reward is

 MDPs make the Markov assumption: the reward and 

next state only depend on the current state and action.

෍

𝑡=0

∞

𝛾𝑡𝑟𝑡
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