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Front Matter

 Announcements

 Exam 2 on 11/7 (tomorrow!)

 Please review the seating chart on Piazza and make 

sure you have a seat / know where you’re going 

 HW7 to be released 11/7, due 11/17 at 11:59 PM 

 Please be mindful of your grace day usage 

(see the course syllabus for the policy)

 If you have not used PyTorch before, I strongly

encourage you to go to recitation on Friday (11/8)
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https://piazza.com/class/lzr0hlf6ktr1hw/post/623
https://www.cs.cmu.edu/~hchai2/courses/10601/


Recall: 
Transformers
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Okay, but how 
on earth do we 
go about 
training these 
things? 
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Recall: 
Mini-batch
Stochastic
Gradient 
Descent…
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to 

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙  ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵


𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙  ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿



Mini-batch
Stochastic 
Gradient 
Descent is a lie!
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to 

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙  ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵


𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙  ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿



Mini-batch
Stochastic 
Gradient 
Descent is a lie!
just the 
beginning!
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to 

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙  ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵


𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙  ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿



Traditional 
Supervised 
Learning

11/6/24 8

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset



Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high
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• “gradient-based 

optimization starting 

from random initialization 

appears to often get 

stuck in poor solutions for 

such deep networks.” 
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high
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• Idea: if shallow 

networks are easier to 

train, let’s just 

decompose our deep 

network into a series 

of shallow networks!
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset

 Start at the input layer 

and move towards the 

output layer

 Once a layer has been 

trained, fix its weights 

and use those to train 

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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 Train each layer of the 

network iteratively using 

the training dataset

 Start at the input layer 
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trained, fix its weights 

and use those to train 

subsequent layers
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Pre-training
(Bengio et al., 
2006)
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 Start at the input layer 
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trained, fix its weights 
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Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset

 Start at the input layer 

and move towards the 

output layer

 Once a layer has been 

trained, fix its weights 

and use those to train 

subsequent layers
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Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset

 Use the pre-trained 

weights as an 

initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Supervised
Pre-training
(Bengio et al., 
2006)
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 Use the pre-trained weights as 

an initialization and fine-tune 

the entire network e.g., via SGD 

with the training dataset

 Train each layer of the 

network iteratively using 

the training dataset

 Use the pre-trained 

weights as an 

initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset
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(%
) Classification error on MNIST handwritten digit dataset 



 Train each layer of the 

network iteratively using 

the training dataset to 

predict the labels

 Use  pre-trained weights 

as an initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

Supervised
Pre-training
(Bengio et al., 
2006)
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 Use the pre-trained weights as 

an initialization and fine-tune 

the entire network e.g., via SGD 

with the training dataset



 Train each layer of the 

network iteratively using 

the training dataset to 

predict the labels

 Use  pre-trained weights 

as an initialization and 

fine-tune the entire 

network e.g., via SGD 

with the training dataset

Is this the only 
thing we could 
do with the 
training data? 
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Unsupervised
Pre-training
(Bengio et al., 
2006)
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 Idea: a good representation is 

one preserves a lot of 

information and could be used 

to recreate the inputs

 Train each layer of the 

network iteratively using 

the training dataset to 

learn useful representations

 Use  pre-trained weights as 

an initialization and 

fine-tune the entire network 

e.g., via SGD with the 

training dataset
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 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer
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 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/ 

objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re 

effectively swapping out 

the last layer and fitting 

all the weights to the 

training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


 Train each layer of the 

network iteratively using 

the training dataset by 

minimizing the 

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re 

effectively swapping out 

the last layer and fitting 

all the weights to the 

training dataset

Unsupervised
Pre-training
(Bengio et al., 
2006)
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Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high
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• Problem: what if you 

don’t even have 

enough data to train a 

single layer/fine-tune 

the pre-trained 

network? 
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 Ideally, you want to use a large dataset related to your 

goal task
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Another 
dose of
Reality

 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 GPT-3 pre-training data:

11/6/24 28Source: https://arxiv.org/pdf/2005.14165.pdf 

https://arxiv.org/pdf/2005.14165.pdf


 You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

 Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task 

i.e., not every input has a “correct” label e.g., chatbots?

Another 
dose of
Reality
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In-context 
Learning

 Problem: given their size, effectively fine-tuning LLMs 

can require lots of labelled data points. 

 Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 

without performing any updates to the parameters

 Intuition: during training, the LLM is exposed to a 

massive number of examples/tasks and the input 

conditions the model to “locate” the relevant concepts 

11/6/24 30Source: https://arxiv.org/pdf/2111.02080.pdf 
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

 Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 

without performing any updates to the parameters
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

 Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 

without performing any updates to the parameters
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• Key Takeaway: LLMs can perform well on novel tasks 

without having to fine-tune the model, sometimes even 

with just one or zero labelled training data points! 

https://arxiv.org/pdf/2005.14165.pdf


Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

 Insight: for many machine learning tasks, there is no 

universal ground truth, e.g., there are lots of possible 

ways to respond to a question or prompt.

 Idea: use human feedback to determine how good or 

bad some prediction/response is! 

 Issue: if the input space is huge (e.g., all possible chat 

prompts), to train a good model, we might need tons 

and tons of (potentially expensive) human annotation…

 Idea: use a small number of annotations to learn a 

“reward” function!
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Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

11/6/24 36Source: https://openai.com/blog/chatgpt 

 RLHF is a form of fine-tuning that uses reinforcement learning 

where the reward function is learned from human preferences

https://openai.com/blog/chatgpt
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 RLHF is a form of fine-tuning that uses reinforcement learning 

where the reward function is learned from human preferences

- What the heck is 
“Reinforcement 
- Learning”?

https://openai.com/blog/chatgpt


Learning 
Paradigms

 Supervised learning - 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁

 Regression - 𝑦 𝑛 ∈ ℝ

 Classification - 𝑦 𝑛 ∈ 1, … , 𝐶

 Reinforcement learning - 𝒟 = 𝒔 𝑛 , 𝒂 𝑛 , 𝑟 𝑛
𝑛=1

𝑁
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Reinforcement 
Learning: 
Examples

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
11/6/24 39



Reinforcement 
Learning: 
Problem 
Formulation

 State space, 𝒮

 Action space, 𝒜

 Reward function 

 Stochastic, 𝑝 𝑟 𝑠, 𝑎)

 Deterministic, 𝑅:  𝒮 ×  𝒜 → ℝ

 Transition function

 Stochastic, 𝑝 𝑠′ 𝑠, 𝑎)

 Deterministic, 𝛿:  𝒮 ×  𝒜 → 𝒮
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Reinforcement 
Learning: 
Problem 
Formulation

 Policy, 𝜋 ∶ 𝒮 → 𝒜

 Specifies an action to take in every state

 Value function, 𝑉𝜋:  𝒮 → ℝ

 Measures the expected total payoff of starting in 

some state 𝑠 and executing policy 𝜋, i.e., in every 

state, taking the action that 𝜋 returns 
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Toy Example

 𝒮 = all empty squares in the grid

 𝒜 = {up, down, left, right}

 Deterministic transitions

 Rewards of +1 and -1 for entering 
the labelled squares

 Terminate after receiving either 
reward

     

11/6/24 Figure courtesy of Eric Xing 43



11/6/24 Figure courtesy of Eric Xing

Toy Example: Policy

44



Optimal policy given a 

reward of -2 per step

11/6/24

Toy Example

Figure courtesy of Eric Xing 45



Optimal policy given a 

reward of -0.1 per step

11/6/24

Toy Example

Figure courtesy of Eric Xing 46



Markov 
Decision 
Process (MDP)

 Assume the following model for our data:

1. Start in some initial state 𝑠0

2. For time step 𝑡:

1. Agent observes state 𝑠𝑡

2. Agent takes action 𝑎𝑡 = 𝜋 𝑠𝑡

3. Agent receives reward 𝑟𝑡 ∼ 𝑝 𝑟 𝑠𝑡 , 𝑎𝑡)

4. Agent transitions to state 𝑠𝑡+1 ∼ 𝑝 𝑠′ 𝑠𝑡 , 𝑎𝑡) 

3. Total reward is

 MDPs make the Markov assumption: the reward and 

next state only depend on the current state and action.



𝑡=0

∞

𝛾𝑡𝑟𝑡
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