
10-301/601: Introduction
to Machine Learning
Lecture 20: Markov
Decision Processes
Matt Gormley & Henry Chai

11/6/24

Front Matter

 Announcements

 Exam 2 on 11/7 (tomorrow!)

 Please review the seating chart on Piazza and make

sure you have a seat / know where you’re going

 HW7 to be released 11/7, due 11/17 at 11:59 PM

 Please be mindful of your grace day usage

(see the course syllabus for the policy)

 If you have not used PyTorch before, I strongly

encourage you to go to recitation on Friday (11/8)

11/6/24 2

https://piazza.com/class/lzr0hlf6ktr1hw/post/623
https://www.cs.cmu.edu/~hchai2/courses/10601/

Recall:
Transformers

11/6/24 3

Okay, but how
on earth do we
go about
training these
things?

11/6/24 4

Recall:
Mini-batch
Stochastic
Gradient
Descent…

511/6/24

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙 ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙 ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Mini-batch
Stochastic
Gradient
Descent is a lie!

611/6/24

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙 ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙 ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Mini-batch
Stochastic
Gradient
Descent is a lie!
just the
beginning!

711/6/24

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙 ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙 ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Traditional
Supervised
Learning

11/6/24 8

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

11/6/24 9

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• “gradient-based

optimization starting

from random initialization

appears to often get

stuck in poor solutions for

such deep networks.”
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

11/6/24 10

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• Idea: if shallow

networks are easier to

train, let’s just

decompose our deep

network into a series

of shallow networks!
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/24 11Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/24 12Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

Output layer

 Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/24 13Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

 Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/24 14Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

11/6/24 15Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Use the pre-trained

weights as an

initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Supervised
Pre-training
(Bengio et al.,
2006)

11/6/24 16

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

 Train each layer of the

network iteratively using

the training dataset

 Use the pre-trained

weights as an

initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Train each layer of the

network iteratively using

the training dataset to

predict the labels

 Use pre-trained weights

as an initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

Supervised
Pre-training
(Bengio et al.,
2006)

11/6/24 17

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

 Train each layer of the

network iteratively using

the training dataset to

predict the labels

 Use pre-trained weights

as an initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

Is this the only
thing we could
do with the
training data?

11/6/24 18

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 19

 Idea: a good representation is

one preserves a lot of

information and could be used

to recreate the inputs

 Train each layer of the

network iteratively using

the training dataset to

learn useful representations

 Use pre-trained weights as

an initialization and

fine-tune the entire network

e.g., via SGD with the

training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 20Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 21Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 22Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 23Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

11/6/24 24Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re

effectively swapping out

the last layer and fitting

all the weights to the

training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re

effectively swapping out

the last layer and fitting

all the weights to the

training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 25

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Idea: a good representation is

one preserves a lot of

information and could be used

to recreate the inputs

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

11/6/24 26

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• Problem: what if you

don’t even have

enough data to train a

single layer/fine-tune

the pre-trained

network?
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 Ideally, you want to use a large dataset related to your

goal task

11/6/24 27

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 GPT-3 pre-training data:

11/6/24 28Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

Another
dose of
Reality

11/6/24 29

In-context
Learning

 Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

 Intuition: during training, the LLM is exposed to a

massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

11/6/24 30Source: https://arxiv.org/pdf/2111.02080.pdf

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

11/6/24 31Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

11/6/24 32Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

11/6/24 33Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

11/6/24 34Source: https://arxiv.org/pdf/2005.14165.pdf

• Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

https://arxiv.org/pdf/2005.14165.pdf

Reinforcement
Learning from
Human
Feedback
(RLHF)

 Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

 Idea: use human feedback to determine how good or

bad some prediction/response is!

 Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation…

 Idea: use a small number of annotations to learn a

“reward” function!

11/6/24 35

Reinforcement
Learning from
Human
Feedback
(RLHF)

11/6/24 36Source: https://openai.com/blog/chatgpt

 RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

https://openai.com/blog/chatgpt

11/6/24 37Source: https://openai.com/blog/chatgpt

 RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

- What the heck is
“Reinforcement
- Learning”?

https://openai.com/blog/chatgpt

Learning
Paradigms

 Supervised learning - 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁

 Regression - 𝑦 𝑛 ∈ ℝ

 Classification - 𝑦 𝑛 ∈ 1, … , 𝐶

 Reinforcement learning - 𝒟 = 𝒔 𝑛 , 𝒂 𝑛 , 𝑟 𝑛
𝑛=1

𝑁

11/6/24 38

Reinforcement
Learning:
Examples

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
11/6/24 39

Reinforcement
Learning:
Problem
Formulation

 State space, 𝒮

 Action space, 𝒜

 Reward function

 Stochastic, 𝑝 𝑟 𝑠, 𝑎)

 Deterministic, 𝑅: 𝒮 × 𝒜 → ℝ

 Transition function

 Stochastic, 𝑝 𝑠′ 𝑠, 𝑎)

 Deterministic, 𝛿: 𝒮 × 𝒜 → 𝒮

11/6/24 41

Reinforcement
Learning:
Problem
Formulation

 Policy, 𝜋 ∶ 𝒮 → 𝒜

 Specifies an action to take in every state

 Value function, 𝑉𝜋: 𝒮 → ℝ

 Measures the expected total payoff of starting in

some state 𝑠 and executing policy 𝜋, i.e., in every

state, taking the action that 𝜋 returns

11/6/24 42

Toy Example

 𝒮 = all empty squares in the grid

 𝒜 = {up, down, left, right}

 Deterministic transitions

 Rewards of +1 and -1 for entering
the labelled squares

 Terminate after receiving either
reward

11/6/24 Figure courtesy of Eric Xing 43

11/6/24 Figure courtesy of Eric Xing

Toy Example: Policy

44

Optimal policy given a

reward of -2 per step

11/6/24

Toy Example

Figure courtesy of Eric Xing 45

Optimal policy given a

reward of -0.1 per step

11/6/24

Toy Example

Figure courtesy of Eric Xing 46

Markov
Decision
Process (MDP)

 Assume the following model for our data:

1. Start in some initial state 𝑠0

2. For time step 𝑡:

1. Agent observes state 𝑠𝑡

2. Agent takes action 𝑎𝑡 = 𝜋 𝑠𝑡

3. Agent receives reward 𝑟𝑡 ∼ 𝑝 𝑟 𝑠𝑡 , 𝑎𝑡)

4. Agent transitions to state 𝑠𝑡+1 ∼ 𝑝 𝑠′ 𝑠𝑡 , 𝑎𝑡)

3. Total reward is

 MDPs make the Markov assumption: the reward and

next state only depend on the current state and action.

𝑡=0

∞

𝛾𝑡𝑟𝑡

11/6/24 47

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 20: Markov Decision Processes
	Slide 2: Front Matter
	Slide 3: Recall: Transformers
	Slide 4: Okay, but how on earth do we go about training these things?
	Slide 5: Recall: Mini-batch Stochastic Gradient Descent…
	Slide 6: Mini-batch Stochastic Gradient Descent is a lie!
	Slide 7: Mini-batch Stochastic Gradient Descent is a lie! just the beginning!
	Slide 8: Traditional Supervised Learning
	Slide 9: Reality
	Slide 10: Reality
	Slide 11: Pre-training (Bengio et al., 2006)
	Slide 12: Pre-training (Bengio et al., 2006)
	Slide 13: Pre-training (Bengio et al., 2006)
	Slide 14: Pre-training (Bengio et al., 2006)
	Slide 15: Fine-tuning (Bengio et al., 2006)
	Slide 16: Supervised Pre-training (Bengio et al., 2006)
	Slide 17: Supervised Pre-training (Bengio et al., 2006)
	Slide 18: Is this the only thing we could do with the training data?
	Slide 19: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 20: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 21: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 22: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 23: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 24: Fine-tuning (Bengio et al., 2006)
	Slide 25: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 26: Another dose of Reality
	Slide 27: Another dose of Reality
	Slide 28: Another dose of Reality
	Slide 29: Another dose of Reality
	Slide 30: In-context Learning
	Slide 31: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 32: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 33: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 34: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 35: Reinforcement Learning from Human Feedback (RLHF)
	Slide 36: Reinforcement Learning from Human Feedback (RLHF)
	Slide 37
	Slide 38: Learning Paradigms
	Slide 39: Reinforcement Learning: Examples
	Slide 41: Reinforcement Learning: Problem Formulation
	Slide 42: Reinforcement Learning: Problem Formulation
	Slide 43: Toy Example
	Slide 44: Toy Example: Policy
	Slide 45: Toy Example
	Slide 46: Toy Example
	Slide 47: Markov Decision Process (MDP)
	Slide 48: Reinforcement Learning: Key Challenges
	Slide 49: MDP Example: Multi-armed bandit
	Slide 50: MDP Example: Multi-armed bandit
	Slide 51: Reinforcement Learning: Objective Function
	Slide 52: Reinforcement Learning: Objective Function
	Slide 53: Value Function: Example
	Slide 54: Value Function: Example
	Slide 55: Optimal Value Function: Example
	Slide 56: Okay, now how do we go about learning this optimal policy?

