
10-301/601: Introduction
to Machine Learning
Lecture 20: Markov
Decision Processes
Matt Gormley & Henry Chai

11/6/24

Front Matter

 Announcements

 Exam 2 on 11/7 (tomorrow!)

 Please review the seating chart on Piazza and make

sure you have a seat / know where you’re going

 HW7 to be released 11/7, due 11/17 at 11:59 PM

 Please be mindful of your grace day usage

(see the course syllabus for the policy)

 If you have not used PyTorch before, I strongly

encourage you to go to recitation on Friday (11/8)

11/6/24 2

https://piazza.com/class/lzr0hlf6ktr1hw/post/623
https://www.cs.cmu.edu/~hchai2/courses/10601/

Recall:
Transformers

11/6/24 3

Okay, but how
on earth do we
go about
training these
things?

11/6/24 4

Recall:
Mini-batch
Stochastic
Gradient
Descent…

511/6/24

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙 ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙 ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Mini-batch
Stochastic
Gradient
Descent is a lie!

611/6/24

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙 ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙 ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Mini-batch
Stochastic
Gradient
Descent is a lie!
just the
beginning!

711/6/24

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to

small, random numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙 ∀ 𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙 ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Traditional
Supervised
Learning

11/6/24 8

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

11/6/24 9

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• “gradient-based

optimization starting

from random initialization

appears to often get

stuck in poor solutions for

such deep networks.”
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

11/6/24 10

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• Idea: if shallow

networks are easier to

train, let’s just

decompose our deep

network into a series

of shallow networks!
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/24 11Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/24 12Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

Output layer

 Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/24 13Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

 Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/24 14Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Start at the input layer

and move towards the

output layer

 Once a layer has been

trained, fix its weights

and use those to train

subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

11/6/24 15Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset

 Use the pre-trained

weights as an

initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Supervised
Pre-training
(Bengio et al.,
2006)

11/6/24 16

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

 Train each layer of the

network iteratively using

the training dataset

 Use the pre-trained

weights as an

initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Train each layer of the

network iteratively using

the training dataset to

predict the labels

 Use pre-trained weights

as an initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

Supervised
Pre-training
(Bengio et al.,
2006)

11/6/24 17

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

 Train each layer of the

network iteratively using

the training dataset to

predict the labels

 Use pre-trained weights

as an initialization and

fine-tune the entire

network e.g., via SGD

with the training dataset

Is this the only
thing we could
do with the
training data?

11/6/24 18

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Use the pre-trained weights as

an initialization and fine-tune

the entire network e.g., via SGD

with the training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 19

 Idea: a good representation is

one preserves a lot of

information and could be used

to recreate the inputs

 Train each layer of the

network iteratively using

the training dataset to

learn useful representations

 Use pre-trained weights as

an initialization and

fine-tune the entire network

e.g., via SGD with the

training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 20Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 21Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 22Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 This architecture/

objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 23Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

11/6/24 24Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re

effectively swapping out

the last layer and fitting

all the weights to the

training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

 Train each layer of the

network iteratively using

the training dataset by

minimizing the

reconstruction error

𝒙 − ℎ 𝒙 2

 When fine-tuning, we’re

effectively swapping out

the last layer and fitting

all the weights to the

training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/24 25

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

 Idea: a good representation is

one preserves a lot of

information and could be used

to recreate the inputs

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

11/6/24 26

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

o
r

(%
) Classification error on MNIST handwritten digit dataset

• Problem: what if you

don’t even have

enough data to train a

single layer/fine-tune

the pre-trained

network?
Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 Ideally, you want to use a large dataset related to your

goal task

11/6/24 27

Another
dose of
Reality

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 GPT-3 pre-training data:

11/6/24 28Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

 You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

 You have a tiny labelled dataset to train with

 You fit a massive deep learning model to the dataset

 Surprise, surprise: it overfits and your test error is super high

 Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

 Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

Another
dose of
Reality

11/6/24 29

In-context
Learning

 Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

 Intuition: during training, the LLM is exposed to a

massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

11/6/24 30Source: https://arxiv.org/pdf/2111.02080.pdf

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

11/6/24 31Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

11/6/24 32Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

11/6/24 33Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

 Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,

without performing any updates to the parameters

11/6/24 34Source: https://arxiv.org/pdf/2005.14165.pdf

• Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

https://arxiv.org/pdf/2005.14165.pdf

Reinforcement
Learning from
Human
Feedback
(RLHF)

 Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

 Idea: use human feedback to determine how good or

bad some prediction/response is!

 Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation…

 Idea: use a small number of annotations to learn a

“reward” function!

11/6/24 35

Reinforcement
Learning from
Human
Feedback
(RLHF)

11/6/24 36Source: https://openai.com/blog/chatgpt

 RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

https://openai.com/blog/chatgpt

11/6/24 37Source: https://openai.com/blog/chatgpt

 RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

- What the heck is
“Reinforcement
- Learning”?

https://openai.com/blog/chatgpt

Learning
Paradigms

 Supervised learning - 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁

 Regression - 𝑦 𝑛 ∈ ℝ

 Classification - 𝑦 𝑛 ∈ 1, … , 𝐶

 Reinforcement learning - 𝒟 = 𝒔 𝑛 , 𝒂 𝑛 , 𝑟 𝑛
𝑛=1

𝑁

11/6/24 38

Reinforcement
Learning:
Examples

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
11/6/24 39

Reinforcement
Learning:
Problem
Formulation

 State space, 𝒮

 Action space, 𝒜

 Reward function

 Stochastic, 𝑝 𝑟 𝑠, 𝑎)

 Deterministic, 𝑅: 𝒮 × 𝒜 → ℝ

 Transition function

 Stochastic, 𝑝 𝑠′ 𝑠, 𝑎)

 Deterministic, 𝛿: 𝒮 × 𝒜 → 𝒮

11/6/24 41

Reinforcement
Learning:
Problem
Formulation

 Policy, 𝜋 ∶ 𝒮 → 𝒜

 Specifies an action to take in every state

 Value function, 𝑉𝜋: 𝒮 → ℝ

 Measures the expected total payoff of starting in

some state 𝑠 and executing policy 𝜋, i.e., in every

state, taking the action that 𝜋 returns

11/6/24 42

Toy Example

 𝒮 = all empty squares in the grid

 𝒜 = {up, down, left, right}

 Deterministic transitions

 Rewards of +1 and -1 for entering
the labelled squares

 Terminate after receiving either
reward

11/6/24 Figure courtesy of Eric Xing 43

11/6/24 Figure courtesy of Eric Xing

Toy Example: Policy

44

Optimal policy given a

reward of -2 per step

11/6/24

Toy Example

Figure courtesy of Eric Xing 45

Optimal policy given a

reward of -0.1 per step

11/6/24

Toy Example

Figure courtesy of Eric Xing 46

Markov
Decision
Process (MDP)

 Assume the following model for our data:

1. Start in some initial state 𝑠0

2. For time step 𝑡:

1. Agent observes state 𝑠𝑡

2. Agent takes action 𝑎𝑡 = 𝜋 𝑠𝑡

3. Agent receives reward 𝑟𝑡 ∼ 𝑝 𝑟 𝑠𝑡 , 𝑎𝑡)

4. Agent transitions to state 𝑠𝑡+1 ∼ 𝑝 𝑠′ 𝑠𝑡 , 𝑎𝑡)

3. Total reward is

 MDPs make the Markov assumption: the reward and

next state only depend on the current state and action.

෍

𝑡=0

∞

𝛾𝑡𝑟𝑡

11/6/24 47

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 20: Markov Decision Processes
	Slide 2: Front Matter
	Slide 3: Recall: Transformers
	Slide 4: Okay, but how on earth do we go about training these things?
	Slide 5: Recall: Mini-batch Stochastic Gradient Descent…
	Slide 6: Mini-batch Stochastic Gradient Descent is a lie!
	Slide 7: Mini-batch Stochastic Gradient Descent is a lie! just the beginning!
	Slide 8: Traditional Supervised Learning
	Slide 9: Reality
	Slide 10: Reality
	Slide 11: Pre-training (Bengio et al., 2006)
	Slide 12: Pre-training (Bengio et al., 2006)
	Slide 13: Pre-training (Bengio et al., 2006)
	Slide 14: Pre-training (Bengio et al., 2006)
	Slide 15: Fine-tuning (Bengio et al., 2006)
	Slide 16: Supervised Pre-training (Bengio et al., 2006)
	Slide 17: Supervised Pre-training (Bengio et al., 2006)
	Slide 18: Is this the only thing we could do with the training data?
	Slide 19: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 20: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 21: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 22: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 23: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 24: Fine-tuning (Bengio et al., 2006)
	Slide 25: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 26: Another dose of Reality
	Slide 27: Another dose of Reality
	Slide 28: Another dose of Reality
	Slide 29: Another dose of Reality
	Slide 30: In-context Learning
	Slide 31: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 32: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 33: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 34: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 35: Reinforcement Learning from Human Feedback (RLHF)
	Slide 36: Reinforcement Learning from Human Feedback (RLHF)
	Slide 37
	Slide 38: Learning Paradigms
	Slide 39: Reinforcement Learning: Examples
	Slide 41: Reinforcement Learning: Problem Formulation
	Slide 42: Reinforcement Learning: Problem Formulation
	Slide 43: Toy Example
	Slide 44: Toy Example: Policy
	Slide 45: Toy Example
	Slide 46: Toy Example
	Slide 47: Markov Decision Process (MDP)
	Slide 48: Reinforcement Learning: Key Challenges
	Slide 49: MDP Example: Multi-armed bandit
	Slide 50: MDP Example: Multi-armed bandit
	Slide 51: Reinforcement Learning: Objective Function
	Slide 52: Reinforcement Learning: Objective Function
	Slide 53: Value Function: Example
	Slide 54: Value Function: Example
	Slide 55: Optimal Value Function: Example
	Slide 56: Okay, now how do we go about learning this optimal policy?

