10-301/601: Introduction
to Machine Learning
Lecture 20: Markov
Decision Processes

Matt Gormley & Henry Chai
11/6/24

Front Matter

11/6/24

* Announcements

* Exam 2 on 11/7 (tomorrow!)

* Please review the seating chart on Piazza and make

sure you have a seat / know where you’re going
* HW7 to be released 11/7, due 11/17 at 11:59 PM

* Please be mindful of your grace day usage

(see the course syllabus for the policy)

* If you have not used PyTorch before, | strongly

encourage you to go to recitation on Friday (11/8)

https://piazza.com/class/lzr0hlf6ktr1hw/post/623
https://www.cs.cmu.edu/~hchai2/courses/10601/

Recall:

Transformers

11/6/24

A

Transfomnl:r layer

= i

Transformer layer

]

i 3t i e

[Transformeb' layer

L~
X, | %46‘ i’/)ﬂ i ; X,

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Okay, but how
on earth do we

go about
training these
things?

11/6/24

A

Transfomnl:r layer

= i

Transformer layer

]

e o il i

Transformeb' layer

x%;l//ﬂ i ./ X,

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Recall:
Mini-batch

Stochastic
Gradient
Descent...

11/6/24

1.

* Input: D = {(x("),y("))}n 1,77%,?1)3,3
Initialize all weights W((Ol)), .. W((OL))
small, random numbers and sett = 0

While TERMINATION CRITERION is not satisfied

B
a. Randomly sample B data points from D, {(x(b),y(b))}b=1

b. Compute the gradient of the loss w.r.t. the sampled batch,
B
1
() —— (b) (1) (L)

c. Update WO: w2 « wP — 5% ¢y

d. Incrementt:t<t+1

* Output: Wt(l), e Wt(L)

Mini-batch

Stochastic
Gradient
Descent is a lie!

11/6/24

1.

* Input: D = {(x("),y("))}n 1,77%,?1)3,3
Initialize all weights W((Ol)), .. W((OL))
small, random numbers and sett = 0

While TERMINATION CRITERION is not satisfied

B
a. Randomly sample B data points from D, {(x(b),y(b))}b=1

b. Compute the gradient of the loss w.r.t. the sampled batch,
B
1
() —— (b) (1) (L)

c. Update WO: w2 « wP — 5% ¢y

d. Incrementt:t<t+1

* Output: Wt(l), e Wt(L)

* Input: D = {(x(") y("))}n 1,77%,?1)3,3

1. Initialize all weights W((Ol)), .. W((OL)) to

- numbers and set t = 0

2. While TERMINATION CRITERION is not satisfied

e a. Randomly sample ata points from D, {(x**/,y B_
Mini-batch doml| le B d from D, {(x,y)}, _,
StOCha stic b. Compute the gradient of the- w.r.t. the sampled batch,
Gradient

GO = (b) (1) (L)
Descent is aiel BZVWM W(t) W<t>) Vi

just the
beginning!

c. Update WO: w2 « wP — 5% ¢y

d. Incrementt:t<t+1

11/6/24 ¢ Output: VVt(l), cir VVt(L)

* You have some task that you want to apply machine

learning to
* You have a labelled dataset to train with
* You fit a deep learning model to the dataset

Traditional

Supervised
Learning

11/6/24

11/6/24

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with
* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * “gradient-based

- 2 optimization starting

Q

=1 from random initialization

0
appears to often get

Shallow "Deep" PP 8
Network Network (no stuck in poor solutions for

pre-training) ¢, deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with
* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * |dea: if shallow
- 2 networks are easier to
Q
= 1 train, let’s just
0 decompose our deep
Shallow "Deep"
Network Network (no network into a series

pre-training) of shallow networks!

11/6/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 10

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the Output layer
network iteratively using

the training dataset
34 hidden layer

- Start at the input layer

Pre-training and move towards the
(Bengio etal, output layer 2" hidden layer

2006)

* Once a layer has been
trained, fix its weights ~ 1° hidden layer
and use those to train

subsequent layers Input layer

11/6/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the
network iteratively using

the training dataset

- Start at the input layer

Pre'training and move towards the
(Bengio et al., output layer Output layer

2006)

* Once a layer has been
trained, fix its weights ~ 1° hidden layer
and use those to train

subsequent layers Input layer

11/6/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the

network iteratively using

the training dataset
Output layer

- Start at the input layer

Pre'training and move towards the
(Bengio etal., output layer 2™ hidden layer

2006)

* Once a layer has been
trained, fix its weights ~ 1° hidden layer
and use those to train

subsequent layers Input layer

11/6/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the Output layer
network iteratively using

the training dataset
34 hidden layer

- Start at the input layer

Pre'training and move towards the
(Bengio etal., output layer 2™ hidden layer

2006)

* Once a layer has been
trained, fix its weights ~ 1° hidden layer
and use those to train

subsequent layers Input layer

11/6/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning

(Bengio et al.,
2006)

11/6/24

* Train each layer of the Output layer

* Use the pre-trained

network iteratively using

the training dataset
34 hidden layer

weights as an
initialization and 27 hidden layer
fine-tune the entire

network e.g., via SGD 15t hidden layer

with the training dataset
Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

15

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset the entire network e.g., via SGD
Su pervised with the training dataset
Pre-training
(BengiO et 3 I > = Classification error on MNIST handwritten digit dataset
= 3
2006) :
Ll 2
0
Shallow "Deep" "Deep"
Network Network (no Network

pre-training) (supervised

re-trainin
11/6/24 p g) 16

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD
Supe rvised predict the labels with the training dataset
Pre-training
(Bengio et al < Classification error on MNIST handwritten digit dataset
o7 S
2006) s
0
Shallow "Deep"” "Deep"
Network Network (no Network

pre-training) (supervised

re-trainin
11/6/24 p g) 17

s this the only
thing we could

do with the
training data?

11/6/24

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD
predict the labels with the training dataset
= Classification error on MNIST handwritten digit dataset
5
-1 11

Shallow "Deep" "Deep"
Network Network (no Network
pre-training) (supervised

pre-training) .

Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/24

* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of

the training dataset to information and could be used

learn useful representations to recreate the inputs

Test Error (%)

Classification error on MNIST handwritten digit dataset

Shallow "Deep" "Deep"
Network Network (no Network
pre-training) (supervised
pre-training)

19

Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/24

* Train each layer of the Output layer

network iteratively using
the training dataset by
S 34 hidden layer
minimizing the
reconstruction error

lx — h(x)]|, 2nd hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

20

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/24

* Train each layer of the
network iteratively using
the training dataset by
minimizing the
reconstruction error

lx — h(x)]|, Reconstructed
input

* This architecture/
objective defines an 15t hidden layer

autoencoder
Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

21

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/24

* Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

lx — h(x)]l;

* This architecture/

objective defines an

autoencoder

Reconstructed
hidden layer

2" hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 22

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/24

* Train each layer of the

* This architecture/

Reconstructed
hidden layer
network iteratively using

the training dataset by

o 34 hidden layer
minimizing the
reconstruction error

lx — h(x)]|, 2nd hidden layer

objective defines an 15t hidden layer
autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

23

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning

(Bengio et al.,
2006)

11/6/24

* Train each layer of the Output layer

* When fine-tuning, we're

network iteratively using
the training dataset by
R 34 hidden layer
minimizing the
reconstruction error

lx — h(x)]|, 2nd hidden layer

effectively swapping out qsthigden layer
the last layer and fitting
all the weights to the

. I I
training dataset nputlayer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

24

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the * Idea: a good representation is

network iteratively using one preserves a lot of
the training dataset by information and could be used
Unsupervised minimizing the to recreate the inputs
Pre-trainin g reconstruction error
(BengiO et a I > 3 3 Classification error on MNIST handwritten digit dataset
2006) 5
g 2
B I 1 n
0
Shallow "Deep" "Deep" "Deep"
Network Network (no Network Network

pre-training) (supervised (unsupervised

e pre-training) pre-training) .

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a-deep learning model to the dataset

Another
dose of * Surprise, surprise: it overfits and your test error is super high
Rea ||ty < ; Classification error on MNIST handwritten digit dataset

S * Problem: what if you

“;:'; ’ don’t even have

Q1 .

enough data to train a
0

single layer/fine-tune
Shallow "Deep" 5 ver/

Network Network (no the pre-trained
pre-training)

network?

11/6/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 26

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

Another * You fit a-deep learning model to the dataset
dose of * Surprise, surprise: it overfits and your test error is super high

Reality * Key observation: you can pre-train on basically any labelled
or unlabelled dataset!

- Ideally, you want to use a large dataset related to your

goal task

11/6/24

27

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive

dOSE Of * Surprise, surprise: it overfits and your test error is super high

Reality - Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* GPT-3 pre-training data:

Quantity Weight in

Dataset (tokens) training mix
Common Crawl (filtered) 410 billion 60%
WebText2 19 billion 22%
Booksl1 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3%

11/6/24 Source: https://arxiv.org/pdf/2005.14165.pdf 28

https://arxiv.org/pdf/2005.14165.pdf

Another
dose of

Reality

11/6/24

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with
* You fit a-deep learning model to the dataset
* Surprise, surprise: it overfits and your test error is super high

* Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

- Okay that’s great for pre-training and all, but what if

A. you don’t have enough data to fine-tune your model?

B. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

29

° Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

* Idea: leverage the LLM'’s context window by passing a
few examples to the model as input,

without performing any updates to the parameters

In-context * Intuition: during training, the LLM is exposed to a
Lea rning massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

11/6/24 Source: https://arxiv.org/pdf/2111.02080.pdf 30

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

11/6/24

* Idea: leverage the LLM'’s context window by passing a

few examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: < task description
sea otter => loutre de mer < examples
peppermint => menthe poivrée ¢

plush girafe => girafe peluche

cheese => < prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
N2
N\ %

1 peppermint => menthe poivrée < example #2

gradient update

e|<_

v

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

31

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

11/6/24

* Idea: leverage the LLM'’s context window by passing a
few one examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)

One-shot Fine-tuning

The model is trained via repeated gradient updates using a

In addition to the task description, the model sees a single
large corpus of example tasks.

example of the task. No gradient updates are performed.

. o 1 sea otter => loutre de mer <« example #1
1 Translate English to French: < task description
N\
2 sea otter => loutre de mer ¢ example
gradient update
g cheese => < prompt
N\

1 peppermint => menthe poivrée <« example #2

gradient update

e|<_

v

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

32

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

11/6/24

* Idea: leverage the LLM'’s context window by passing a

few-one zero(!) examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

1 Translate English to French: < task description

2 cheese => «—— prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer «—— example #1
\%
N\

1 peppermint => menthe poivrée < example #2

gradient update

e|<_

2

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

33

https://arxiv.org/pdf/2005.14165.pdf

* Idea: leverage the LLM'’s context window by passing a

few-one zero(!) examples to the model as input,

without performing any updates to the parameters

. Aggregate Performance Across Benchmarks

—e— Few Shot
—e— One Shot

Few-shot, e s
One-shot &

—

Accuracy
[«
o

(S

Zero-shot
(in-context) 2
Lea rn i ng 81?:7)431/0-;3 1.3B 2.6B 6.7B 7138 175B

Parameters in LM (Billions)

* Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

Source: https://arxiv.org/pdf/2005.14165.pdf

11/6/24

https://arxiv.org/pdf/2005.14165.pdf

Reinforcement
Learning from

Human
Feedback
(RLHF)

11/6/24

* Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

* Idea: use human feedback to determine how good or

bad some prediction/response is!

* Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation...

* |dea: use a small number of annotations to learn a

“reward” function!

35

Step1

Collect demonstration data
and train a supervised policy.

Step 2

Collect comparison data and

train a reward model.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A promptis {3 A prompt and i":; A new prompt is e
sampled from our Explain reinforcement several model Explain reinforcement sampled from Write a story
prompt dataset. learning to a 6 year old. outputs are learning to a 6 year old. the dataset. about otters.
. sampled.
In reinforcemeant Explain rawards...
Reinforcement * S . L4
s The PPO model is s
. A labeler @ (c] (D) initialized from the N
Le a r n I n g rO l I I demonstrates the e omsmnete supervised policy. P2
desired output 74 .
H behavior. et ¥ f
u I I l a n l A labeler ranks the The pto Iicty generates i e
outputs from best an output.
Feedback 0-6:0-0 !
This data is used to LN RM
The reward model
T . N 7 .0
fi ntT1 tune G'?T 3‘5 7 ¢ calculates a reward e X
R L H F wi §uperwse 4 o for the output. W
learning. @@@ . o
This data is used L, *
to train our =y The reward is used
reward model. to update the
0-0-0-0 e

policy using PPQ.

* RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

11/6/24 Source: https://openai.com/blog/chatgpt 36

https://openai.com/blog/chatgpt

Step1

Collect demonstration data
and train a supervised policy.

Step 2

Collect comparison data and

train a reward model.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

W h h h k . A promptis i‘; A prompt and 'i":! A new prompt is e
a t t e e C I S sampled from our Explain reinforcement several model Explain reinforcement sampled from Write a story
prompt dataset. learning to a 6 year old. outputs are learning to a 6 year old. the dataset. about otters.
o’ . sampled.
In reinforcemeant Explain rawards...
Reinforcement * S ® y
B The PPO model is O
.)) ? Alabeler @ (c) (0] initialized from the I
Le a rn I n g demonstrates the e omsmnete supervised policy. P2
. desired output Vs g
: We gi d
behavior = ¥ f
l A labeler ranks the The pto Iicty generates Oncs upon a time..
outputs from best an output.
.SFF. to worst. 0-0-0-0 *
This data is used to LN RM
The reward model
ina- ~ N 7 .0
fi m; tune G'?T 3‘5 R ¢ calculates a reward e X
l\;gmsi;'gemse 4 o for the output. W
BEEE This data is used .é?.s&. *
to train our =y The reward is used
reward model. to update the
0-0-0-0 e

policy using PPQ.

* RLHF is a form of fine-tuning that uses reinforcement learning

where the reward function is learned from human preferences

Source: https://openai.com/blog/chatgpt 37

11/6/24

https://openai.com/blog/chatgpt

Learning

Paradigms

11/6/24

» Supervised learning - D = {(x("),y(”))}:=1
- Regression - y(™ € R
- Classification - y(") e{1,..,C}

* Reinforcement learning - D = {(S(n), a(n)» T(n))}:ﬂ

38

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.wired.com/2012/02/high-speed-trading/

Reinforcement
Learning:

Examples

(e 0,14%
29

*O9% e

11/6/24
Source: https://twitter.com/alphagomovie

39

Reinforcement
Learning:

Problem
Formulation

11/6/24

- State space, &
* Action space, A

* Reward function

- Stochastic, p(r | 5,a)

* Deterministic, R: § X A —-> R

* Transition function

» Stochastic, p(s’ | s, a)

* Deterministic, §: § X A > S

41

Reinforcement
Learning:

Problem
Formulation

11/6/24

* Policy m:8 - A

* Specifies an action to take in every state

* Value function, V™: § -» R

* Measures the expected total payoff of starting in
some state s and executing policy m, i.e., in every

state, taking the action that returns

42

Toy Example

* § = all empty squares in the grid
* A = {up, down, left, right}
* Deterministic transitions

* Rewards of +1 and -1 for entering
the labelled squares

* Terminate after receiving either
reward

11/6/24

Figure courtesy of EricXing

43

Toy Example: Policy

Poll Question 1:

s this policy optimal?
A. Yes

B. TOXIC

C. No

Poll Question 2:

Justify your answer to
the previous question

11/6/24

Figure courtesy of EricXing

45

Toy Example

Optimal policy given a

reward of -2 per step

Toy Example

Optimal policy given a

reward of -0.1 per step

- Assume the following model for our data:
1. Startin some initial state s
2. Fortime step t:

1. Agent observes state s;

Markov 2. Agent takes action a, = m(s;)
Decision 3. Agent receives reward 1. ~ p(r | s¢, a;)

Process (MDP) 4. Agent transitions to state s;.; ~ p(s' | s¢, a;)

0]
3. Total reward is Z yir,
t=0

* MDPs make the Markov assumption: the reward and

next state only depend on the current state and action.

11/6/24

48

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 20: Markov Decision Processes
	Slide 2: Front Matter
	Slide 3: Recall: Transformers
	Slide 4: Okay, but how on earth do we go about training these things?
	Slide 5: Recall: Mini-batch Stochastic Gradient Descent…
	Slide 6: Mini-batch Stochastic Gradient Descent is a lie!
	Slide 7: Mini-batch Stochastic Gradient Descent is a lie! just the beginning!
	Slide 8: Traditional Supervised Learning
	Slide 9: Reality
	Slide 10: Reality
	Slide 11: Pre-training (Bengio et al., 2006)
	Slide 12: Pre-training (Bengio et al., 2006)
	Slide 13: Pre-training (Bengio et al., 2006)
	Slide 14: Pre-training (Bengio et al., 2006)
	Slide 15: Fine-tuning (Bengio et al., 2006)
	Slide 16: Supervised Pre-training (Bengio et al., 2006)
	Slide 17: Supervised Pre-training (Bengio et al., 2006)
	Slide 18: Is this the only thing we could do with the training data?
	Slide 19: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 20: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 21: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 22: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 23: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 24: Fine-tuning (Bengio et al., 2006)
	Slide 25: Unsupervised Pre-training (Bengio et al., 2006)
	Slide 26: Another dose of Reality
	Slide 27: Another dose of Reality
	Slide 28: Another dose of Reality
	Slide 29: Another dose of Reality
	Slide 30: In-context Learning
	Slide 31: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 32: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 33: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 34: Few-shot, One-shot & Zero-shot (in-context) Learning
	Slide 35: Reinforcement Learning from Human Feedback (RLHF)
	Slide 36: Reinforcement Learning from Human Feedback (RLHF)
	Slide 37
	Slide 38: Learning Paradigms
	Slide 39: Reinforcement Learning: Examples
	Slide 41: Reinforcement Learning: Problem Formulation
	Slide 42: Reinforcement Learning: Problem Formulation
	Slide 43: Toy Example
	Slide 44: Toy Example: Policy
	Slide 45
	Slide 46: Toy Example
	Slide 47: Toy Example
	Slide 48: Markov Decision Process (MDP)
	Slide 49: Reinforcement Learning: Key Challenges
	Slide 50: MDP Example: Multi-armed bandit
	Slide 52: Reinforcement Learning: Objective Function
	Slide 53: Reinforcement Learning: Objective Function
	Slide 54: Value Function: Example
	Slide 55: Value Function: Example
	Slide 56: Optimal Value Function: Example
	Slide 57: Okay, now how do we go about learning this optimal policy?

