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Reminders

• Homework 7: Deep Learning
– Out: Fri, Nov. 8
– Due: Sun, Nov. 17 at 11:59pm

• Homework 8: Deep RL
– Out: Sun, Nov. 17
– Due: Mon, Nov. 25 at 11:59pm
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MARKOV DECISION PROCESSES
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RL: Components
From the Environment (i.e. the MDP)
• State space, !
• Action space, "
• Reward function, # $, & , # ∶ 	!	×	" → ℝ
• Transition probabilities, , $!	 $, &)

– Deterministic transitions:

, $!	 $, &) = /1	if	3 $, & = $′
0	otherwise	

where 3 $, &  is a transition function

From the Model
• Policy, = ∶ ! → "
• Value function, >": ! → ℝ

– Measures the expected total payoff of starting in some state $ and 
executing policy =
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Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)



Markov Decision Process (MDP)

• For supervised learning the PAC learning framework 
provided assumptions about where our data came from:

• For reinforcement learning we assume our data comes from 
a Markov decision process (MDP)

10



Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state $# ∈ !
2. For time step A:

1. Agent observes state $$ ∈ !
2. Agent takes action &$ ∈ " where &$ = = $$
3. Agent receives reward B$ ∈ ℝ where  B$ = # $$, &$
4. Agent transitions to state $$%& ∈ ! where $$%& ∼ , $!	 $$, &$)	

3. Total reward is ∑$'#( E$B$	
– The value ! is the “discount factor”, a hyperparameter 0 < ! < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the 
current state and action.

• Def.: we execute a policy = by taking action & = = $ when in state $
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RL: Objective Function
• Goal: Find a policy = ∶ ! → "	 for choosing “good” actions that maximize: 

F total	reward = F J
$'#

(
E$B$

• The above is called the 
   “infinite horizon expected future discounted reward”
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RL: Optimal Value Function & Policy
• Bellman Equations:

!! " = 	% ", '(") + 	+ ,
"!∈	%

- "&	|	", '(") !! "&

• Optimal policy: 
– Given !∗, 	% ", / , - "&	|	", / , + we can compute this!

'∗ " = argmax
(	∈	)

	% ", / + 	+ ,
"!∈	%

- "&	|	", / !∗ "&

• Optimal value function:

!∗ " = max
(	∈	)

	% ", / + 	+ ,
"!∈	%

- "&	|	", / !∗ "&

– System of 5  equations and 5  variables (each variable is some !∗ "  for some state ")
– Can be written without '∗
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Immediate 
reward

(Discounted) 
Future 
reward



EXPLORATION VS. EXPLOITATION
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MDP Example: Multi-armed bandit
Bandit 1 Bandit 2 Bandit 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 5 2

0 0 1

1 5 4

1 0 0

1 5 3

1 0 3

0 5 1
1611/14/22

•Single state: 5 = 1
•Three actions: 7 = 1, 2, 3
•Deterministic transitions
•Rewards are stochastic

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???



Exploration vs. Exploitation Tradeoff
• In RL, there is a tension between two strategies an agent can follow when 

interacting with its environment:
– Exploration: the agent takes actions to visit (state, action) pairs it has not 

seen before, with the hope of uncovering previously unseen high reward 
states

– Exploitation: the agent takes actions to visit (state, action) pairs it knows to 
have high reward, with the goal of maximizing reward given its current 
(possibly limited) knowledge of the environment

• Balancing these two is critical to success in RL!
– If the agent only explores, it performs no better than a random policy
– If the agent only exploits, it will likely never discover an optimal policy

• One approach for trading off between these: 
the !-greedy policy
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FIXED POINT ITERATION
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Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of 

equations
• Under the right conditions, it will converge
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1. Assume we have n equations and 
n variables, written f(x) = 0 
where x is a vector

2. Rearrange the equations s.t. 
each variable xi has one equation 
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each 

parameter and increment t:
5. Repeat #5 until convergence

f1(x1, . . . , xn) = 0

...
fn(x1, . . . , xn) = 0

x1 = g1(x1, . . . , xn)

...
xn = gn(x1, . . . , xn)

x
(t+1)
1 = g1(x

(t)
1 , . . . , x

(t)
n
)

...

x
(t+1)
n

= gn(x
(t)
1 , . . . , x

(t)
n
)



Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of 

equations
• Under the right conditions, it will converge

20

1. Assume we have n equations and 
n variables, written f(x) = 0 
where x is a vector

2. Rearrange the equations s.t. 
each variable xi has one equation 
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each 

parameter and increment t:
5. Repeat #5 until convergence

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))



Fixed Point Iteration
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cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

We can implement our example in a few lines of code



Fixed Point Iteration
We can implement our example in a few lines of code
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cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

$ python fixed-point-iteration.py 
i= 0 x=-1.0000 y=-1.000 f(x,y)=(1.5403, 0.1585)
i= 1 x=0.5403 y=0.5144 f(x,y)=(0.3303, 0.0000)
i= 2 x=0.8706 y=0.7647 f(x,y)=(-0.1490, 0.0000)
i= 3 x=0.7216 y=0.6606 f(x,y)=(0.0681, 0.0000)
i= 4 x=0.7896 y=0.7101 f(x,y)=(-0.0313, 0.0000)
i= 5 x=0.7583 y=0.6877 f(x,y)=(0.0144, 0.0000)
i= 6 x=0.7727 y=0.6981 f(x,y)=(-0.0066, 0.0000)
i= 7 x=0.7661 y=0.6933 f(x,y)=(0.0031, 0.0000)
i= 8 x=0.7691 y=0.6955 f(x,y)=(-0.0014, 0.0000)
i= 9 x=0.7677 y=0.6945 f(x,y)=(0.0006, 0.0000)
i=10 x=0.7684 y=0.6950 f(x,y)=(-0.0003, 0.0000)
i=11 x=0.7681 y=0.6948 f(x,y)=(0.0001, 0.0000)
i=12 x=0.7682 y=0.6949 f(x,y)=(-0.0001, 0.0000)
i=13 x=0.7681 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=14 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=15 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=16 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=17 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=18 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=19 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=20 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)



VALUE ITERATION
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RL Terminology

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward triples
E. a value function
F. transition function
G. an optimal policy
H. Matt’s favorite statement
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Statements:
1. gives the expected future 

discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of 

agent
4. is a deterministic map from 

state/action pairs to states
5. quantifies the likelihood of landing 

a new state, given a state/action 
pair

6. is the desired output of an RL 
algorithm

7. can be influenced by trading off 
between exploitation/exploration

Question: Match each term (on the left) to the 
corresponding statement or definition (on the right)



RL: Optimal Value Function & Policy
• Bellman Equations:

!! " = 	% ", '(") + 	+ ,
"!∈	%

- "&	|	", '(") !! "&

• Optimal policy: 
– Given !∗, 	% ", / , - "&	|	", / , + we can compute this!

'∗ " = argmax
(	∈	)

	% ", / + 	+ ,
"!∈	%

- "&	|	", / !∗ "&

• Optimal value function:

!∗ " = max
(	∈	)

	% ", / + 	+ ,
"!∈	%

- "&	|	", / !∗ "&

– System of 5  equations and 5  variables (each variable is some !∗ "  for some state ")
– Can be written without '∗
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Immediate 
reward

(Discounted) 
Future 
reward



Example: Path Planning
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Value Iteration
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Algorithm: Example:



Value Iteration

30

Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (deterministic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, δ(s, a) tran‐
sition function)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γV (δ(s, a))

6: Let π(s) = argmax
a
R(s, a) + γV (δ(s, a)), ∀s

7: return π



Value Iteration
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Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (stochastic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, p(·|s, a)
transition probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π



Value Iteration
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Algorithm 1 Value Iteration (stochastic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, p(·|s, a)
transition probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: for a ∈ A do
6: Q(s, a) = R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

7: V (s) = maxa Q(s, a)

8: Let π(s) = argmax
a
Q(s, a), ∀s

9: return π

Variant 2: with Q(s,a) table



Synchronous vs. Asynchronous
Value Iteration
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asynchronous 
updates: compute 
and update V(s) for 
each state one at a 
time

synchronous 
updates: compute all 
the fresh values of 
V(s) from all the stale 
values of V(s), then 
update V(s) with 
fresh values

Algorithm 1 Asynchronous Value Iteration
1: procedure AĘĞēĈčėĔēĔĚĘVĆđĚĊIęĊėĆęĎĔē(R(s, a), p(·|s, a))
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π



Value Iteration Convergence
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Provides 
reasonable 

stopping criterion 
for value iteration

Often greedy policy 
converges well 

before the value 
function

Holds for both 
asynchronous and 

sychronous 
updates

very abridged


