
Reinforcement Learning:
Value Iteration & Policy Iteration

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 21

Nov. 11, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 7: Deep Learning
– Out: Fri, Nov. 8
– Due: Sun, Nov. 17 at 11:59pm

• Homework 8: Deep RL
– Out: Sun, Nov. 17
– Due: Mon, Nov. 25 at 11:59pm

6

MARKOV DECISION PROCESSES

8

RL: Components
From the Environment (i.e. the MDP)
• State space, !
• Action space, "
• Reward function, # $, & , # ∶ 	!	×	" → ℝ
• Transition probabilities, , $!	 $, &)

– Deterministic transitions:

, $!	 $, &) = /1	if	3 $, & = $′
0	otherwise	

where 3 $, & is a transition function

From the Model
• Policy, = ∶ ! → "
• Value function, >": ! → ℝ

– Measures the expected total payoff of starting in some state $ and
executing policy =

9

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)

Markov Decision Process (MDP)

• For supervised learning the PAC learning framework
provided assumptions about where our data came from:

• For reinforcement learning we assume our data comes from
a Markov decision process (MDP)

10

Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state $# ∈ !
2. For time step A:

1. Agent observes state $$ ∈ !
2. Agent takes action &$ ∈ " where &$ = = $$
3. Agent receives reward B$ ∈ ℝ where B$ = # $$, &$
4. Agent transitions to state $$%& ∈ ! where $$%& ∼ , $!	 $$, &$)	

3. Total reward is ∑$'#(E$B$	
– The value ! is the “discount factor”, a hyperparameter 0 < ! < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the
current state and action.

• Def.: we execute a policy = by taking action & = = $ when in state $
11

RL: Objective Function
• Goal: Find a policy = ∶ ! → "	 for choosing “good” actions that maximize:

F total	reward = F J
$'#

(
EB

• The above is called the
 “infinite horizon expected future discounted reward”

12

RL: Optimal Value Function & Policy
• Bellman Equations:

!! " = 	% ", '(") + 	+ ,
"!∈	%

- "&	|	", '(") !! "&

• Optimal policy:
– Given !∗, 	% ", / , - "&	|	", / , + we can compute this!

'∗ " = argmax
(∈)

	% ", / + 	+ ,
"!∈	%

- "&	|	", / !∗ "&

• Optimal value function:

!∗ " = max
(∈)

	% ", / + 	+ ,
"!∈	%

- "&	|	", / !∗ "&

– System of 5 equations and 5 variables (each variable is some !∗ " for some state ")
– Can be written without '∗

13

Immediate
reward

(Discounted)
Future
reward

EXPLORATION VS. EXPLOITATION

15

MDP Example: Multi-armed bandit
Bandit 1 Bandit 2 Bandit 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 5 2

0 0 1

1 5 4

1 0 0

1 5 3

1 0 3

0 5 1
1611/14/22

•Single state: 5 = 1
•Three actions: 7 = 1, 2, 3
•Deterministic transitions
•Rewards are stochastic

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

Exploration vs. Exploitation Tradeoff
• In RL, there is a tension between two strategies an agent can follow when

interacting with its environment:
– Exploration: the agent takes actions to visit (state, action) pairs it has not

seen before, with the hope of uncovering previously unseen high reward
states

– Exploitation: the agent takes actions to visit (state, action) pairs it knows to
have high reward, with the goal of maximizing reward given its current
(possibly limited) knowledge of the environment

• Balancing these two is critical to success in RL!
– If the agent only explores, it performs no better than a random policy
– If the agent only exploits, it will likely never discover an optimal policy

• One approach for trading off between these:
the !-greedy policy

17

FIXED POINT ITERATION

18

Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of

equations
• Under the right conditions, it will converge

19

1. Assume we have n equations and
n variables, written f(x) = 0
where x is a vector

2. Rearrange the equations s.t.
each variable xi has one equation
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each

parameter and increment t:
5. Repeat #5 until convergence

f1(x1, . . . , xn) = 0

...
fn(x1, . . . , xn) = 0

x1 = g1(x1, . . . , xn)

...
xn = gn(x1, . . . , xn)

x
(t+1)
1 = g1(x

(t)
1 , . . . , x

(t)
n
)

...

x
(t+1)
n

= gn(x
(t)
1 , . . . , x

(t)
n
)

Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of

equations
• Under the right conditions, it will converge

20

1. Assume we have n equations and
n variables, written f(x) = 0
where x is a vector

2. Rearrange the equations s.t.
each variable xi has one equation
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each

parameter and increment t:
5. Repeat #5 until convergence

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

Fixed Point Iteration

21

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

We can implement our example in a few lines of code

Fixed Point Iteration
We can implement our example in a few lines of code

22

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

$ python fixed-point-iteration.py
i= 0 x=-1.0000 y=-1.000 f(x,y)=(1.5403, 0.1585)
i= 1 x=0.5403 y=0.5144 f(x,y)=(0.3303, 0.0000)
i= 2 x=0.8706 y=0.7647 f(x,y)=(-0.1490, 0.0000)
i= 3 x=0.7216 y=0.6606 f(x,y)=(0.0681, 0.0000)
i= 4 x=0.7896 y=0.7101 f(x,y)=(-0.0313, 0.0000)
i= 5 x=0.7583 y=0.6877 f(x,y)=(0.0144, 0.0000)
i= 6 x=0.7727 y=0.6981 f(x,y)=(-0.0066, 0.0000)
i= 7 x=0.7661 y=0.6933 f(x,y)=(0.0031, 0.0000)
i= 8 x=0.7691 y=0.6955 f(x,y)=(-0.0014, 0.0000)
i= 9 x=0.7677 y=0.6945 f(x,y)=(0.0006, 0.0000)
i=10 x=0.7684 y=0.6950 f(x,y)=(-0.0003, 0.0000)
i=11 x=0.7681 y=0.6948 f(x,y)=(0.0001, 0.0000)
i=12 x=0.7682 y=0.6949 f(x,y)=(-0.0001, 0.0000)
i=13 x=0.7681 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=14 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=15 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=16 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=17 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=18 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=19 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=20 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)

VALUE ITERATION

23

RL Terminology

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward triples
E. a value function
F. transition function
G. an optimal policy
H. Matt’s favorite statement

24

Statements:
1. gives the expected future

discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of

agent
4. is a deterministic map from

state/action pairs to states
5. quantifies the likelihood of landing

a new state, given a state/action
pair

6. is the desired output of an RL
algorithm

7. can be influenced by trading off
between exploitation/exploration

Question: Match each term (on the left) to the
corresponding statement or definition (on the right)

RL: Optimal Value Function & Policy
• Bellman Equations:

!! " = 	% ", '(") + 	+ ,
"!∈	%

- "&	|	", '(") !! "&

• Optimal policy:
– Given !∗, 	% ", / , - "&	|	", / , + we can compute this!

'∗ " = argmax
(∈)

	% ", / + 	+ ,
"!∈	%

- "&	|	", / !∗ "&

• Optimal value function:

!∗ " = max
(∈)

	% ", / + 	+ ,
"!∈	%

- "&	|	", / !∗ "&

– System of 5 equations and 5 variables (each variable is some !∗ " for some state ")
– Can be written without '∗

26

Immediate
reward

(Discounted)
Future
reward

Example: Path Planning

27

Value Iteration

28

Algorithm: Example:

Value Iteration

30

Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (deterministic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, δ(s, a) tran‐
sition function)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γV (δ(s, a))

6: Let π(s) = argmax
a
R(s, a) + γV (δ(s, a)), ∀s

7: return π

Value Iteration

31

Variant 1: without Q(s,a) table

Algorithm 1 Value Iteration (stochastic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, p(·|s, a)
transition probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π

Value Iteration

32

Algorithm 1 Value Iteration (stochastic transitions)
1: procedure VALUEITERATION(R(s, a) reward function, p(·|s, a)
transition probabilities)

2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: for a ∈ A do
6: Q(s, a) = R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

7: V (s) = maxa Q(s, a)

8: Let π(s) = argmax
a
Q(s, a), ∀s

9: return π

Variant 2: with Q(s,a) table

Synchronous vs. Asynchronous
Value Iteration

33

asynchronous
updates: compute
and update V(s) for
each state one at a
time

synchronous
updates: compute all
the fresh values of
V(s) from all the stale
values of V(s), then
update V(s) with
fresh values

Algorithm 1 Asynchronous Value Iteration
1: procedure AĘĞēĈčėĔēĔĚĘVĆđĚĊIęĊėĆęĎĔē(R(s, a), p(·|s, a))
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π

Value Iteration Convergence

34

Provides
reasonable

stopping criterion
for value iteration

Often greedy policy
converges well

before the value
function

Holds for both
asynchronous and

sychronous
updates

very abridged

