
Recommender Systems
+

Ensemble Methods: Boosting

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 23

Nov. 18, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 8: Deep RL
– Out: Sun, Nov. 17
– Due: Mon, Nov. 25 at 11:59pm

2

Recall: SGD for
Deep
Q-learning
(parametric
form)

� Inputs: discount factor 𝛾, an initial state 𝑠!,

 learning rate 𝛼

� Initialize parameters Θ !

� For 𝑡 = 0, 1, 2,	 …
� Gather training sample 𝒔", 𝒂", 𝑟", 𝒔"#$
� Update Θ " by taking a step opposite the gradient

Θ "#$ ← Θ " − 𝛼∇%ℓ Θ " , Θ

where

∇%ℓ Θ " , Θ = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ ∇%𝑄 𝑠, 𝑎; Θ

11/18/24 5

Deep
Q-learning:
Experience
Replay

� SGD assumes iid training samples but in RL, samples are

highly correlated

� Idea: maintain a “replay buffer” 𝒟 = {𝑒1, 𝑒2, …	, 𝑒𝑁} of the
𝑁 most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂", 𝑟", 𝒔"#$ (Lin, 1992)

� Keeps the agent from “forgetting” recent experiences

� In each iteration, we:

1. Sample some experience 𝑒𝑖 (or a mini-batch of
experiences 𝐸 = 𝑒1, … , 𝑒𝑇) uniformly at random

from 𝒟 and apply the Q-learning update

2. Add a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some

distribution that prioritizes experiences with high error
(Schaul et al., 2016)11/18/24 6

Learning Paradigms

7

ML Big Picture

8

Learning Paradigms:
What data is available and
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML
Systems:
How to build systems that are
robust, efficient, adaptive,
effective?
1. Data prep
2. Model selection
3. Training (optimization /

search)
4. Hyperparameter tuning on

validation data
5. (Blind) Assessment on test

data

Big Ideas in ML:
Which are the ideas driving
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards

A
pp

lic
at

io
n

A
re

as
Ke

y
ch

al
le

ng
es

?
N

LP
, S

pe
ec

h,
 C

om
pu

te
r

Vi
si

on
, R

ob
ot

ic
s,

 M
ed

ic
in

e,

Se
ar

ch

Outline for Today
We’ll talk about two distinct topics:
1. Recommender Systems: produce recommendations of

what a user will like
(i.e. the solution to a particular type of task)

2. Ensemble Methods: combine or learn multiple classifiers
into one
(i.e. a family of algorithms)

We’ll use a prominent example of a recommender systems
(the Netflix Prize) to motivate both topics…

9

RECOMMENDER SYSTEMS

10

Recommender Systems
A Common Challenge:
– Assume you’re a company

selling items of some sort:
movies, songs, products,
etc.

– Company collects millions
of ratings from users of
their items

– To maximize profit / user
happiness, you want to
recommend items that
users are likely to want

11

Recommender Systems

12

Recommender Systems

13

Recommender Systems

14

Recommender Systems

15

Problem Setup
• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower root mean squared error (RMSE)

than Netflix’s existing system on 3 million held out ratings

Recommender Systems

16

Recommender Systems
• Setup:

– Items:
movies, songs, products, etc.
(often many thousands)

– Users:
watchers, listeners, purchasers, etc.
(often many millions)

– Feedback:
5-star ratings, not-clicking ‘next’,
purchases, etc.

• Key Assumptions:
– Can represent ratings numerically

as a user/item matrix
– Users only rate a small number of

items (the matrix is sparse)

17

D
oc

to
r

St
ra

ng
e

St
ar

 T
re

k:

Be
yo

nd

Zo
ot

op
ia

Alice 1 5

Bob 3 4

Charlie 3 5 2

Two Types of Recommender Systems

Content Filtering
• Example: Pandora.com music

recommendations (Music Genome
Project)

• Con: Assumes access to side
information about items (e.g.
properties of a song)

• Pro: Got a new item to add? No
problem, just be sure to include the
side information

Collaborative Filtering
• Example: Netflix movie

recommendations
• Pro: Does not assume access to side

information about items (e.g. does
not need to know about movie
genres)

• Con: Does not work on new items
that have no ratings

18

COLLABORATIVE FILTERING

19

Collaborative Filtering
• Everyday Examples of Collaborative Filtering...
– Bestseller lists
– Top 40 music lists
– The “recent returns” shelf at the library
– Unmarked but well-used paths thru the woods
– The printer room at work
– “Read any good books lately?”
– …

• Common insight: personal tastes are correlated
– If Alice and Bob both like X and Alice likes Y then Bob is more likely to

like Y
– especially (perhaps) if Bob knows Alice

20
Slide from William Cohen

Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods

21
Figures from Koren et al. (2009)

Two Types of Collaborative Filtering
1. Neighborhood Methods

22

In the figure, assume that
a green line indicates the
movie was watched

Algorithm:
1. Find neighbors based

on similarity of movie
preferences

2. Recommend movies
that those neighbors
watched

Figures from Koren et al. (2009)

Two Types of Collaborative Filtering
2. Latent Factor Methods

23
Figures from Koren et al. (2009)

• Assume that both
movies and users
live in some low-
dimensional space
describing their
properties

• Recommend a
movie based on its
proximity to the
user in the latent
space

• Example Algorithm:
Matrix Factorization

Recommending Movies
Question:
Applied to the Netflix Prize
problem, which of the following
methods always requires side
information about the users and
movies?
Select all that apply
A. principal component analysis
B. collaborative filtering
C. latent factor methods
D. ensemble methods
E. content filtering
F. neighborhood methods
G. recommender systems

24

Answer:

MATRIX FACTORIZATION

25

Matrix Factorization

• Many different ways of factorizing a matrix
• We’ll consider three:

1. Unconstrained Matrix Factorization
2. Singular Value Decomposition
3. Non-negative Matrix Factorization

• MF is just another example of a common recipe:
1. define a model
2. define an objective function
3. optimize with SGD

26

Low-rank Matrix Factorization
Case 1: Exact Factorization Case 2: Approximate Factorization

27

Approximation Error:

Example: MF for Netflix Problem

29
Figures from Aggarwal (2016)

3.6. LATENT FACTOR MODELS 95

 1

 2

 3

 4

 5

 6

 7

HI
ST

O
RY

RO
M

AN
CE

 X
HISTORY

 ROMANCE

ROMANCE

BOTH

HISTORY

 1 1 1

1 1 1

1 1 1

- 1

- 1

- 1

- 1

- 1

- 1 - 1 - 1

1 1 1 1 1 1

1 1 1

1 1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

NE
RO

JU
LI

US
 C

AE
SA

R

CL
EO

PA
TR

A

SL
EE

PL
ES

S
IN

 S
EA

TT
LE

PR
ET

TY
 W

O
M

AN

CA
SA

BL
AN

CA

 R U

VT

NE
RO

JU
LI

US
 C

AE
SA

R

CL
EO

PA
TR

A

SL
EE

PL
ES

S
IN

 S
EA

TT
LE

PR
ET

TY
 W

O
M

AN

CA
SA

BL
AN

CA

0

0

0

- 1

- 1

- 1

1

1

1

1

1

1

1

1
1 1 1

1 1 1 1 0 0

 0 0 0

 6

 7

 5

 4

 3

 2

 1

AT
TL

E

N

O US
CA

ES
AR

O
PA

TR
A

PL
ES

S
IN

SE
A

T T
Y

W
O

M
AN

AB
LA

NC
A

0 0 0

0 0 0

0 0 0

0 0 0

NE
RO

JU
LI

U

CL
EO

SL
EE

P

PR
ET

CA
SA

1

BOTH

HISTORY
0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

1

2

3

4

ROMANCE

0

0

0

0

0 0

1

0 0 0

1

0 0 0

0 0 0

15

6
0 0 1 0 0 0

R

7

(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix

3.6. LATENT FACTOR MODELS 95

 1

 2

 3

 4

 5

 6

 7
HI

ST
O

RY

RO
M

AN
CE

 X
HISTORY

 ROMANCE

ROMANCE

BOTH

HISTORY

 1 1 1

1 1 1

1 1 1

- 1

- 1

- 1

- 1

- 1

- 1 - 1 - 1

1 1 1 1 1 1

1 1 1

1 1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

NE
RO

JU
LI

US
 C

AE
SA

R

CL
EO

PA
TR

A

SL
EE

PL
ES

S
IN

 S
EA

TT
LE

PR
ET

TY
 W

O
M

AN

CA
SA

BL
AN

CA

 R U

VT

NE
RO

JU
LI

US
 C

AE
SA

R

CL
EO

PA
TR

A

SL
EE

PL
ES

S
IN

 S
EA

TT
LE

PR
ET

TY
 W

O
M

AN

CA
SA

BL
AN

CA

0

0

0

- 1

- 1

- 1

1

1

1

1

1

1

1

1
1 1 1

1 1 1 1 0 0

 0 0 0

 6

 7

 5

 4

 3

 2

 1

AT
TL

E

N

O US
CA

ES
AR

O
PA

TR
A

PL
ES

S
IN

SE
A

T T
Y

W
O

M
AN

AB
LA

NC
A

0 0 0

0 0 0

0 0 0

0 0 0

NE
RO

JU
LI

U

CL
EO

SL
EE

P

PR
ET

CA
SA

1

BOTH

HISTORY
0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

1

2

3

4

ROMANCE

0

0

0

0

0 0

1

0 0 0

1

0 0 0

0 0 0

15

6
0 0 1 0 0 0

R

7

(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix

E

Goal of each
problem is to
predict the values
of the missing
squares

Regression vs. Collaborative Filtering

30

72 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

TRAINING
ROWS

TEST
ROWS

INDEPENDENT
VARIABLES

DEPENDENT
VARIABLE

NO
DEMARCATION

BETWEEN
TRAINING AND
TEST ROWS

NO DEMARCATION BETWEEN DEPENDENT
AND INDEPENDENT VARIABLES

(a) Classification (b) Collaborative filtering

Figure 3.1: Revisiting Figure 1.4 of Chapter 1. Comparing the traditional classification
problem with collaborative filtering. Shaded entries are missing and need to be predicted.

the class variable (or dependent variable). All entries in the first (n− 1) columns are fully
specified, whereas only a subset of the entries in the nth column is specified. Therefore, a
subset of the rows in the matrix is fully specified, and these rows are referred to as the
training data. The remaining rows are referred to as the test data. The values of the missing
entries need to be learned for the test data. This scenario is illustrated in Figure 3.1(a),
where the shaded values represent missing entries in the matrix.

Unlike data classification, any entry in the ratings matrix may be missing, as illustrated
by the shaded entries in Figure 3.1(b). Thus, it can be clearly seen that the matrix com-
pletion problem is a generalization of the classification (or regression modeling) problem.
Therefore, the crucial differences between these two problems may be summarized as follows:

1. In the data classification problem, there is a clear separation between feature (inde-
pendent) variables and class (dependent) variables. In the matrix completion problem,
this clear separation does not exist. Each column is both a dependent and independent
variable, depending on which entries are being considered for predictive modeling at
a given point.

2. In the data classification problem, there is a clear separation between the training
and test data. In the matrix completion problem, this clear demarcation does not
exist among the rows of the matrix. At best, one can consider the specified (observed)
entries to be the training data, and the unspecified (missing) entries to be the test
data.

3. In data classification, columns represent features, and rows represent data instances.
However, in collaborative filtering, it is possible to apply the same approach to ei-
ther the ratings matrix or to its transpose because of how the missing entries are
distributed. For example, user-based neighborhood models can be viewed as direct

Figures from Aggarwal (2016)

Regression Collaborative Filtering
x1 x2 x3 x4 x5 y item1 item6…

user1

user9

…

…

user5

UNCONSTRAINED MATRIX FACTORIZATION

31

Unconstrained Matrix Factorization
Opt. Problem #1 (fully observed R) Model Predictions:

32

Gradient Descent:Opt. Problem #2 (partially observed R)

Unconstrained Matrix Factorization
SGD for UMF:

34

while not converged:
1. Sample (i, j) fromZ uniformly at random

2. Compute eij = rij − uT
i vj

3. Update:
ui ← ui − η∇ui

Jij(U,V)

vj ← vj − η∇vj
Jij(U,V)

where:

Jij(U,V) =
1

2
(rij − uT

i vj)
2 + λ(∥ui∥

2

2
+ ∥vj∥

2

2
)

∇ui
Jij(U,V) = −eijvj + λui

∇vj
Jij(U,V) = −eijui + λvj

with Regularization

User/Item Bias terms

r̂ij = oi + pj + uT
i vj

matrix trick:

U =

⎡

⎢

⎢

⎢

⎣

— u1 — o1 1

— u2 — o2 1

...
— um — om 1

⎤

⎥

⎥

⎥

⎦

V =

⎡

⎢

⎢

⎢

⎣

— p1 — 1 p1

— p2 — 1 p2

...
— pn — 1 pn

⎤

⎥

⎥

⎥

⎦

Unconstrained Matrix Factorization
Alternating Least Squares (ALS) for UMF:

35

Matrix Factorization

36

47AUGUST 2009

Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization
models using some variants of the methods described here.
Our discussions with other top teams and postings on the
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings.

Factorizing the Netflix user-movie matrix allows us
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most
important dimensions from a matrix decomposition and
explore the movies’ location in this new space. Figure 3
shows the first two factors from the Netflix data matrix
factorization. Movies are placed according to their factor
vectors. Someone familiar with the movies shown can see
clear meaning in the latent factors. The first factor vector
(x-axis) has on one side lowbrow comedies and horror
movies, aimed at a male or adolescent audience (Half Baked,
Freddy vs. Jason), while the other side contains drama or
comedy with serious undertones and strong female leads
(Sophie’s Choice, Moonstruck). The second factorization
axis (y-axis) has independent, critically acclaimed, quirky
films (Punch-Drunk Love, I Heart Huckabees) on the top,
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections
between these boundaries: On the top left corner, where
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the
bottom right, where the serious female-driven movies meet

preferences might cause a one-time
event; however, a recurring event is
more likely to reflect user opinion.

The matrix factorization model
can readily accept varying confidence
levels, which let it give less weight to
less meaningful observations. If con-
fidence in observing rui is denoted as
cui, then the model enhances the cost
function (Equation 5) to account for
confidence as follows:

min
* * *, ,p q b

(,)u i �
£

K
cui(rui µ �bu bi

 pu
Tqi)

2 + L�(|| pu ||
2 + || qi ||

2
 + bu

2 + bi
2) (8)

For information on a real-life ap-
plication involving such schemes,
refer to “Collaborative Filtering for
Implicit Feedback Datasets.”10

NETFLIX PRIZE
COMPETITION

In 2006, the online DVD rental
company Netflix announced a con-
test to improve the state of its recommender system.12 To
enable this, the company released a training set of more
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000
movies, each movie being rated on a scale of 1 to 5 stars.
Participating teams submit predicted ratings for a test set
of approximately 3 million ratings, and Netflix calculates
a root-mean -square error (RMSE) based on the held-out
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a
$1 million prize. If no team reaches the 10 percent goal,
Netflix gives a $50,000 Progress Prize to the team in first
place after each year of the competition.

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s
allure spurred a burst of energy and activity. According to
the contest website (www.netflixprize.com), more than
48,000 teams from 182 different countries have down-
loaded the data.

Our team’s entry, originally called BellKor, took over
the top spot in the competition in the summer of 2007,
and won the 2007 Progress Prize with the best score at the
time: 8.43 percent better than Netflix. Later, we aligned
with team Big Chaos to win the 2008 Progress Prize with a
score of 9.46 percent. At the time of this writing, we are still
in first place, inching toward the 10 percent landmark.

–1.5 –1.0 –0.5 0.0 0.5 1.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Factor vector 1

Fa
cto

r v
ec

to
r 2

 Freddy Got Fingered

Freddy vs. J
ason

Half B
aked

Road Trip

The Sound of M
usic

Sophie’s C
hoice

Moonstru
ck

Maid in Manhattan

The Way We Were

Runaway Bride

Coyote Ugly

The Royal Tenenbaums

Punch-Drunk Love

I Heart H
uckabees

Armageddon

Citiz
en Kane

The Waltons: S
eason 1

Stepmom

Julien Donkey-Boy

Siste
r Act

The Fast a
nd the Furious

The Wizard of Oz

Kill B
ill:

Vol. 1

ScarfaceNatural Born Kille
rs

Annie Hall

Belle de Jour
Lost i

n Translation

The Longest Y
ard

Being John Malkovich

Catwoman

Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor
vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Figure from Koren et al. (2009)

Example
Factors

Answer:

Question: Write an
algorithm for visualizing
two latent factors.

Matrix Factorization

37

ALS = alternating least squares

Comparison
of

Optimization
Algorithms

Figure from Gemulla et al. (2011)

SVD FOR COLLABORATIVE FILTERING

38

Singular Value Decomposition
for Collaborative Filtering

39

Theorem: If R fully
observed and no
regularization, the
optimal UVT from
SVD equals the
optimal UVT from
Unconstrained MF

NON-NEGATIVE MATRIX FACTORIZATION

40

Implicit Feedback Datasets
• What information does a five-star rating contain?

• Implicit Feedback Datasets:
– In many settings, users don’t have a way of expressing dislike for an item (e.g. can’t provide

negative ratings)
– The only mechanism for feedback is to “like” something

• Examples:
– Facebook has a “Like” button, but no “Dislike” button
– Google’s “+1” button
– Pinterest pins
– Purchasing an item on Amazon indicates a preference for it, but there are many reasons you

might not purchase an item (besides dislike)
– Search engines collect click data but don’t have a clear mechanism for observing dislike of a

webpage

41
Examples from Aggarwal (2016)

Constrained Optimization Problem:

Non-negative Matrix Factorization

42

Multiplicative Updates: simple iterative
algorithm for solving just involves multiplying a
few entries together

43

Summary

• Recommender systems solve many real-world (*large-scale)
problems

• Collaborative filtering by Matrix Factorization (MF) is an
efficient and effective approach

• MF is just another example of a common recipe:
1. define a model
2. define an objective function
3. optimize with your favorite black box optimizer

(e.g. SGD, Gradient Descent, Block Coordinate Descent aka. Alternating Least Squares)

44

Learning Objectives
Recommender Systems

You should be able to…
1. Compare and contrast the properties of various families of

recommender system algorithms: content filtering, collaborative
filtering, neighborhood methods, latent factor methods

2. Formulate a squared error objective function for the matrix
factorization problem

3. Implement unconstrained matrix factorization with a variety of
different optimization techniques: gradient descent, stochastic
gradient descent, alternating least squares

4. Offer intuitions for why the parameters learned by matrix
factorization can be understood as user factors and item factors

45

ENSEMBLE METHODS

46

Recommender Systems

47

Top performing systems
were ensembles

Weighted Majority Algorithm
• Given: pool A of binary classifiers (that

you know nothing about)
• Data: stream of examples (i.e. online

learning setting)
• Goal: design a new learner that uses

the predictions of the pool to make
new predictions

• Algorithm:
– Initially weight all classifiers equally
– Receive a training example and predict

the (weighted) majority vote of the
classifiers in the pool

– Down-weight classifiers that contribute
to a mistake by a factor of β

48

(Littlestone & Warmuth, 1994)

Weighted Majority Algorithm

50

(Littlestone & Warmuth, 1994)

hyperparameter, β ∈ (0, 1)

What does the majority vote decision
boundary look like?

Suppose

Weighted Majority Algorithm

51

(Littlestone & Warmuth, 1994)

hyperparameter, β ∈ (0, 1)

h1

h2

h3

α1 = 1,α2 = 1,α3 = 1

Weighted Majority Algorithm

52

Theorems (Littlestone & Warmuth, 1994)

These are
“mistake

bounds” of the
variety we saw

for the
Perceptron
algorithm

ADABOOST

58

Comparison

Weighted Majority Algorithm
• an example of an ensemble method
• assumes the classifiers are learned

ahead of time
• only learns (majority vote) weight for

each classifiers

AdaBoost
• an example of a boosting method
• simultaneously learns:

– the classifiers themselves
– (majority vote) weight for each classifiers

59

AdaBoost

• Definitions
– Def: a weak learner is one that returns a hypothesis that is not

much better than random guessing
– Def: a strong learner is one that returns a hypothesis of arbitrarily

low error

• AdaBoost answers the following question:
– Does that exist an efficient learning algorithm that can combine

weak learners to obtain a strong learner?

60

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

AdaBoost: Toy Example

61
Slide from Schapire NeurIPS Tutorial

Round 1Round 1Round 1Round 1Round 1

h1

α

ε1
1

=0.30
=0.42

2D

AdaBoost: Toy Example

62
Slide from Schapire NeurIPS Tutorial

Round 2Round 2Round 2Round 2Round 2

α

ε2
2

=0.21
=0.65

h2 3D

AdaBoost: Toy Example

63
Slide from Schapire NeurIPS Tutorial

Round 3Round 3Round 3Round 3Round 3

h3

α

ε3
3=0.92
=0.14

AdaBoost: Toy Example

64
Slide from Schapire NeurIPS Tutorial

Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

AdaBoost: Toy Example

65
Slide from Schapire NeurIPS Tutorial

AdaBoost

66
Algorithm adapted from (Freund & Schapire, 1999)

Algorithm 1 AdaBoost Algorithm
1: Given: (x1, y1), . . . , (xN , yN)where xi ∈ R

M , yi ∈ {−1,+1}
2: InitializeD1(i) =

1

N

3: for t = 1, . . . , T do
4: Train weak learner using distributionDt.
5: Get weak hypothesis ht : R

M → {−1,+1}with error

ϵt = Pi∼Dt
[ht(xi) ̸= yi]

6: Choose αt =
1

2
ln
(

1− ϵt

ϵt

)

.

7: for i = 1, . . . , N do
8: Update:

Dt+1(i) =
Dt(i)

Zt

×

{

e−αt if ht(xi) = yi

eαt if ht(xi) ̸= yi

=
Dt(i) exp(−αtyiht(xi))

Zt

where normalization const. Zt chosen s.t. Dt+1 is a distribution.

9: Output the final hypothesis: H(x) = sign

(

T
∑

t=1

αtht(x)

)

.

for high error, we get ______ 𝛼t
for low error, we get ______ 𝛼t

if correct, ________________
if incorrect, ________________
 ↳ for high error, _________________
 ↳ for low error, _________________

AdaBoost: Theory

68
Figure from (Freund & Schapire, 1999)

(Training) Mistake Bound

AdaBoost: Theory

69
Figure from (Freund & Schapire, 1999)

Generalization Error

N

N

AdaBoost

70
Figure from (Freund & Schapire, 1999)

er
ro
r

10 100 1000
0

5

10

15

20

cu
m
ul
at
iv
e
di
st
rib
ut
io
n

-1 -0.5 0.5 1

0.5

1.0

rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Analyzing the training error
The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error of as . Since a hypothesis that guesses each instance’s class
at random has an error rate of (on binary problems), thus measures how much better than
random are ’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis is at most

(1)

Thus, if each weak hypothesis is slightly better than random so that for some , then
the training error drops exponentially fast.

A similar property is enjoyed by previous boosting algorithms. However, previous algorithms
required that such a lower bound be known a priori before boosting begins. In practice, knowl-
edge of such a bound is very difficult to obtain. AdaBoost, on the other hand, is adaptive in that it
adapts to the error rates of the individual weak hypotheses. This is the basis of its name — “Ada”
is short for “adaptive.”

The bound given in Eq. (1), combined with the bounds on generalization error given below,
prove that AdaBoost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak edge for any
distribution) into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).

4

Learning Objectives

Ensemble Methods: Boosting
You should be able to…
1. Explain how a weighted majority vote over linear classifiers

can lead to a non-linear decision boundary
2. Implement AdaBoost
3. Describe a surprisingly common empirical result regarding

Adaboost train/test curves

75

