
Perceptron

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 6

Sep. 13, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 2: Decision Trees
– Out: Wed, Sep. 4
– Due: Mon, Sep. 16 at 11:59pm

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Sep. 16
– Due: Mon, Sep. 23 at 11:59pm
– (only two grace/late days permitted)

8

THE PERCEPTRON ALGORITHM

9

Perceptron: History
Imagine you are trying to build a new machine learning
technique… your name is Frank Rosenblatt…and the
year is 1957

11

Perceptron: History
Imagine you are trying to build a new machine learning
technique… your name is Frank Rosenblatt…and the
year is 1957

12

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

• Linear classifiers are
common in machine
learning

• Examples include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

GEOMETRY & VECTORS

14

Geometry Warm-up

In-Class Exercise
Draw a picture of the
region corresponding
to:

Draw the vector
 w = [w1, w2]

15

Answer Here:

w1x1 + w2x2 + b > 0

where w1 = 2, w2 = 3, b = 6 x1

x2

Geometry Warm-up

16

x1

x2

Linear Algebra Review
• Notation: in this class vectors will be assumed to be column vectors by default, i.e.,

𝒂 =

𝑎!
𝑎"
⋮
𝑎#

 and 𝒂$ = 𝑎! 𝑎" ⋯ 𝑎#

• The dot product between two 𝐷-dimensional vectors is

𝒂$𝒃 = 𝑎! 𝑎" ⋯ 𝑎#

𝑏!
𝑏"
⋮
𝑏#

=)
%&!

#

𝑎%𝑏%

• The 𝐿2-norm of 𝒂 = 𝒂 " = 𝒂$𝒂
• Two vectors are orthogonal iff

𝒂$𝒃 = 0

19

Vector Projection

20

Question:
Which of the following is the projection of a vector a onto a
vector b?

Vector Projection

Definition #1: Definition #2:

21

Linear Decision Boundaries
• In 2 dimensions, 𝑤!𝑥! +𝑤"𝑥" + 𝑏 = 0 defines a line

• In 3 dimensions, 𝑤!𝑥! +𝑤"𝑥" +𝑤#𝑥# + 𝑏 = 0 defines a plane

• In 4+ dimensions, 𝒘$𝒙 + 𝑏 = 0 defines a hyperplane

– The vector 𝒘 is always orthogonal to this hyperplane and always points in the
direction where 𝒘$𝒙 + 𝑏 > 0!

• A hyperplane creates two halfspaces:

– 𝒮% = 𝒙:	𝒘$𝒙 + 𝑏 > 0 or all 𝒙 s.t. 𝒘$𝒙 + 𝑏 is positive

– 𝒮& = 𝒙:	𝒘$𝒙 + 𝑏 < 0 or all 𝒙 s.t. 𝒘$𝒙 + 𝑏 is negative

23

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

ONLINE LEARNING

25

Online Learning
• Batch Learning: So far, we’ve been learning in the batch setting, where we

have access to the entire training dataset at once
• Online Learning: A common alternative is the online setting, where examples

arrive gradually and we learn continuously

• Examples of online learning:
1. Stock market prediction (what will the value of Alphabet Inc. be tomorrow?)
2. Email classification (distribution of both spam and regular mail changes over time,

but the target function stays fixed - last year's spam still looks like spam)
3. Recommendation systems. Examples: recommending movies; predicting whether a

user will be interested in a new news article
4. Ad placement in a new market

26
Slide adapted from Nina Balcan

Online Learning

For i = 1, 2, 3, …:
– Receive an unlabeled instance x(i)

– Predict y’ = hθ(x(i))
– Receive true label y(i)

– Suffer loss if we made a mistake, y’ ≠ y(i)

– Update parameters θ

Goal:
– Minimize the number of mistakes

27

THE PERCEPTRON ALGORITHM

28

(Online) Perceptron Algorithm

29

AI for Wildlife Conservation
The Great
Elephant Census
of 2014 revealed
that elephant
populations were
trending
downward at an
alarming rate.

Poaching is
known to be one
of the main
threats to
elephants.

38https://peerj.com/articles/2354/

AI for Wildlife Conservation

• Researchers at Cornell planted 50 audio recording devices high in the
jungle -- each one covering a 25 square km grid cell

• Recordings revealed two large creatures making noise: elephants and
poachers

• So they built classifiers to detect these

39https://www.npr.org/2019/10/25/760487476/elephants-under-attack-have-an-unlikely-ally-artificial-intelligence

40

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 0
0

Example courtesy of Nina Balcan

(Online) Perceptron Algorithm: Example
Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

(Online) Perceptron Algorithm: Example

41

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 ← 𝒘+ 𝑦 ! 𝒙 ! = 0
0 − −1

2 = 1
−2

𝒘 = 0
0

𝒘

Decision
Boundary

Example courtesy of Nina Balcan

Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

(Online) Perceptron Algorithm: Example

42

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 1
−2

𝒘

Decision
Boundary

Example courtesy of Nina Balcan

Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

(Online) Perceptron Algorithm: Example

43

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 1
−2

𝒘

Decision
Boundary

𝒘 ← 𝒘+ 𝑦 % 𝒙 % = 1
−2 + 1

1 = 2
−1

Example courtesy of Nina Balcan

Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

(Online) Perceptron Algorithm: Example

44

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 1
−2

𝒘

Decision
Boundary

𝒘 ← 𝒘+ 𝑦 % 𝒙 % = 1
−2 + 1

1 = 2
−1

Example courtesy of Nina Balcan

Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

(Online) Perceptron Algorithm: Example

45

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 2
−1

𝒘

Decision
Boundary

Example courtesy of Nina Balcan

Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

(Online) Perceptron Algorithm: Example

46

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 2
−1

𝒘

Decision
Boundary

𝒘 ← 𝒘+ 𝑦 & 𝒙 & = 2
−1 − −1

−2 = 3
1

Example courtesy of Nina Balcan

Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

(Online) Perceptron Algorithm: Example

47

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 2
−1

𝒘

Decision
Boundary

𝒘 ← 𝒘+ 𝑦 & 𝒙 & = 2
−1 − −1

−2 = 3
1

Example courtesy of Nina Balcan

Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

(Online) Perceptron Algorithm: Example

48

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 3
1

𝒘

Decision
Boundary

Example courtesy of Nina Balcan

Perceptron Algorithm:
(without the intercept
term)
§ Set t=1, start with all-

zeroes weight vector
𝑤!.

§ Given example 𝑥,
predict positive iff
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update
as follows:

• Mistake on
positive, update
𝑤#$! ← 𝑤# + 𝑥

• Mistake on
negative, update
𝑤#$! ← 𝑤# − 𝑥

Perceptron Exercises
Question:
The parameter vector w learned by the
Perceptron algorithm can be written as
a linear combination of the feature
vectors x(1), x(2),…, x(N).

A. True, if you replace “linear” with
“polynomial” above

B. True, for all datasets
C. False, for all datasets
D. True, but only for certain datasets
E. False, but only for certain datasets

49

Intercept Term
Q: Why do we need an
intercept term?

A: It shifts the decision
boundary off the origin

50

w

b < 0

b = 0

b > 0

Q: Why do we add /
subtract 1.0 to the
intercept term during
Perceptron training?
A: Two cases
1. Increasing b shifts

the decision
boundary towards
the negative side

2. Decreasing b shifts
the decision
boundary towards
the positive side

(Online) Perceptron Algorithm

52

Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged
• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Prediction: Output determined by hyperplane.

ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

1

(Online) Perceptron Algorithm
• Initialize the weight vector and intercept to all zeros:

𝒘 = 0 0 ⋯ 0 and 𝑏 = 0
• For 𝑡 = 1, 2, 3, …

– Receive an unlabeled example, 𝒙 !

– Predict its label, -𝑦 = sign 𝒘"𝒙 + 𝑏 = 4+1	if	𝒘
"𝒙 + 𝑏 ≥ 0

−1	otherwise	
– Observe its true label, 𝑦 !

– If we misclassified a positive example (𝑦 ! = +1, -𝑦 = −1):
• 𝒘 ← 𝒘+ 𝒙 !

• 𝑏 ← 𝑏 + 1
– If we misclassified a negative example (𝑦 ! = −1, -𝑦 = +1):

• 𝒘 ← 𝒘− 𝒙 !

• 𝑏 ← 𝑏 − 1 53

(Online) Perceptron Algorithm
• Initialize the weight vector and intercept to all zeros:

𝒘 = 0 0 ⋯ 0 and 𝑏 = 0
• For 𝑡 = 1, 2, 3, …

– Receive an unlabeled example, 𝒙 !

– Predict its label, -𝑦 = sign 𝒘"𝒙 + 𝑏 = 4+1	if	𝒘
"𝒙 + 𝑏 ≥ 0

−1	otherwise	
– Observe its true label, 𝑦 !

– If we misclassified an example (𝑦 ! ≠ -𝑦):
• 𝒘 ← 𝒘+ 𝑦 ! 𝒙 !

• 𝑏 ← 𝑏 + 𝑦 !

54

Implementation trick: Multiplying by 𝑦 # 	gives us a simple
update rule for both positive and negative mistakes

Notational Hack
• If we add a 1 to the beginning of every example e.g.,

𝒙2 =

1
𝑥3
𝑥4
⋮
𝑥5

 …

• … we can just fold the intercept into the weight vector!

𝜽 =

𝑏
𝑤3
𝑤4
⋮
𝑤5

→ 𝜽6𝒙2 = 𝒘6𝒙 + 𝑏

55

(Online) Perceptron Algorithm
• Initialize the weight vector and intercept to all zeros:

𝒘 = 0 0 ⋯ 0 and 𝑏 = 0
• For 𝑡 = 1, 2, 3, …

– Receive an unlabeled example, 𝒙 !

– Predict its label, -𝑦 = sign 𝒘"𝒙 + 𝑏 = 4+1	if	𝒘
"𝒙 + 𝑏 ≥ 0

−1	otherwise	
– Observe its true label, 𝑦 !

– If we misclassified an example (𝑦 ! ≠ -𝑦):
• 𝒘 ← 𝒘+ 𝑦 ! 𝒙 !

• 𝑏 ← 𝑏 + 𝑦 !

58

• Initialize the parameters to all zeros:
𝜽 = 0 0 ⋯ 0

• For 𝑡 = 1, 2, 3, …
– Receive an unlabeled example, 𝒙 !

– Predict its label, -𝑦 = sign 𝜽"𝒙# ! = 4+1	if	𝜽
"𝒙# ! ≥ 0

−1	otherwise	
– Observe its true label, 𝑦 !

– If we misclassified an example (𝑦 ! ≠ -𝑦):

• 𝜽 ← 𝜽 + 𝑦 ! 𝒙# !

(Online) Perceptron Algorithm

59

1
prepended
to 𝒙 #

Automatically handles
updating the intercept

Perceptron Inductive Bias

1. Decision boundary should be linear
2. Recent mistakes are more important than older ones (and

should be corrected immediately)

60

(Online) Perceptron Algorithm

65

(Batch) Perceptron Algorithm

66

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {(t(1), y(1)), . . . , (t(N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T t(i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i)t(i) � Update parameters
8: return �

(Batch) Perceptron Algorithm

67

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {(t(1), y(1)), . . . , (t(N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T t(i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i)t(i) � Update parameters
8: return �

Def: We say that the
(batch) perceptron
algorithm has
converged if it stops
making mistakes on
the training data
(perfectly classifies
the training data).

(Batch) Perceptron Algorithm

68

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch” setting in contrast to the “online”
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a
so-called Hinge Loss on a linear separator

Perceptron Exercise

69

Question:
Unlike Decision Trees and K-
Nearest Neighbors, the
Perceptron algorithm does
not suffer from overfitting
because it does not have any
hyperparameters that could
be over-tuned on the training
data.

A. True
B. False
C. True and False

Answer:

PERCEPTRON MISTAKE BOUND

71

Definitions

72

Def: For a binary classification problem, a set of examples 𝑆
is linearly separable if there exists a linear decision boundary
that can separate the points

+
+-

Case 1:

+ +
-

Case 2:

+
++

Case 3:

+
+-
-

Case 4:

not linearly
separable

Definitions

73

Def: The margin 𝛾 for a dataset D is the greatest possible
distance between a linear separator and the closest data
point in D to that linear separator

+ +
+
+-

-
-

𝛾
𝛾

+

--

-
-

w

Figure from Nina Balcan

- -

Perceptron Mistake Bound

74
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin 𝛾 and all points lie inside
a ball of radius 𝑅 rooted at the origin, then the online
Perceptron algorithm makes ≤ ⁄𝑅 𝛾 4 mistakes

++

+
+
+
+

+

-

- -

-

-

g
g

--
-
-

+

R

��

Main Takeaway: For
linearly separable data, if
the perceptron algorithm
cycles repeatedly through
the data, it will converge
in a finite # of steps.

Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during training, so each one can

vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially large set
– Mistake bound does not depend on the size of that set

75

