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Reminders

• Homework 2: Decision Trees
– Out: Wed, Sep. 4
– Due: Mon, Sep. 16 at 11:59pm

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Sep. 16
– Due: Mon, Sep. 23 at 11:59pm 
– (only two grace/late days permitted)
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THE PERCEPTRON ALGORITHM
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Perceptron: History
Imagine you are trying to build a new machine learning 
technique… your name is Frank Rosenblatt…and the 
year is 1957
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Imagine you are trying to build a new machine learning 
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year is 1957

12



Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

• Linear classifiers are 
common in machine 
learning

• Examples include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines



GEOMETRY & VECTORS

14



Geometry Warm-up

In-Class Exercise
Draw a picture of the 
region corresponding 
to:

Draw the vector
 w = [w1, w2]
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Answer Here:

w1x1 + w2x2 + b > 0

where w1 = 2, w2 = 3, b = 6 x1

x2



Geometry Warm-up
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Linear Algebra Review
• Notation: in this class vectors will be assumed to be column vectors by default, i.e., 

𝒂 =

𝑎!
𝑎"
⋮
𝑎#

 and 𝒂$ = 𝑎! 𝑎" ⋯ 𝑎#

• The dot product between two 𝐷-dimensional vectors is 

𝒂$𝒃 = 𝑎! 𝑎" ⋯ 𝑎#

𝑏!
𝑏"
⋮
𝑏#

= )
%&!

#

𝑎%𝑏%

• The 𝐿2-norm of 𝒂 = 𝒂 " = 𝒂$𝒂
• Two vectors are orthogonal iff 

𝒂$𝒃 = 0
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Vector Projection
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Question: 
Which of the following is the projection of a vector a onto a 
vector b?



Vector Projection

Definition #1: Definition #2:
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Linear Decision Boundaries
• In 2 dimensions, 𝑤!𝑥! +𝑤"𝑥" + 𝑏 = 0 defines a line

• In 3 dimensions, 𝑤!𝑥! +𝑤"𝑥" +𝑤#𝑥# + 𝑏 = 0 defines a plane

• In 4+ dimensions, 𝒘$𝒙 + 𝑏 = 0 defines a hyperplane

– The vector 𝒘 is always orthogonal to this hyperplane and always points in the 
direction where 𝒘$𝒙 + 𝑏 > 0! 

• A hyperplane creates two halfspaces: 

– 𝒮% = 𝒙:	𝒘$𝒙 + 𝑏 > 0  or all 𝒙 s.t. 𝒘$𝒙 + 𝑏 is positive

– 𝒮& = 𝒙:	𝒘$𝒙 + 𝑏 < 0  or all 𝒙 s.t. 𝒘$𝒙 + 𝑏 is negative
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Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines



ONLINE LEARNING
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Online Learning
• Batch Learning: So far, we’ve been learning in the batch setting, where we 

have access to the entire training dataset at once
• Online Learning: A common alternative is the online setting, where examples 

arrive gradually and we learn continuously

• Examples of online learning:
1. Stock market prediction (what will the value of Alphabet Inc. be tomorrow?)
2. Email classification (distribution of both spam and regular mail changes over time, 

but the target function stays fixed - last year's spam still looks like spam)
3. Recommendation systems. Examples: recommending movies; predicting whether a 

user will be interested in a new news article
4. Ad placement in a new market

26
Slide adapted from Nina Balcan



Online Learning

For i = 1, 2, 3, …:
– Receive an unlabeled instance x(i)

– Predict y’ = hθ(x(i))
– Receive true label y(i)

– Suffer loss if we made a mistake, y’ ≠ y(i)

– Update parameters θ

Goal:
– Minimize the number of mistakes

27



THE PERCEPTRON ALGORITHM
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(Online) Perceptron Algorithm
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AI for Wildlife Conservation
The Great 
Elephant Census 
of 2014 revealed 
that elephant 
populations were 
trending 
downward at an 
alarming rate.

Poaching is 
known to be one 
of the main 
threats to 
elephants.

38https://peerj.com/articles/2354/



AI for Wildlife Conservation

• Researchers at Cornell planted 50 audio recording devices high in the 
jungle -- each one covering a 25 square km grid cell

• Recordings revealed two large creatures making noise: elephants and 
poachers

• So they built classifiers to detect these

39https://www.npr.org/2019/10/25/760487476/elephants-under-attack-have-an-unlikely-ally-artificial-intelligence
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𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 0
0

Example courtesy of Nina Balcan

(Online) Perceptron Algorithm: Example
Perceptron Algorithm: 
(without the intercept 
term)
§ Set t=1, start with all-

zeroes weight vector 
𝑤!.

§ Given example 𝑥, 
predict positive iff 
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update 
as follows: 

• Mistake on 
positive, update 
𝑤#$! ← 𝑤# + 𝑥

• Mistake on 
negative, update 
𝑤#$! ← 𝑤# − 𝑥



(Online) Perceptron Algorithm: Example
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(Online) Perceptron Algorithm: Example
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(Online) Perceptron Algorithm: Example
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(Online) Perceptron Algorithm: Example
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47

-
+
+
+

-
-

𝑥!

𝑥"

𝒙𝟏 𝒙𝟐 "𝒚 𝒚 Mistake?

−1 2 + − Yes
1 0 + + No

1 1 − + Yes
−1 0 − − No
−1 −2 + − Yes
1 −1 + + No

𝒘 = 2
−1

𝒘

Decision 
Boundary

𝒘 ← 𝒘+ 𝑦 & 𝒙 & = 2
−1 − −1

−2 = 3
1

Example courtesy of Nina Balcan

Perceptron Algorithm: 
(without the intercept 
term)
§ Set t=1, start with all-

zeroes weight vector 
𝑤!.

§ Given example 𝑥, 
predict positive iff 
𝑤# ⋅ 𝑥 ≥ 0.

§ On a mistake, update 
as follows: 

• Mistake on 
positive, update 
𝑤#$! ← 𝑤# + 𝑥

• Mistake on 
negative, update 
𝑤#$! ← 𝑤# − 𝑥
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Perceptron Exercises
Question:
The parameter vector w learned by the 
Perceptron algorithm can be written as 
a linear combination of the feature 
vectors x(1), x(2),…, x(N).

A. True, if you replace “linear” with 
“polynomial” above

B. True, for all datasets
C. False, for all datasets
D. True, but only for certain datasets
E. False, but only for certain datasets
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Intercept Term
Q: Why do we need an 
intercept term?

A: It shifts the decision 
boundary off the origin

50

w

b < 0

b = 0

b > 0

Q: Why do we add / 
subtract 1.0 to the 
intercept term during 
Perceptron training?
A: Two cases
1. Increasing b shifts 

the decision 
boundary towards 
the negative side

2. Decreasing b shifts 
the decision 
boundary towards 
the positive side



(Online) Perceptron Algorithm
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Learning: Iterative procedure:
• initialize parameters to vector of all zeroes
• while not converged
• receive next example (x(i), y(i))
• predict y’ = h(x(i))
• if positive mistake: add x(i) to parameters
• if negative mistake: subtract x(i) from parameters

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.

Prediction: Output determined by hyperplane.

ŷ = h�(x) = sign(�T x) sign(a) =

�
1, if a � 0

�1, otherwise

1



(Online) Perceptron Algorithm
• Initialize the weight vector and intercept to all zeros: 

𝒘 = 0 0 ⋯ 0  and 𝑏 = 0
• For 𝑡 = 1, 2, 3, …

– Receive an unlabeled example, 𝒙 !

– Predict its label, -𝑦 = sign 𝒘"𝒙 + 𝑏 = 4+1	if	𝒘
"𝒙 + 𝑏 ≥ 0

−1	otherwise	
– Observe its true label, 𝑦 !

– If we misclassified a positive example (𝑦 ! = +1, -𝑦 = −1):
• 𝒘 ← 𝒘+ 𝒙 !

• 𝑏 ← 𝑏 + 1
– If we misclassified a negative example (𝑦 ! = −1, -𝑦 = +1):

• 𝒘 ← 𝒘− 𝒙 !

• 𝑏 ← 𝑏 − 1 53



(Online) Perceptron Algorithm
• Initialize the weight vector and intercept to all zeros: 

𝒘 = 0 0 ⋯ 0  and 𝑏 = 0
• For 𝑡 = 1, 2, 3, …

– Receive an unlabeled example, 𝒙 !

– Predict its label, -𝑦 = sign 𝒘"𝒙 + 𝑏 = 4+1	if	𝒘
"𝒙 + 𝑏 ≥ 0

−1	otherwise	
– Observe its true label, 𝑦 !

– If we misclassified an example (𝑦 ! ≠ -𝑦):
• 𝒘 ← 𝒘+ 𝑦 ! 𝒙 !

• 𝑏 ← 𝑏 + 𝑦 !
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Implementation trick: Multiplying by 𝑦 # 	gives us a simple 
update rule for both positive and negative mistakes



Notational Hack
• If we add a 1 to the beginning of every example e.g.,

𝒙2 =

1
𝑥3
𝑥4
⋮
𝑥5

 …

• … we can just fold the intercept into the weight vector!

𝜽 =

𝑏
𝑤3
𝑤4
⋮
𝑤5

→ 𝜽6𝒙2 = 𝒘6𝒙 + 𝑏
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(Online) Perceptron Algorithm
• Initialize the weight vector and intercept to all zeros: 

𝒘 = 0 0 ⋯ 0  and 𝑏 = 0
• For 𝑡 = 1, 2, 3, …

– Receive an unlabeled example, 𝒙 !

– Predict its label, -𝑦 = sign 𝒘"𝒙 + 𝑏 = 4+1	if	𝒘
"𝒙 + 𝑏 ≥ 0

−1	otherwise	
– Observe its true label, 𝑦 !

– If we misclassified an example (𝑦 ! ≠ -𝑦):
• 𝒘 ← 𝒘+ 𝑦 ! 𝒙 !

• 𝑏 ← 𝑏 + 𝑦 !
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• Initialize the parameters to all zeros: 
𝜽 = 0 0 ⋯ 0  

• For 𝑡 = 1, 2, 3, …
– Receive an unlabeled example, 𝒙 !

– Predict its label, -𝑦 = sign 𝜽"𝒙# ! = 4+1	if	𝜽
"𝒙# ! ≥ 0

−1	otherwise	
– Observe its true label, 𝑦 !

– If we misclassified an example (𝑦 ! ≠ -𝑦):

• 𝜽 ← 𝜽 + 𝑦 ! 𝒙# !

(Online) Perceptron Algorithm
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1 
prepended 
to 𝒙 #

Automatically handles 
updating the intercept 



Perceptron Inductive Bias

1. Decision boundary should be linear
2. Recent mistakes are more important than older ones (and 

should be corrected immediately)
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(Online) Perceptron Algorithm
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(Batch) Perceptron Algorithm
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Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {(t(1), y(1)), . . . , (t(N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T t(i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i)t(i) � Update parameters
8: return �



(Batch) Perceptron Algorithm
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Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PĊėĈĊĕęėĔē(D = {(t(1), y(1)), . . . , (t(N), y(N))})
2: � � 0 � Initialize parameters
3: while not converged do
4: for i � {1, 2, . . . , N} do � For each example
5: ŷ � sign(�T t(i)) � Predict
6: if ŷ �= y(i) then � If mistake
7: � � � + y(i)t(i) � Update parameters
8: return �

Def: We say that the 
(batch) perceptron 
algorithm has 
converged if it stops 
making mistakes on 
the training data 
(perfectly classifies 
the training data).



(Batch) Perceptron Algorithm
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Learning for Perceptron also works if we have a fixed training 
dataset, D. We call this the “batch” setting in contrast to the “online” 
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.

1. By extending the online Perceptron algorithm to the batch 
setting (as mentioned above)

2. By applying Stochastic Gradient Descent (SGD) to minimize a 
so-called Hinge Loss on a linear separator



Perceptron Exercise
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Question:
Unlike Decision Trees and K-
Nearest Neighbors, the 
Perceptron algorithm does 
not suffer from overfitting 
because it does not have any 
hyperparameters that could 
be over-tuned on the training 
data.

A. True
B. False
C. True and False

Answer:



PERCEPTRON MISTAKE BOUND
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Definitions

72

Def: For a binary classification problem, a set of examples 𝑆 
is linearly separable if there exists a linear decision boundary 
that can separate the points

+
+-

Case 1:

+ +
-

Case 2:

+
++

Case 3:

+
+-
-

Case 4:

not linearly 
separable



Definitions
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Def: The margin 𝛾 for a dataset D is the greatest possible 
distance between a linear separator and the closest data 
point in D to that linear separator

+ +
+
+-

-
-

𝛾
𝛾

+

--

-
-

w

Figure from Nina Balcan

- -



Perceptron Mistake Bound

74
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin 𝛾 and all points lie inside 
a ball of radius 𝑅 rooted at the origin, then the online 
Perceptron algorithm makes ≤ ⁄𝑅 𝛾 4 mistakes

++

+
+
+
+

+

-

- -

-

-

g
g

--
-
-

+

R

��

Main Takeaway: For 
linearly separable data, if 
the perceptron algorithm 
cycles repeatedly through 
the data, it will converge 
in a finite # of steps.



Extensions of Perceptron
• Voted Perceptron

– generalizes better than (standard) perceptron
– memory intensive (keeps around every weight vector seen during training, so each one can 

vote)
• Averaged Perceptron

– empirically similar performance to voted perceptron
– can be implemented in a memory efficient way 

(running averages are efficient)
• Kernel Perceptron

– Choose a kernel K(x’, x)
– Apply the kernel trick to Perceptron
– Resulting algorithm is still very simple

• Structured Perceptron
– Basic idea can also be applied when y ranges over an exponentially large set
– Mistake bound does not depend on the size of that set
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