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Front Matter

9/18/24

* Announcements:

* HW3 released 9/16, due 9/23 at 11:59 PM
- Only two grace days allowed on HW3
* Exam 1 on 9/30 from 6:30 PM - 8:30 PM

* If you have a conflict, you must complete the
Exam conflict form by 9/23 at 1 PM



https://forms.gle/61cqb2ZN1BuQ9Pgd8

* Location & Seats: You all will be split across multiple
(large) rooms.

* Everyone will have an assigned seat

Exam 1 » Please watch Piazza carefully for more details
I-OngthS * If you have exam accommodations through ODR,

they will be proctoring your exam on our behalf;
you are responsible for submitting the exam

proctoring request through your student portal.
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* Format of questions:

* Multiple choice
* True / False (with justification)

* Derivations

Exam 1 - Short answers
Logistics - Drawing & Interpreting figures

* Implementing algorithms on paper

* No electronic devices (you won’t need them!)

* You are allowed to bring one letter-size sheet of notes;

you can put whatever you want on both sides
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* Covered material: Lectures 1 —7
* Foundations

* Probability, Linear Algebra, Geometry, Calculus
* Optimization
* Important Concepts
* Overfitting
- Model selection / Hyperparameter optimization
* Decision Trees
* k-NN
* Perceptron
* Regression
* Decision Tree and k-NN Regression

* Linear Regression
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Exam 1

Preparation

9/18/24

* Attend the midterm review lecture (right now!)

* Review the exam practice problems (to be released on

9/20, under the Coursework tab)

* Review HWs 1 -3

- Consider whether you have achieved the “learning

objectives” for each lecture / section

- Write your one-page cheat sheet (back and front)


http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

* Solve the easy problems first

* If a problem seems extremely complicated, you might be
missing something

* If you make an assumption, write it down

* Don’t leave any answer blank
* If you look at a question and don’t know the answer:
* just start trying things
- consider multiple approaches

* imagine arguing for some answer and see if you like it
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm [oliday Weekend Closed
T T F F
T T F T
F T F F
T T F F
. F F F F
Practice F F F T
T F F T
F T
Problem 1a: : :

Table 1: Training examples for decision tree

- What would be the effect of the “Weekend” attribute
on the decision tree if we made it the root node?

Decision Trees

Explain your answer in terms of mutual information
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm [oliday Weekend Closed

T T F F

T T F T

F T F F

T T F F

. F F F F
Practice F F F T
T F F T

Problem 1b: d ‘ F T

[}

Table 1: Training examples for decision tree

Decision Trees

* Which attribute would we split on first if we used

mutual information as the splitting criterion? You may

use log, G) ~ —0.4 and log, G) = =2
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* Consider the dataset below:

8
111
()L

20

2

Practice

J=

Problem 2:
k-NN

F-2

i

* What is the leave-one-out cross-validation error fora 1-

NN model using the Euclidean distance?
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Practice

Problem 3:
Perceptron

9/18/24

* True or False: Consider two datasets

D, = {(xgl),yl(l)) , (xgz),yfz)) e, (x&Nl),yl(Nl))} and

D, = {(xgl),yz(l)) , (xgz),yz(z)) A (ngZ),yZ(NZ))} where

xgi) € R% and xgi) € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning
algorithm will make on D, is higher than the maximum
number of mistakes it will make on D,.

11



Poll Question 1

9/18/24

* True or False: Consider two datasets

D, = {(xgl),yl(l)) , (xgz),yfz)) e, (x&Nl),yl(Nl))} and

D, = {(xgl),yz(l)) , (xgz),yz(z)) A (ngZ),yZ(NZ))} where

xgi) € R% and xgi) € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning

algorithm will make on D, is higher than the maximum
number of mistakes it will make on D,.

* True
* False

* True and False (TOXIC)

12



Practice

Problem 4a:
Linear
Regression

9/18/24

Consider the dataset plotted in the figure below along with
the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

approximates the new line linear regression would learn

13



Practice
Problem 4b:

Linear
Regression

9/18/24

Consider the dataset plotted in the figure below along with

the line learned by linear regression.

g &

uuuuuuu

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

apprOX|mates the new line Imear regression would learn

14



Practice

Problem 4c:
Linear
Regression

9/18/24

Consider the dataset plotted in the figure below along with

the line learned by linear regression.

e A

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

apprOX|mates the new line Imear regression would learn

15



Poll Question 2
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What questions do you have?

16



Recall:
Gradient

Descent for
Linear
Regression

9/18/24

* Gradient descent for linear regression repeatedly takes

steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression
procedure GDLR(D, 0(0))

1:

2 0 «— 6% > Initialize parameters
3 while not converged do

4: g — SN (0Tx() — @))% () > Compute gradient
5 0 —0—~g > Update parameters
6 return 0

17



=J.UU0U

20 000
000'0¢

ann'C7

mean squared error
J(61,6,)

N
1 . . 1.0
J(61,6,) = NZ()’(O - eTx(l))z <§/ 0.00q \ \"foo>
A =1 _"’7 2
0.8 \
A
o, |- 9 23!
Recall: s L
Gradient = . d #

Descent fOr iteration t ®
Linear by =cm@nknown) e o e . " 0
Regression
h(x; 0%)
", 1 001 002 252
g — h(x;0?) 2 030 012 87
- h(x; 6) 3 051 030 15
>

X 4 0.59 043 0.2

9/18/24 18



=J.UU0U

20 000
000'0¢

ann'C7

mean squared error
J(61,6,)

N
1 . . .
J(6,6,) = Nz(y(l) — BTx(l))z +0 /Qg/ 0.00q \"foo\
i=1 5 &
A 0.8 \
A
0.6 - § ‘30 .
02 ) 9 5!) o [
Why 4 L
. A S
Gradient = N d
0i4 0i8

Descent for teration <
Linear *+  y =c*(x) (unknown) ,};(x; o) °%0 0 0 o6 To
Regression?
h(x; 6)
", 1 001 002 252
g — h(x;0?) 2 030 012 87
- hex; 00) 3 051 030 1.5
" > 4 059 043 0.2

9/18/24 19



Convexity

9/18/24

- A function f: RP? - Ris convex if
Vil eRP,x2 eRPand0<c <1

flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf (xV) + (1 - o) f(x?)

flex® + (1 - )x@)

20



Convexity
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- A function f: RP? - Ris convex if
Vil eRP,x2 eRPand0<c <1

flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf (xV) + (1 - o) f(x?)

flex® + (1 - )x@)
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Convexity
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- A function f: RP? — Ris strictly convex if
Vv eRP xP eRPand0<c< 1
flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf (xV) + (1 - o) f(x?)

flex® + (1 - )x@)
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Convexity
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_---¥  Convex functions

Non-convex functions

23



Convexity
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4"
-
-

/.~-¥  Given afunction f: R - R

* x* is a global minimum iff
fx) < fx)Vx€eRP

* x* is a local minimum iff

Jest. f(x) < f(x)V

xs.t|lx—x"||, <e

24



Convexity

9/18/24

Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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Convexity
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Strictly convex functions:
There exists a unique global

minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...

26



* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\\

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

.

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

Gradient
Descent & 4

Convexity

9/18/24
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

9/18/24
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

9/18/24
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N
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Closed Form

Optimization

9/18/24

- Idea: find the critical points of the objective function,

specifically the ones where VJ(8) = 0 (the vector of all

zeros), and check if any of them are local minima

 Notation: given training data D = {(xm),y(n))}::l

1 T 1 xil) xl()l)_
-x =1 x@" _ |1 xfz) xl()z) c RNXD+1
. . . . %o .
1 x(N) | 1 x](-N) xl()N)_

is the design matrix

T
cy =|yW, ..., yM|" € RN is the target vector

38



Minimizing the

Mean Squared
Error

9/18/24

o

N
1~1, .
](g)zﬁz:z(ym_mx(of_ 2 meg ym
=1

1
= ﬁ(XH -'X0 —y)
1 TyT TyT T
1 T T
_ 1 .
Vel (0) = v (2XTX0 —2XTy) = 0

- XTX0 =X"y

-0 =X"X)"XxTy

39



Closed Form

Optimization

9/18/24

0=xXTX)"1xTy

“
0.0 . f
.6 0.8

000'0¢

I

0.0 0.2 0.4
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1.0 77 :
/QQ 0.00q %\
< o
> 2
0.8 \
S %
061 o S RN
P S~ 2 33
hn © d
NN q
0.4 - O
S
S
0.2\ //
L
0
0,

1.0



Closed Form

Solution
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1.

2.

0=X"X)"1xTy

Is XT X invertible?

If so, how computationally expensive is inverting X X?

41



Closed Form

Solution
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0=X"X)"1xTy

Is XT X invertible?

* When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XT X is not invertible (occurs when one of the
features is a linear combination of the others) then

there are either 0 or infinitely many solutions!

If so, how computationally expensive is inverting X X?

42



Linear

Regression:
Uniqueness

9/18/24

* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

=V

43



Linear

Regression:
Uniqueness

9/18/24

* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

=V
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Linear

Regression:
Uniqueness

9/18/24

* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

=V

45



Poll Question 3
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

A. -1 (TOXIC) B. 0

Y a

C.1

D. 2

=V

46



Linear

Regression:
Uniqueness

9/18/24

* Consider a 2D linear yA

regression model trained
to minimize the mean .
squared error: how many ",'
: : : ',0’
optimal solutions (i.e., .-
L -
sets of parameters 0) are >
X1

there for the given

dataset? X,

47



Linear

Regression:
Uniqueness

9/18/24

* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Linear

Regression:
Uniqueness

9/18/24

* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,

49



Closed Form

Solution
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0=X"X)"1xTy

Is XT X invertible?

* When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XT X is not invertible (occurs when one of the
features is a linear combination of the others) then

there are either 0 or infinitely many solutions

If so, how computationally expensive is inverting X X?

« XTX € RPH1XP+1 o inverting X7 X takes O(D3) time...

» Computing XT X takes O(ND?) time
* Can use gradient descent to (potentially) speed things

up when N and D are large!
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Linear
Regression

Learning
Objectives

9/18/24

You should be able to...

* Design k-NN Regression and Decision Tree Regression

* Implement learning for Linear Regression using
gradient descent or closed form optimization

* Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed

* Identify situations where least squares regression has
exactly one solution or infinitely many solutions

52



	Slide 1:  10-301/601: Introduction to Machine Learning Lecture 8 – Optimization for Machine Learning
	Slide 2: Front Matter
	Slide 3: Exam 1 Logistics
	Slide 4: Exam 1 Logistics
	Slide 5: Exam 1  Topics
	Slide 6: Exam 1 Preparation
	Slide 7: Exam 1  Tips
	Slide 8: Practice Problem 1a: Decision Trees
	Slide 9: Practice Problem 1b: Decision Trees
	Slide 10: Practice Problem 2: k-NN 
	Slide 11: Practice Problem 3: Perceptron
	Slide 12: Poll Question 1
	Slide 13:  Practice Problem 4a:  Linear Regression
	Slide 14:  Practice Problem 4b:  Linear Regression
	Slide 15:  Practice Problem 4c:  Linear Regression
	Slide 16: Poll Question 2
	Slide 17: Recall: Gradient Descent for Linear Regression
	Slide 18: Recall: Gradient Descent for Linear Regression
	Slide 19: Why Gradient Descent for Linear Regression?
	Slide 20: Convexity
	Slide 21: Convexity
	Slide 22: Convexity
	Slide 23: Convexity
	Slide 24: Convexity
	Slide 25: Convexity
	Slide 26: Convexity
	Slide 27: Gradient Descent & Convexity  
	Slide 28: Gradient Descent & Convexity  
	Slide 29: Gradient Descent & Convexity  
	Slide 30: Gradient Descent & Convexity  
	Slide 31: Gradient Descent & Convexity  
	Slide 32: Gradient Descent & Convexity  
	Slide 33: Gradient Descent & Convexity  
	Slide 34: Gradient Descent & Convexity  
	Slide 35: Why Gradient Descent for Linear Regression?
	Slide 36: The mean squared  error is  convex (but not always strictly  convex)
	Slide 37: Okay, fine  but couldn’t we do  something simpler?   Yes! (sometimes)
	Slide 38: Closed Form Optimization
	Slide 39: Minimizing the Mean Squared Error
	Slide 40: Closed Form Optimization
	Slide 41: Closed Form Solution
	Slide 42: Closed Form Solution
	Slide 43: Linear Regression: Uniqueness
	Slide 44: Linear Regression: Uniqueness
	Slide 45: Linear Regression: Uniqueness
	Slide 46: Poll Question 3
	Slide 47: Linear Regression: Uniqueness
	Slide 48: Linear Regression: Uniqueness
	Slide 49: Linear Regression: Uniqueness
	Slide 51: Closed Form Solution
	Slide 52: Linear Regression Learning Objectives

