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Front Matter

 Announcements: 

 HW3 released 9/16, due 9/23 (today!) at 11:59 PM 

 Only two grace days allowed on HW3

 Exam 1 on 9/30 (next Monday) from 6:30 PM - 8:30 PM

 If you have a conflict, you must complete the Exam 

conflict form by 9/23 (today!) at 1 PM 

 Exam 1 practice problems released on the course 

website, under Coursework
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https://forms.gle/61cqb2ZN1BuQ9Pgd8
https://forms.gle/61cqb2ZN1BuQ9Pgd8
http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html


Probabilistic 
Learning

 Previously: 

 (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

 Classifier, ℎ ∶ 𝒳 → 𝒴

 Goal: find a classifier, ℎ, that best approximates 𝑐∗

 Now:

 (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

 Distribution, 𝑝 𝑌 𝒙

 Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Likelihood 

 Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 1 , … , 𝑥 𝑁  of a random variable 𝑋

 If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 = ෑ

𝑛=1

𝑁

𝑝 𝑥 𝑛 |𝜃

 If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 = ෑ

𝑛=1

𝑁

𝑓 𝑥 𝑛 |𝜃
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Log-Likelihood 

 Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 1 , … , 𝑥 𝑁  of a random variable 𝑋

 If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log ෑ

𝑛=1

𝑁

𝑝 𝑥 𝑛 |𝜃 = ෍

𝑛=1

𝑁

log 𝑝 𝑥 𝑛 |𝜃

 If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log ෑ

𝑛=1

𝑁

𝑓 𝑥 𝑛 |𝜃 = ෍

𝑛=1

𝑁

log 𝑓 𝑥 𝑛 |𝜃
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Maximum 
Likelihood 
Estimation 
(MLE)

 Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

 Idea: set the parameter(s) so that the likelihood of the 

samples is maximized

 Intuition: assign as much of the (finite) probability mass 

to the observed data at the expense of unobserved data

 Example: the 

exponential 

distribution 
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Maximum 
Likelihood 
Estimation 
(MLE)

 Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

 Idea: set the parameter(s) so that the likelihood of the 

samples is maximized

 Intuition: assign as much of the (finite) probability mass 

to the observed data at the expense of unobserved data

 Example: the 

exponential 

distribution 
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൛

ൟ

𝑥 1 = 0.5,

𝑥 2 = 1

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 

https://en.wikipedia.org/wiki/Exponential_distribution


Maximum 
Likelihood 
Estimation 
(MLE)

 Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

 Idea: set the parameter(s) so that the likelihood of the 

samples is maximized

 Intuition: assign as much of the (finite) probability mass 

to the observed data at the expense of unobserved data

 Example: the 

exponential 

distribution 
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൛

ൟ

𝑥 1 = 2,

𝑥 2 = 3

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 

https://en.wikipedia.org/wiki/Exponential_distribution


 The pdf of the exponential distribution is 

𝑓 𝑥|𝜆 = 𝜆𝑒−𝜆𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the likelihood is

𝐿 𝜆 = ෑ

𝑛=1

𝑁

𝑓 𝑥 𝑛 |𝜆 = ෑ

𝑛=1

𝑁

𝜆𝑒−𝜆𝑥 𝑛

ℓ 𝜆 = ෍

𝑛=1

𝑁

log 𝜆 + log 𝑒−𝜆𝑥 𝑛
= 𝑁 log 𝜆 − 𝜆 ෍

𝑛=1

𝑁

𝑥 𝑛

 Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ

𝜕𝜆
=

𝑁

𝜆
− ෍

𝑛=1

𝑁

𝑥 𝑛

Exponential 
Distribution
MLE
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 The pdf of the exponential distribution is 

𝑓 𝑥|𝜆 = 𝜆𝑒−𝜆𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-likelihood is

ℓ 𝜆 = ෍

𝑛=1

𝑁

log 𝑓 𝑥 𝑛 |𝜆 = ෍

𝑛=1

𝑁

log 𝜆𝑒−𝜆𝑥 𝑛

ℓ 𝜆 = ෍

𝑛=1

𝑁

log 𝜆 + log 𝑒−𝜆𝑥 𝑛
= 𝑁 log 𝜆 − 𝜆 ෍

𝑛=1

𝑁

𝑥 𝑛

 Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ

𝜕𝜆
=

𝑁

𝜆
− ෍

𝑛=1

𝑁

𝑥 𝑛

Exponential 
Distribution
MLE
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Building a 
Probabilistic 
Classifier
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 Define a decision rule

 Given a test data point 𝒙′, predict its label ො𝑦 using 

the posterior distribution 𝑃 𝑌 = 𝑦 𝒙′

 Common choice: ො𝑦 = argmax
𝑦

𝑃 𝑌 = 𝑦 𝒙′

 Idea: model 𝑃 𝑌 𝒙  as some parametric function of 𝒙



 Suppose we have binary labels 𝑦 ∈ {0,1} and 

𝐷-dimensional inputs 𝒙 = 1, 𝑥1, … , 𝑥𝐷
𝑇 ∈ ℝ𝐷+1

 Assume 

𝑃 𝑌 = 1 𝒙, 𝜽 = 𝜎 𝜽𝑇𝒙 =
1

1 + exp −𝜽𝑇𝒙
=

exp 𝜽𝑇𝒙

exp 𝜽𝑇𝒙 + 1

 This implies two useful facts:

1. 𝑃 𝑌 = 0 𝒙, 𝜽 = 1 − 𝑃 𝑌 = 1 𝒙, 𝜽 =
1

exp 𝜽𝑇𝒙 + 1

2.
𝑃 𝑌 = 1 𝒙, 𝜽

𝑃(𝑌 = 0|𝒙, 𝜽)
= exp 𝜽𝑇𝒙 → log

𝑃 𝑌 = 1 𝒙, 𝜽

𝑃(𝑌 = 0|𝒙, 𝜽)
= 𝜽𝑇𝒙

Modelling the 
Posterior

9/23/24 13

1 prepended to 𝒙



Logistic 
Function

149/23/24 Source:  https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg 

𝜎
𝑧

=
1

1
+

𝑒
−

𝑧
𝑧

https://en.wikipedia.org/wiki/Logistic_function


159/23/24 Source:  https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg 

Why use the 
Logistic 
Function?

𝜎
𝜽

𝑇
𝒙

=
1

1
+

𝑒
−

𝜽
𝑇

𝒙
𝜽𝑇𝒙

https://en.wikipedia.org/wiki/Logistic_function


Logistic 
Regression 
Decision 
Boundary

16

ො𝑦 = ቐ1 if 𝑃 𝑌 = 1 𝒙, 𝜽 ≥
1

2
0 otherwise

𝑃 𝑌 = 1 𝒙 = 𝜎 𝜽𝑇𝒙 =
1

1 + exp −𝜽𝑇𝒙
≥

1

2

2 ≥ 1 + exp −𝜽𝑇𝒙

1 ≥ exp −𝜽𝑇𝒙

log 1 ≥ −𝜽𝑇𝒙

0 ≤ 𝜽𝑇𝒙
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Logistic 
Regression 
Decision 
Boundary

179/23/24 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

189/23/24 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

199/23/24 Figure courtesy of Matt Gormley



Setting the 
Parameters
via Minimum 
Negative 
Conditional 
(log-)Likelihood 
Estimation 
(MCLE)

209/23/24

 Find 𝜽 that minimizes

ℓ 𝜽 = −log 𝑃 𝑦 1 , … , 𝑦 𝑁 𝒙 1 , … , 𝒙 𝑁 , 𝜽 = −log ෑ

𝑛=1

𝑁

𝑃 𝑦 𝑛 𝒙 𝑛 , 𝜽

ℓ 𝜽 = −log ෑ

𝑛=1

𝑁

𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽
𝑦 𝑛

𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽
1−𝑦 𝑛

ℓ 𝜽 = − ෍

𝑛=1

𝑁

𝑦 𝑛 log 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 + 1 − 𝑦 𝑛 log 𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽

ℓ 𝜽 = − ෍

𝑛=1

𝑁

𝑦 𝑛 log
𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽

𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽
+ log 𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽

ℓ 𝜽 = − ෍

𝑛=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛

𝐽 𝜽 =
1

𝑁
ℓ 𝜽 = −

1

𝑁
෍

𝑛=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛



Minimizing the
Negative 
Conditional 
(log-)Likelihood

229/23/24

∇𝜽𝐽 𝜽 = −
1

𝑁
෍

𝑛=1

𝑁

𝑦 𝑛 ∇𝜽 𝜽𝑇𝒙 𝑛 − ∇𝜽 log 1 + exp 𝜽𝑇𝒙 𝑛

= −
1

𝑁
෍

𝑛=1

𝑁

𝑦 𝑛 𝒙 𝑛 −
exp 𝜽𝑇𝒙 𝑛

1 + exp 𝜽𝑇𝒙 𝑛
𝒙 𝑛

=
1

𝑁
෍

𝑛=1

𝑁

𝒙 𝑛 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 − 𝑦 𝑛

𝐽 𝜽 = −
1

𝑁
෍

𝑛=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛

Key Takeaway: 
This objective 
function is 
convex but we 
cannot solve 
for the optimal 
parameters in 
closed form



Recall:
Gradient 
Descent
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Gradient 
Descent

 Input: training dataset 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 and step size 𝛾

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 𝑡 =
1

𝑁
෍

𝑖=1

𝑁

𝒙 𝑖 𝑃 𝑌 = 1 𝒙 𝑖 , 𝜽 𝑡 − 𝑦 𝑖

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡

249/23/24



Poll Question 1: 

What is the 
computational 
cost of one 
iteration of 
gradient 
descent for 
logistic 
regression?

 Input: training dataset 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 and step size 𝛾

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 𝑡 =
1

𝑁
෍

𝑖=1

𝑁

𝒙 𝑖 𝑃 𝑌 = 1 𝒙 𝑖 , 𝜽 𝑡 − 𝑦 𝑖

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡

259/23/24

A. 𝑂 1  (TOXIC)  B. 𝑂 𝑁    C. 𝑂 𝐷   D. 𝑂 𝑁𝐷  



Gradient 
Descent

 Input: training dataset 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 and step size 𝛾

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 𝑡 =
1

𝑁
෍

𝑖=1

𝑁

𝒙 𝑖 𝑃 𝑌 = 1 𝒙 𝑖 , 𝜽 𝑡 − 𝑦 𝑖

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡

26

𝑂(𝑁𝐷)
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Stochastic
Gradient 
Descent (SGD) 

279/23/24

 Input: training dataset 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 and step size 𝛾

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 𝑖 , 𝑦 𝑖

b. Compute the pointwise gradient:

∇𝜽𝐽 𝑖 𝜽 𝑡 = 𝒙 𝑖 𝑃 𝑌 = 1 𝒙 𝑖 , 𝜽 𝑡 − 𝑦 𝑖

c. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 𝑖 𝜽 𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡



Logistic 
Regression 
Learning 
Objectives

You should be able to…
 Apply the principle of maximum likelihood estimation 

(MLE) to learn the parameters of a probabilistic 
model 

 Given a discriminative probabilistic model, derive the 
conditional log-likelihood, its gradient, and the 
corresponding Bayes Classifier 

 Explain the practical reasons why we work with the 
log of the likelihood 

 Implement logistic regression for binary (and 
multiclass) classification 

 Prove that the decision boundary of binary logistic 
regression is linear

379/23/24
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