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Front Matter

 Announcements: 

 HW3 released 9/16, due 9/23 (today!) at 11:59 PM 

 Only two grace days allowed on HW3

 Exam 1 on 9/30 (next Monday) from 6:30 PM - 8:30 PM

 If you have a conflict, you must complete the Exam 

conflict form by 9/23 (today!) at 1 PM 

 Exam 1 practice problems released on the course 

website, under Coursework
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https://forms.gle/61cqb2ZN1BuQ9Pgd8
https://forms.gle/61cqb2ZN1BuQ9Pgd8
http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html


Probabilistic 
Learning

 Previously: 

 (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

 Classifier, ℎ ∶ 𝒳 → 𝒴

 Goal: find a classifier, ℎ, that best approximates 𝑐∗

 Now:

 (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

 Distribution, 𝑝 𝑌 𝒙

 Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Likelihood 

 Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 1 , … , 𝑥 𝑁  of a random variable 𝑋

 If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 = ෑ

𝑛=1

𝑁

𝑝 𝑥 𝑛 |𝜃

 If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 = ෑ

𝑛=1

𝑁

𝑓 𝑥 𝑛 |𝜃
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Log-Likelihood 

 Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 1 , … , 𝑥 𝑁  of a random variable 𝑋

 If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log ෑ

𝑛=1

𝑁

𝑝 𝑥 𝑛 |𝜃 = 

𝑛=1

𝑁

log 𝑝 𝑥 𝑛 |𝜃

 If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log ෑ

𝑛=1

𝑁

𝑓 𝑥 𝑛 |𝜃 = 

𝑛=1

𝑁

log 𝑓 𝑥 𝑛 |𝜃
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Maximum 
Likelihood 
Estimation 
(MLE)

 Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

 Idea: set the parameter(s) so that the likelihood of the 

samples is maximized

 Intuition: assign as much of the (finite) probability mass 

to the observed data at the expense of unobserved data

 Example: the 

exponential 

distribution 

9/23/24 6Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 
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Maximum 
Likelihood 
Estimation 
(MLE)

 Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

 Idea: set the parameter(s) so that the likelihood of the 

samples is maximized

 Intuition: assign as much of the (finite) probability mass 

to the observed data at the expense of unobserved data

 Example: the 

exponential 

distribution 
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൛

ൟ

𝑥 1 = 0.5,

𝑥 2 = 1

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 

https://en.wikipedia.org/wiki/Exponential_distribution


Maximum 
Likelihood 
Estimation 
(MLE)

 Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

 Idea: set the parameter(s) so that the likelihood of the 

samples is maximized

 Intuition: assign as much of the (finite) probability mass 

to the observed data at the expense of unobserved data

 Example: the 

exponential 

distribution 
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൛

ൟ

𝑥 1 = 2,

𝑥 2 = 3

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 

https://en.wikipedia.org/wiki/Exponential_distribution


 The pdf of the exponential distribution is 

𝑓 𝑥|𝜆 = 𝜆𝑒−𝜆𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the likelihood is

𝐿 𝜆 = ෑ

𝑛=1

𝑁

𝑓 𝑥 𝑛 |𝜆 = ෑ

𝑛=1

𝑁

𝜆𝑒−𝜆𝑥 𝑛

ℓ 𝜆 = 

𝑛=1

𝑁

log 𝜆 + log 𝑒−𝜆𝑥 𝑛
= 𝑁 log 𝜆 − 𝜆 

𝑛=1

𝑁

𝑥 𝑛

 Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ

𝜕𝜆
=

𝑁

𝜆
− 

𝑛=1

𝑁

𝑥 𝑛

Exponential 
Distribution
MLE
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 The pdf of the exponential distribution is 

𝑓 𝑥|𝜆 = 𝜆𝑒−𝜆𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-likelihood is

ℓ 𝜆 = 

𝑛=1

𝑁

log 𝑓 𝑥 𝑛 |𝜆 = 

𝑛=1

𝑁

log 𝜆𝑒−𝜆𝑥 𝑛

ℓ 𝜆 = 

𝑛=1

𝑁

log 𝜆 + log 𝑒−𝜆𝑥 𝑛
= 𝑁 log 𝜆 − 𝜆 

𝑛=1

𝑁

𝑥 𝑛

 Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ

𝜕𝜆
=

𝑁

𝜆
− 

𝑛=1

𝑁

𝑥 𝑛

Exponential 
Distribution
MLE
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 The pdf of the exponential distribution is 

𝑓 𝑥|𝜆 = 𝜆𝑒−𝜆𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-likelihood is

ℓ 𝜆 = 

𝑛=1

𝑁

log 𝑓 𝑥 𝑛 |𝜆 = 

𝑛=1

𝑁

log 𝜆𝑒−𝜆𝑥 𝑛

ℓ 𝜆 = 

𝑛=1

𝑁

log 𝜆 + log 𝑒−𝜆𝑥 𝑛
= 𝑁 log 𝜆 − 𝜆 

𝑛=1

𝑁

𝑥 𝑛

 Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ

𝜕𝜆
=

𝑁

መ𝜆
− 

𝑛=1

𝑁

𝑥 𝑛 = 0 →
𝑁

መ𝜆
= 

𝑛=1

𝑁

𝑥 𝑛 → መ𝜆 =
𝑁

σ𝑛=1
𝑁 𝑥 𝑛

Exponential 
Distribution
MLE
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Building a 
Probabilistic 
Classifier
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 Define a decision rule

 Given a test data point 𝒙′, predict its label ො𝑦 using 

the posterior distribution 𝑃 𝑌 = 𝑦 𝒙′

 Common choice: ො𝑦 = argmax
𝑦

𝑃 𝑌 = 𝑦 𝒙′

 Idea: model 𝑃 𝑌 𝒙  as some parametric function of 𝒙



 Suppose we have binary labels 𝑦 ∈ {0,1} and 

𝐷-dimensional inputs 𝒙 = 1, 𝑥1, … , 𝑥𝐷
𝑇 ∈ ℝ𝐷+1

 Assume 

𝑃 𝑌 = 1 𝒙, 𝜽 = 𝜎 𝜽𝑇𝒙 =
1

1 + exp −𝜽𝑇𝒙
=

exp 𝜽𝑇𝒙

exp 𝜽𝑇𝒙 + 1

 This implies two useful facts:

1. 𝑃 𝑌 = 0 𝒙, 𝜽 = 1 − 𝑃 𝑌 = 1 𝒙, 𝜽 =
1

exp 𝜽𝑇𝒙 + 1

2.
𝑃 𝑌 = 1 𝒙, 𝜽

𝑃(𝑌 = 0|𝒙, 𝜽)
= exp 𝜽𝑇𝒙 → log

𝑃 𝑌 = 1 𝒙, 𝜽

𝑃(𝑌 = 0|𝒙, 𝜽)
= 𝜽𝑇𝒙

Modelling the 
Posterior
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1 prepended to 𝒙



Logistic 
Function

149/23/24 Source:  https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg 

𝜎
𝑧

=
1

1
+

𝑒
−

𝑧
𝑧

https://en.wikipedia.org/wiki/Logistic_function


159/23/24 Source:  https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg 

Why use the 
Logistic 
Function?

𝜎
𝜽

𝑇
𝒙

=
1

1
+

𝑒
−

𝜽
𝑇

𝒙
𝜽𝑇𝒙

https://en.wikipedia.org/wiki/Logistic_function


Logistic 
Regression 
Decision 
Boundary

16

ො𝑦 = ቐ1 if 𝑃 𝑌 = 1 𝒙, 𝜽 ≥
1

2
0 otherwise.

𝑃 𝑌 = 1 𝒙 = 𝜎 𝜽𝑇𝒙 =
1

1 + exp −𝜽𝑇𝒙
≥

1

2

2 ≥ 1 + exp −𝜽𝑇𝒙

1 ≥ exp −𝜽𝑇𝒙

log 1 ≥ −𝜽𝑇𝒙

0 ≤ 𝜽𝑇𝒙
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Logistic 
Regression 
Decision 
Boundary

179/23/24 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

189/23/24 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

199/23/24 Figure courtesy of Matt Gormley



Setting the 
Parameters
via Minimum 
Negative 
Conditional 
(log-)Likelihood 
Estimation 
(MCLE)

209/23/24

 Find 𝜽 that minimizes

ℓ 𝜽 = −log 𝑃 𝑦 1 , … , 𝑦 𝑁 𝒙 1 , … , 𝒙 𝑁 , 𝜽 = −log ෑ

𝑛=1

𝑁

𝑃 𝑦 𝑛 𝒙 𝑛 , 𝜽

ℓ 𝜽 = −log ෑ

𝑛=1

𝑁

𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽
𝑦 𝑛

𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽
1−𝑦 𝑛

ℓ 𝜽 = − 

𝑛=1

𝑁

𝑦 𝑛 log 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 + 1 − 𝑦 𝑛 log 𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽

ℓ 𝜽 = − 

𝑛=1

𝑁

𝑦 𝑛 log
𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽

𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽
+ log 𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽

ℓ 𝜽 = − 

𝑛=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛

𝐽 𝜽 =
1

𝑁
ℓ 𝜽 = −

1

𝑁


𝑛=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛



Minimizing the
Negative 
Conditional 
(log-)Likelihood

219/23/24

∇𝜽𝐽 𝜽 = −
1

𝑁


𝑛=1

𝑁

𝑦 𝑛 ∇𝜽 𝜽𝑇𝒙 𝑛 − ∇𝜽 log 1 + exp 𝜽𝑇𝒙 𝑛

= −
1

𝑁


𝑛=1

𝑁

𝑦 𝑛 𝒙 𝑛 −
exp 𝜽𝑇𝒙 𝑛

1 + exp 𝜽𝑇𝒙 𝑛
𝒙 𝑛

=
1

𝑁


𝑛=1

𝑁

𝒙 𝑛 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 − 𝑦 𝑛

𝐽 𝜽 = −
1

𝑁


𝑛=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛



Recall:
Gradient 
Descent
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Gradient 
Descent

 Input: training dataset 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 and step size 𝛾

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 𝑡 =
1

𝑁


𝑖=1

𝑁

𝒙 𝑖 𝑃 𝑌 = 1 𝒙 𝑖 , 𝜽 𝑡 − 𝑦 𝑖

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡
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Poll Question 1: 

What is the 
computational 
cost of one 
iteration of 
gradient 
descent for 
logistic 
regression?

 Input: training dataset 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 and step size 𝛾

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 𝑡 =
1

𝑁


𝑖=1

𝑁

𝒙 𝑖 𝑃 𝑌 = 1 𝒙 𝑖 , 𝜽 𝑡 − 𝑦 𝑖

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡
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A. 𝑂 1  (TOXIC)  B. 𝑂 𝑁    C. 𝑂 𝐷   D. 𝑂 𝑁𝐷  



Gradient 
Descent

 Input: training dataset 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 and step size 𝛾

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 𝑡 =
1

𝑁


𝑖=1

𝑁

𝒙 𝑖 𝑃 𝑌 = 1 𝒙 𝑖 , 𝜽 𝑡 − 𝑦 𝑖

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡

25

𝑂(𝑁𝐷)
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Stochastic
Gradient 
Descent (SGD) 

269/23/24

 Input: training dataset 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 and step size 𝛾

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 𝑖 , 𝑦 𝑖

b. Compute the pointwise gradient:

∇𝜽𝐽 𝑖 𝜽 𝑡 = 𝒙 𝑖 𝑃 𝑌 = 1 𝒙 𝑖 , 𝜽 𝑡 − 𝑦 𝑖

c. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝛾∇𝜽𝐽 𝑖 𝜽 𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡



Logistic 
Regression 
Learning 
Objectives

You should be able to…
 Apply the principle of maximum likelihood estimation 

(MLE) to learn the parameters of a probabilistic 
model 

 Given a discriminative probabilistic model, derive the 
conditional log-likelihood, its gradient, and the 
corresponding Bayes Classifier 

 Explain the practical reasons why we work with the 
log of the likelihood 

 Implement logistic regression for binary (and 
multiclass) classification 

 Prove that the decision boundary of binary logistic 
regression is linear
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