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- Announcements:
* HW3 released 9/16, due 9/23 (today!) at 11:59 PM

* Only two grace days allowed on HW3
* Exam 1 on 9/30 (next Monday) from 6:30 PM - 8:30 PM

Front Matter

* If you have a conflict, you must complete the Exam
conflict form by 9/23 (today!) at 1 PM

- Exam 1 practice problems released on the course

website, under Coursework
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https://forms.gle/61cqb2ZN1BuQ9Pgd8
https://forms.gle/61cqb2ZN1BuQ9Pgd8
http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

* Previously:

* (Unknown) Target function, c*: X =» Y
* Classifier, h : X = Y
Probabilistic * Goal: find a classifier, h, that best approximates c*

Learning - Now:
* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p*
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* Given N independent, identically distribution (iid)
samples D = {x(l), . x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the likelihood of D is

Likelihood 1©) = [p(x™16)

* If X is continuous with probability density function
(pdf) f(X]0), then the likelihood of D is

N
Lo = | [rxmie)
n=1
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Log-Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), . x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the log-likelihood of D is

N N
£(0) = logl_[p(x(”)|0) = Z logp(x(")w)
n=1 n=1

* If X is continuous with probability density function
(pdf) f(X]0), then the log-likelihood of D is

N N
£©0) =log| [f(x™16) = ) 1ogf(x™]6)
n=1 n=1



Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | — =05
¢ Example: the 1.25 F - =1
A=1.5
exponential 100
o ] =07t
distribution = .
0.25 -\
0.00 . . . .
0 1 2 3 4 )

€T

Source: https://en.wikipedia.org/wiki/Exponential_distributiontt/media/File:Exponential probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
1.50 | ' ' ' '

—A=05 |
¢ Example: the 1.25 F - =1
A=15
exponential 100
. S (1) —
distribution ~ Zz {x = 0.5,
| x? =1}

Source: https://en.wikipedia.org/wiki/Exponential_distributiontt/media/File:Exponential probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | — =05 E
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A=15
exponential L.00 1
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Source: https://en.wikipedia.org/wiki/Exponential_distributiontt/media/File:Exponential probability density.svg
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* The pdf of the exponential distribution is

f(x|D) = de™
- Given N iid samples {x(l), ...,x(N)}, the likelihood is
N N
. L(2) = Hf (x™12) = ﬂae—ﬂx“‘)
Exponential 11 14

Distribution
MLE
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Exponential

Distribution
MLE
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* The pdf of the exponential distribution is

f(x|1) = 2e**

- Given N iid samples {xV, ..., x(M}, the log-likelihood is

N N
£ = ) logf(x™[2) = ) logie "
n=1 n=1

N N
= z log A + log e ™ = N logA — A z x ™)
n=1 n=1

* Taking the partial derivative and setting it equal to O gives

ot N

_ (n)
o1 1 x

n=1
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Exponential

Distribution
MLE
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* The pdf of the exponential distribution is

f(x|1) = 2e**

- Given N iid samples {xV, ..., x(M}, the log-likelihood is

N N
£ = ) logf(x™[2) = ) logie "
n=1 n=1

N N
= z log A + log e ™ = N logA — A z x ™)
n=1 n=1

* Taking the partial derivative and setting it equal to O gives

N N

N N . N
T—Ex(")=0—>7=zx(")—>/1= ~
A A >N _ x®)

n=1 n=1
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Building a

Probabilistic
Classifier
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* Define a decision rule

* Given a test data point x’, predict its label y using

the posterior distribution P(Y = y|x’)

- Common choice: y = argmax P(Y = y|x’)
y

- ldea: model P(Y|x) as some parametric function of x

12



Modelling the

Posterior
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- Suppose we have binary labels y € {0,1} and

D-dimensional inputs x = [1, x4, ..., xp]T € RP*1

- Assume  TTmmeeee- 1 prepended to x

1 exp(07x)

P(Y =1|x,0) = 5(87x) = B
( 1x,0) = 0(0" x) 1+ exp(—0Tx)  exp(0Tx) + 1

* This implies two useful facts:

1. P(Y =0[x,0) =1-P(Y =1|x,0) =
( 1, 6) ( %,0) exp(07x) + 1

P(Y =1|x,0)
2. — Tx) > 1
P(Y =0jx,9) &P X) —log

P(Y =1|x,0)
P(Y =0|x,0)

07 x
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Logistic
Function
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Source:

0(z) = 1+e7 %

=

O
on
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https://en.wikipedia.org/wiki/Logistic_function

=

1
1+e 0%

|l 0:5
Why use the ®
Logistic S
Function? 6
—6 —4 —2 o) 2 4 6

9/23/24 Source:
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https://en.wikipedia.org/wiki/Logistic_function

Logistic
Regression
Decision
Boundary
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<

A

‘

1
1ifP(Y =1|x,0) > 5

0 otherwise.
1 1

P(Y =1|x) =0(08"x) = [T oxp(—07x) > 3

2>1+exp(—0Tx)
1> exp(—07x)
log(1) > —0"x

0<0"x

16



Logistic
Regression
Decision
Boundary
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Figure courtesy of Matt Gormley
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Logistic
Regression
Decision
Boundary
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Logistic Regression Distribution

Figure courtesy of Matt Gormley
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Classification with Logistic Regression

Logistic
Regression
Decision

Boundary

9/23/24 Figure courtesy of Matt Gormley



Setting the
Parameters
via Minimum
Negative

Conditional
(log-)Likelihood
Estimation
(MCLE)

9/23/24

Find @ that minimizes

£(0) = —logP(y(l), ...,y(N)|x(1), ...,x(N),H) = —log P(y(")|x("),9)

A A
n=1

N n _y®
= —log| [P(v = 1]x™,0)" " (p(v = 0fx™,8))

n=1

— z y™logP(Y = 1|x,0) + (1 — y™)log P(Y = 0|x("™, 6)

L P(Y — Ol (n) )
N
_ z y™67x™ —log (1 + exp(67x™))
n=1

N
1 1
J(8) = () = _Nz (M) gT () _ log 1 + exp(eTx(n)))
n=1

20



Minimizing the
Negative

Conditional
(log-)Likelihood
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N

1
J(8) = N y™eTx(™ —]og (1 + exp(GTx(")))

n=1

1
VeJ(0) = — N y(")Vg (eTx(n)) — Vg log (1 + exp(OTx(”)))

-

a T (n)
- _lz y M x M) _ exp(6"x™) ™
N ] 1+ exp(8Tx(M)

N
1
— Nz x(n)(P(Y — 1|x(n)’ 0) . y(n))

n=1

21
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Gradient

Descent
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. <N
* Input: training dataset D = {(x(‘),y(l))}izl and step size y

1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
1 | | |
Vo) (80) = Nz x@(P(Y = 1]x®, 9®) — y®)
L

l

b. Update 8: 81D « () —yy,7(9)

c. Incrementt:t<t+1

- Qutput: 6

23



Poll Question 1:

What is the
computational
cost of one
iteration of
gradient
descent for
logistic
regression?

9/23/24

A.0(1) (TOXIC) B. O(N) C.0(D) D. O(ND)

. <N
* Input: training dataset D = {(x(‘),y(l))}izl and step size y

1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
1 | | |
Vo) (80) = Nz x@(P(Y = 1]x®, 9®) — y®)
L

l

b. Update 8: 81D « () —yy,7(9)

c. Incrementt:t<t+1

- Qutput: O
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Gradient

Descent

9/23/24

. <N
* Input: training dataset D = {(x(‘),y(l))}izl and step size y

1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N

O(ND){ ng(H(t)) — %z x(i)(p(y — 1|x(i), g(t)) _ y(i))

=1

b. Update 8: 81D « () —yy,7(9)

c. Incrementt:t<t+1

- Qutput: 6

25



. N
* Input: training dataset D = {(x(‘),y(‘))}i=1 and step size y

1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied
Stochastic a. Randomly sample a data point from D, (x(i),y(i))
Gradient b. Compute the pointwise gradient:

Descent (SGD) 70/ D(80) = xO(P(¥ = 1)x® 6O — y®)

c. Update 8: 9+ « g — v, (91)

d. Incrementt:t<t+1

- Qutput: O

9/23/24 26



You should be able to...
* Apply the principle of maximum likelihood estimation
(MLE) to learn the parameters of a probabilistic

model
Logistic * Given a discriminative probabilistic model, derive the
Regression conditional log-likelihood, its gradient, and the

corresponding Bayes Classifier
* Explain the practical reasons why we work with the

Learning

Objectives log of the likelihood

* Implement logistic regression for binary (and
multiclass) classification

* Prove that the decision boundary of binary logistic
regression is linear

9/23/24 36



	Slide 1:  10-301/601: Introduction to Machine Learning Lecture 9 – Logistic Regression
	Slide 2: Front Matter
	Slide 3: Probabilistic Learning
	Slide 4: Likelihood 
	Slide 5: Log-Likelihood 
	Slide 6: Maximum Likelihood Estimation (MLE)
	Slide 7: Maximum Likelihood Estimation (MLE)
	Slide 8: Maximum Likelihood Estimation (MLE)
	Slide 9:    Exponential  Distribution MLE   
	Slide 10:    Exponential  Distribution MLE   
	Slide 11:    Exponential  Distribution MLE   
	Slide 12: Building a Probabilistic Classifier
	Slide 13: Modelling the Posterior
	Slide 14:  Logistic Function
	Slide 15: Why use the Logistic Function?
	Slide 16:    Logistic Regression Decision Boundary
	Slide 17:    Logistic Regression Decision Boundary
	Slide 18:    Logistic Regression Decision Boundary
	Slide 19:    Logistic Regression Decision Boundary
	Slide 20: Setting the Parameters via Minimum Negative Conditional (log-)Likelihood Estimation (MCLE)
	Slide 21: Minimizing the Negative Conditional (log-)Likelihood
	Slide 22: Recall: Gradient Descent
	Slide 23:  Gradient Descent
	Slide 24: Poll Question 1:   What is the computational cost of one iteration of gradient descent for logistic regression?
	Slide 25:  Gradient Descent
	Slide 26: Stochastic Gradient Descent (SGD) 
	Slide 27: Stochastic Gradient Descent (SGD) 
	Slide 28: Stochastic Gradient Descent (SGD) 
	Slide 32:   Stochastic Gradient Descent vs.  Gradient Descent
	Slide 33:   Stochastic Gradient Descent vs.  Gradient Descent
	Slide 34:   Stochastic Gradient Descent vs.  Gradient Descent
	Slide 35: Optimization for ML Learning Objectives
	Slide 36: Logistic Regression Learning Objectives

