
HOMEWORK 5
NEURAL NETWORKS *

10-301 / 10-601 INTRODUCTION TO MACHINE LEARNING (FALL 2024)
http://www.cs.cmu.edu/˜mgormley/courses/10601/

OUT: Wednesday, October 9
DUE: Sunday, October 27

TAs: Doris, Jenny, Rohan, Siyan, Zoe, Markov, Neural

Summary In this assignment, you will build an image recognition system using a neural network. In the
Written component, you will walk through an on-paper example of how to implement a neural network.
Then, in the Programming component, you will implement an end-to-end system that learns to perform
image classification.

START HERE: Instructions
• Collaboration Policy: Please read the collaboration policy here: http://www.cs.cmu.edu/
˜mgormley/courses/10601/syllabus.html

• Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/

˜mgormley/courses/10601/syllabus.html

• Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. Submissions can be handwritten onto the template, but
should be labeled and clearly legible. If your writing is not legible, you will not be awarded
marks. Alternatively, submissions can be written in LATEX. Each derivation/proof should be
completed in the boxes provided. You are responsible for ensuring that your submission contains
exactly the same number of pages and the same alignment as our PDF template. If you do not
follow the template, your assignment may not be graded correctly by our AI assisted grader and
there will be a 2% penalty (e.g., if the homework is out of 100 points, 2 points will be deducted
from your final score).

– Programming: You will submit your code for programming questions on the homework to
Gradescope. After uploading your code, our grading scripts will autograde your assignment by
running your program on a virtual machine (VM). You are only permitted to use the Python Stan-
dard Library modules and numpy. Ensure that the version number of your programming lan-
guage environment (i.e. Python 3.9.12) and versions of permitted libraries (i.e. numpy 1.23.0)

*Compiled on Tuesday 8th October, 2024 at 20:41

1

http://www.cs.cmu.edu/~mgormley/courses/10601/
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
https://gradescope.com
https://docs.python.org/3/library/
https://docs.python.org/3/library/


Homework 5: Neural Networks 10-301 / 10-601

match those used on Gradescope. You have 10 free Gradescope programming submissions, after
which you will begin to lose points from your total programming score. We recommend debug-
ging your implementation on your local machine (or the Linux servers) and making sure your
code is running correctly first before submitting your code to Gradescope.

• Materials: The data and reference output that you will need in order to complete this assignment is
posted along with the writeup and template on the course website.

2 of 26



Homework 5: Neural Networks 10-301 / 10-601

Instructions for Specific Problem Types
For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

Matt Gormley

⃝ Marie Curie

⃝ Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in the new answer:

Select One: Who taught this course?

Henry Chai

⃝ Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are instructors for this course?

■ Matt Gormley

■ Henry Chai

2 Noam Chomsky

2 I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are the instructors for this course?

■ Matt Gormley

■ Henry Chai

��@@■ Noam Chomsky

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-��SS6301

3 of 26



Homework 5: Neural Networks 10-301 / 10-601

Written Questions (33 points)
1 LATEX Point and Template Alignment (1 points)

1. (1 point) Select one: Did you use LATEX for the entire written portion of this homework?

⃝ Yes

⃝ No

2. (0 points) Select one: I have ensured that my final submission is aligned with the original template
given to me in the handout file and that I haven’t deleted or resized any items or made any other modi-
fications which will result in a misaligned template. I understand that incorrectly responding yes to this
question will result in a penalty equivalent to 2% of the points on this assignment.
Note: Failing to answer this question will not exempt you from the 2% misalignment penalty.

⃝ Yes

2 Example Feed Forward and Backpropagation (15 points)

x a = Linear(α∗,αb,x)

α∗ αb

z = Sigmoid(a) b = Linear(β∗,βb, z)

β∗ βb

ŷ = Softmax(b) l(ŷ,y) = CELoss(ŷ,y)

y

Figure 1: Computational Graph for a One Hidden Layer Neural Network

Network Overview Consider the neural network with one hidden layer shown in Figure 1. The input
layer consists of 6 features x = [x1, ..., x6]

T , the hidden layer has 4 nodes z = [z1, ..., z4]
T , and the

output layer is a probability distribution y = [y1, y2, y3]
T over 3 classes (1-indexed such that yi is the

probability of label i).

α∗ is the matrix of weights from the inputs to the hidden layer and β∗ is the matrix of weights from the
hidden layer to the output layer.

α∗
j,i represents the weight going to the node zj in the hidden layer from the node xi in the input layer

(e.g. α∗
1,2 is the weight from x2 to z1), and β∗ is defined similarly. We will use a sigmoid activation

function for the hidden layer and a softmax for the output layer.

The bias vectors αb,βb are defined such that the jth value of αb (which we denote αj,b) is the bias
value for aj and the kth value of βb is the bias value for bk.

Network Details Equivalently, we define each of the following.

The input:

x = [x1, x2, x3, x4, x5, x6]
T (1)

Linear combination at the first (hidden) layer:

aj = αj,b +
6∑

i=1

α∗
j,i · xi, ∀j ∈ {1, . . . , 4} (2)

4 of 26



Homework 5: Neural Networks 10-301 / 10-601

Activation at the first (hidden) layer:

zj = σ(aj) =
1

1 + exp(−aj)
, ∀j ∈ {1, . . . , 4} (3)

Equivalently, we can write this as vector operation where the sigmoid activation is applied individually
to each element of the vector a:

z = σ(a) (4)

Linear combination at the second (output) layer:

bk = βk,b +

4∑
j=1

β∗
k,j · zj , ∀k ∈ {1, . . . , 3} (5)

Activation at the second (output) layer:

ŷk =
exp(bk)
3∑

l=1

exp(bl)

, ∀k ∈ {1, . . . , 3} (6)

Loss We will use cross entropy loss, ℓ(ŷ,y). If y represents our target output, which will be a one-hot
vector representing the correct class, and ŷ represents the output of the network, the loss is calculated
by:

ℓ(ŷ,y) = −
3∑

i=1

yi log(ŷi) (7)

For the below questions use natural log in the equation.

Prediction When doing prediction, we will predict the argmax of the output layer. For example, if
ŷ1 = 0.3, ŷ2 = 0.2, ŷ3 = 0.5 we would predict class 3. If the true class from the training data was 2 we
would have a one-hot vector y with values y1 = 0, y2 = 1, y3 = 0.

1. In the following questions you will derive the matrix and vector forms of the previous equations which
define our neural network. These are what you should hope to program in order to keep your program
under the Gradescope time-out.
When working these out it is important to keep a note of the vector and matrix dimensions in order
for you to easily identify what is and isn’t a valid multiplication. Suppose you are given a training
example: x(1) = [x1, x2, x3, x4, x5, x6]

T with label class 2, so y(1) = [0, 1, 0]T . We initialize the
network weights as:

α∗ =


α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,1 α2,2 α2,3 α2,4 α2,5 α2,6

α3,1 α3,2 α3,3 α3,4 α3,5 α3,6

α4,1 α4,2 α4,3 α4,4 α4,5 α4,6



β∗ =

β1,1 β1,2 β1,3 β1,4
β2,1 β2,2 β2,3 β2,4
β3,1 β3,2 β3,3 β3,4



5 of 26



Homework 5: Neural Networks 10-301 / 10-601

We want to also consider the bias term and the weights on the bias terms (αj,b and βk,b). To account
for these we can add them as a new column to the beginning of our initial weight matrices to represent
biases, (e.g. α1,0 = α1,b).

α =


α1,0 α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,0 α2,1 α2,2 α2,3 α2,4 α2,5 α2,6

α3,0 α3,1 α3,2 α3,3 α3,4 α3,5 α3,6

α4,0 α4,1 α4,2 α4,0 α4,4 α4,5 α4,6



β =

β1,0 β1,1 β1,2 β1,3 β1,4
β2,0 β2,1 β2,2 β2,3 β2,4
β3,0 β3,1 β3,2 β3,3 β3,4


We then add a corresponding new first dimension to our input vectors, always set to 1 (x(i)0 = 1), so our
input becomes:

x(1) = [1, x1, x2, x3, x4, x5, x6]
T

(a) (1 point) By examining the shapes of the initial weight matrices, how many neurons do we have in
the first hidden layer of the neural network? Do not include the bias in your count.

Answer

(b) (1 point) How many output neurons will our neural network have?

Answer

(c) (1 point) What is the vector a whose elements are made up of the entries aj in Equation 2 (using
x
(1)
i in place of xi). Write your answer in terms of α and x(1).

Answer

6 of 26



Homework 5: Neural Networks 10-301 / 10-601

(d) (1 point) Select one: We cannot take the matrix multiplication of our weights β and the vector
z = [z1, z2, z3, z4]

T since they are not compatible shapes. Which of the following would allow us
to take the matrix multiplication of β and z such that the entries of the vector b = βz are equivalent
to the values of bk in Equation 5?

⃝ A) Remove the first row of z

⃝ B) Append a value of 1 to be the first entry of z.

⃝ C) Append an additional column of 1’s to be the first column of β

⃝ D) Append a row of 1’s to be the first row of β

(e) (1 point) Select one: For what values of weights (β) will Linear layer (b) be reducible to a layer
with a single neuron? Assume the bias is fixed to 0.

A layer with d neurons is said to be reducible to a layer with 1 neuron, if all the other d−1 neurons
have output 0.

⃝ A) β with just one column with non-zeros values

⃝ B) β with just one row with non-zeros values

⃝ C) β with all weights = 1

⃝ D) β with all weights = 0

⃝ E) β where: 1) βii = 1 and 2) βij = 0 where i! = j

7 of 26



Homework 5: Neural Networks 10-301 / 10-601

2. We will now derive the matrix and vector forms for the backpropagation algorithm, for example

∂ℓ

∂α
=


∂ℓ

∂α10

∂ℓ
∂α11

. . . ∂ℓ
∂α16

∂ℓ
∂α20

∂ℓ
∂α21

. . . ∂ℓ
∂α26

...
...

. . .
...

∂ℓ
∂α40

∂ℓ
∂α41

. . . ∂ℓ
∂α46


The level of mathematics which you will use in this section jumps significantly in difficulty. You should
always be examining the shape of the matrices and vectors and making sure that you are comparing your
matrix elements with calculations of individual derivatives to make sure they match (e.g., the element
of the matrix ( ∂ℓ

∂α)2,1 should be equal to ∂ℓ
∂α2,1

). Recall that ℓ is our loss function defined in Equation 7:

Note: all vectors are column vectors (i.e. an n dimensional vector v ∈ Rn×1). Assume that all
input vectors to linear layers have a bias term folded in, unless otherwise specified. All partial
derivatives should be written in denominator layout notation. An example of denominator notation is
that ∂ℓ

∂β ∈ R3×5 because β ∈ R3×5.

(a) (1 point) What is the derivative ∂ℓ
∂ŷi

, where 1 ≤ i ≤ 3? Your answer should be in terms of yi and
ŷi. Recall that we define the loss ℓ(ŷ, y) as follows (note: log is a natural log):

ℓ(ŷ,y) = −
3∑

i=1

yi log(ŷi) (7)

∂ℓ/∂ŷi

8 of 26

https://en.wikipedia.org/wiki/Matrix_calculus#Denominator-layout_notation


Homework 5: Neural Networks 10-301 / 10-601

(b) (1 point) What is the value of
∑

l yl?

∑
l yl

(c) (2 points) The derivative of the softmax function with respect to bk is as follows:

∂ŷl
∂bk

= ŷl(I[k = l]− ŷk) (8)

where I[k = l] is an indicator function such that if k = l then it returns value 1 and 0 otherwise.

Using this and your result from (a), write the derivative ∂ℓ
∂bk

in a smart way such that you do not
need the indicator function in Equation 8. Write your solutions in terms of ŷk, yk. Show your work
below.

Hint 1: Recall that ∂ℓ
∂bk

=
∑

l
∂ℓ
∂ŷl

∂ŷl
∂bk

.

Hint 2: After substituting in your expressions for ∂ℓ
∂ŷl

and ∂ŷl
∂bk

, try to rearrange terms so that you
encounter the expression ŷk

∑
l yl. Recall your solution to part b.

∂ℓ/∂bk

9 of 26



Homework 5: Neural Networks 10-301 / 10-601

(d) (2 points) What is the derivative ∂ℓ
∂β ? Your answer should be in terms of ∂ℓ

∂b and z.

You should first consider a single entry in this matrix: ∂ℓ
∂βkj

.

∂ℓ/∂β

(e) (1 point) Select one: Why do we use the matrix β∗ (the matrix β without the first column of bias
values) instead of β when calculating the derivative matrix ∂ℓ

∂α? (Hint: try drawing a computation
graph with the bias unfolded).

⃝ A) The bias terms do not update, so there is no need to include them in backpropagation.

⃝ B) It is the computationally cheapest column to remove to ensure that the dimensions
match.

⃝ C) The elements βk,0 are not determined by the values of α

⃝ D) The derivative of loss with respect to the bias terms is always zero.

(f) (1 point) What is the derivative ∂ℓ
∂z without the bias term? Your answer should be in terms of ∂ℓ

∂b
and β∗.

∂ℓ/∂z

10 of 26



Homework 5: Neural Networks 10-301 / 10-601

(g) (1 point) What is the derivative ∂ℓ
∂aj

in terms of ∂ℓ
∂zj

and zj?

∂ℓ/∂aj

(h) (1 point) What is the matrix ∂ℓ
∂α? Your answer should be in terms of ∂ℓ

∂a and x(1).

∂ℓ/∂α

11 of 26



Homework 5: Neural Networks 10-301 / 10-601

3 Empirical Questions (17 points)
The following questions should be completed after you work through the programming portion of this
assignment. For any plotting questions, you must submit computer generated line graphs/curves,
title your graph, label your axes, provide units (if applicable), and provide a legend in order to
receive full credit.

For these questions, use the small dataset and the following values for the hyperparameters unless
otherwise specified:

Parameter Value
Number of Hidden Units 50

Weight Initialization RANDOM

Learning Rate 0.001

1. Hidden Units

(a) (2 points) Train a single hidden layer neural network using the hyperparameters mentioned in the
table above, except for the number of hidden units which should vary among 5, 20, 50, 100, and
200. Run the optimization for 100 epochs each time.

Plot the average training cross-entropy (sum of the cross-entropy terms over the training dataset
divided by the total number of training examples) of the final epoch on the y-axis vs number of
hidden units on the x-axis. In the same figure, plot the average validation cross-entropy. The x-
axis should be the number of hidden units, the y-axis should be average cross-entropy loss, and
there should be one curve for validation loss and one curve for train loss.

Avg. Train and Validation Cross-Entropy Loss

12 of 26



Homework 5: Neural Networks 10-301 / 10-601

(b) (2 points) Examine and comment on the the plots of training and validation cross-entropy. What
problem arises with too few hidden units, and why does it happen?

Answer

2. Learning Rate

(a) (6 points) Train a single hidden layer neural network using the hyperparameters mentioned in the
table above with the following learning rates: 0.03, 0.003, and 0.0003. Run the optimization for
100 epochs each time.

Plot the average training cross-entropy on the y-axis vs the number of epochs on the x-axis for the
mentioned learning rates. In the same figure, plot the average validation cross-entropy loss. Make
a separate figure for each learning rate. The x-axis should be epoch number, the y-axis should
be average cross-entropy loss, and there should be one curve for training loss and one curve for
validation loss.

Plot LR 0.03

13 of 26



Homework 5: Neural Networks 10-301 / 10-601

Plot LR 0.003

Plot LR 0.0003

14 of 26



Homework 5: Neural Networks 10-301 / 10-601

(b) (1 point) Examine and comment on the convergence rates of the three models using the plots of
training and validation cross-entropy. Are there any learning rates for which convergence is not
achieved?

Answer

(c) (1 point) Are there any learning rates that exhibit other problems? If so, describe these issues and
list the learning rates that cause them.

Answer

3. Weight Initialization

(a) (2 points) For this exercise, you can work on any data set. Initialize α and β to zero and print them
out after the first few updates. For example, you may use the following command to begin:

$ python neuralnet.py small_train.csv small_validation.csv \
small_train_out.labels small_validation_out.labels \
small_metrics_out.txt 1 4 2 0.1

Compare the values across rows and columns in α and β. Describe the observed behavior and
explain why this may happen.

Answer

15 of 26



Homework 5: Neural Networks 10-301 / 10-601

4. Adding a Hidden Layer

(a) (2 points) Now, try adding another hidden layer to your neural network. The hyperparameters for
the model should be the same as the table above, except for learning rate. The 2 hidden layers
should both have a dimension of 50, and your learning rate should be 0.003. Run the optimization
for 100 epochs. Remember that adding another hidden layer means you should add both a linear
layer and a sigmoid layer in your code.

We want to compare the performance of this model with our 1 hidden layer model. So, create a
plot with the following 4 lines. Plot the average training and validation cross-entropy loss for a 1
hidden layer model, using the same learning rate of 0.003 and a hidden dimension of 50 (you should
have already plotted this in 2a). Additionally, plot the average training and validation cross-entropy
loss for the 2 hidden layer model on the same figure. The x-axis should be epoch number, the
y-axis should be average cross-entropy loss, and there should be four total curves: training loss and
validation loss for the 1 hidden layer model, and training loss and validation loss for the 2 hidden
layer model.

Avg. Train + Validation Cross-Entropy Loss for 1 Hidden Layer and 2 Hidden Layers

(b) (1 point) Examine and comment on the difference in performance between the two model. What
happens when you add an additional hidden layer? Why do you think this is happening? Frame
your answer in terms of model complexity and overfitting/underfitting.

Answer

16 of 26



Homework 5: Neural Networks 10-301 / 10-601

4 Collaboration Questions
After you have completed all other components of this assignment, report your answers to these ques-
tions regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details.

Your Answer

17 of 26

http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html


Homework 5: Neural Networks 10-301 / 10-601

Programming (55 points)

Figure 2: 10 random images of each of the 10 letters in the OCR dataset.

5 The Task
Your goal in this assignment is to implement a neural network to classify images using a single hidden layer
neural network.

6 The Datasets
Datasets We will be using a subset of an Optical Character Recognition (OCR) dataset. This data includes
images of all 26 handwritten letters; our subset will include only the letters “a,” “e,” “g,” “i,” “l,” “n,” “o,”
“r,” “t,” and “u.” The handout contains a small dataset with 60 samples per class (50 for training and 10
for validation). We will also evaluate your code on a medium dataset with 600 samples per class (500 for
training and 100 for validation). Figure 2 shows a random sample of 10 images of a few letters from the
dataset (not the same ones we’re classifying in this assignment).

File Format Each dataset (small, medium, and large) consists of two csv files—train and validation. Each
row contains 129 columns separated by commas. The first column contains the label and columns 2 to 129
represent the pixel values of a 16 × 8 image in a row major format. Label 0 corresponds to “a,” 1 to “e,” 2
to “g,” 3 to “i,” 4 to “l,” 5 to “n,” 6 to “o,” 7 to “r,” 8 to “t,” and 9 to “u.”

Because the original images are black-and-white (not grayscale), the pixel values are either 0 or 1. However,
you should write your code to accept arbitrary pixel values in the range [0, 1]. The images in Figure 2
were produced by converting these pixel values into .png files for visualization. Observe that no feature
engineering has been done here; instead the neural network you build will learn features appropriate for the
task of character recognition.

18 of 26



Homework 5: Neural Networks 10-301 / 10-601

7 Model Definition
In this assignment, you will implement a single-hidden-layer neural network with a sigmoid activation
function for the hidden layer, and a softmax on the output layer. Let the input vectors x be of length M , and
the hidden layer z consist of D hidden units. In addition, let the output layer ŷ be a probability distribution
over K classes. That is, each element ŷk of the output vector represents the probability of x belonging to
the class k.

We can compactly express this model by assuming that x0 = 1 is a bias feature on the input and that z0 = 1
is also fixed. In this way, we have two parameter matrices α ∈ RD×(M+1) and β ∈ RK×(D+1). The extra
0th column of each matrix (i.e. α·,0 and β·,0) hold the bias parameters.

aj =

M∑
m=0

αj,mxm

zj = σ(aj) =
1

1 + exp(−aj)

bk =
D∑
j=0

βk,jzj

ŷk = Softmax(b) =
exp(bk)∑K
l=1 exp(bl)

The objective function we will use for training the neural network is the average cross entropy over the
training dataset D = {(x(i),y(i))}:

J(α,β) = − 1

N

N∑
i=1

K∑
k=1

y
(i)
k log(ŷ

(i)
k ) (9)

In Equation 9, J is a function of the model parameters α and β because ŷ
(i)
k is the output of the neural

network applied to x(i) and is therefore implicitly a function of x(i), α, and β. ŷ
(i)
k and y

(i)
k are the kth

components of ŷ(i) and y(i) respectively.

To train, you should optimize this objective function using stochastic gradient descent (SGD), where the
gradient of the parameters for each training example is computed via backpropagation. You should shuffle
the training points when performing SGD using the provided shuffle function, passing in the epoch
number as a random seed. Note that SGD has a slight impact on the objective function as we are “summing”
over just the current point, i, and not the entire dataset:

JSGD(α,β) = −
K∑
k=1

y
(i)
k log(ŷ

(i)
k ) (10)

19 of 26



Homework 5: Neural Networks 10-301 / 10-601

You will use the (hopefully at this point) familiar SGD update rule to update the parameters of your model:

αt+1 ← αt − γ
∂JSGD(αt,βt)

∂αt
(11)

βt+1 ← βt − γ
∂JSGD(αt,βt)

∂βt
(12)

where γ is the learning rate, and αt and βt are the values of α and β at step t (similarly for αt+1 and βt+1).

7.1 Initialization
In order to use a deep network, we must first initialize the weights and biases in the network. This is typically
done with a random initialization, or initializing the weights from some other training procedure. For this
assignment, we will be using two possible initializations:

RANDOM The weights are initialized randomly from a uniform distribution from -0.1 to 0.1.
The bias parameters are initialized to zero.

ZERO All weights are initialized to 0.

You must support both of these initialization schemes.

8 Implementation
Write a program neuralnet.py that implements an optical character recognizer using a one hidden layer
neural network with sigmoid activations. Your program should learn the parameters of the model on the
training data, report the cross-entropy at the end of each epoch on both train and validation data, and at the
end of training write out its predictions and error rates on both datasets.

Your implementation must satisfy the following requirements:

• Use a sigmoid activation function on the hidden layer and softmax on the output layer to ensure it
forms a proper probability distribution.

• Number of hidden units for the hidden layer should be determined by a command line flag. (More
details on command line flags provided below.)

• Support two different initialization strategies, as described in Section 7.1, selecting between them
via a command line flag.

• Use stochastic gradient descent (SGD) to optimize the parameters for one hidden layer neural network.
The number of epochs will be specified as a command line flag.

• Set the learning rate via a command line flag.

• Perform stochastic gradient descent updates on the training data on the data shuffled with the provided
function. For each epoch, you must reshuffle the original file data, not the data from the previous
epoch.

• You may assume that the input data will always have the same output label space (i.e. {0, 1, . . . , 9}).
Other than this, do not hard-code any aspect of the datasets into your code. We will autograde your
programs on multiple data sets that include different examples.

• In case there is a tie in the output layer ŷ, predict the smallest index to be the label. (Hint: you
shouldn’t need to write extra code for tie-breaking if you are using the appropriate NumPy function.)

• Do not use any machine learning libraries. You may use NumPy.

20 of 26



Homework 5: Neural Networks 10-301 / 10-601

Implementing a neural network can be tricky: the parameters are not just a simple vector, but a collection
of many parameters; computational efficiency of the model itself becomes essential; the initialization strat-
egy dramatically impacts overall learning quality; other aspects which we will not change (e.g. activation
function, optimization method) also have a large effect. These tips should help you along the way:

• Try to “vectorize” your code as much as possible—this is particularly important for Python. For ex-
ample, in Python, you want to avoid for-loops and instead rely on numpy calls to perform operations
such as matrix multiplication, transpose, subtraction, etc., over an entire numpy array at once. Why?
Because those calls can be much faster! Those operations are actually implemented in fast C code,
which won’t get bogged down the way a high-level scripting language like Python will.

• Implement a finite difference test to check whether your implementation of backpropagation is cor-
rectly computing gradients. If you choose to do this, comment out this functionality once your back-
ward pass starts giving correct results and before submitting to Gradescope—since it will otherwise
slow down your code.

8.1 Command Line Arguments
The autograder runs and evaluates the output from the files generated, using the following command:

$ python3 neuralnet.py [args...]

Where above [args...] is a placeholder for nine command-line arguments: <train input>
validation input> <train out> <validation out> <metrics out> <num epoch>
<hidden units> <init flag> <learning rate>. These arguments are described in detail be-
low:

1. <train input>: path to the training input .csv file (see Section 6)

2. <validation input>: path to the validation input .csv file (see Section 6)

3. <train out>: path to output .labels file to which the prediction on the training data should be
written (see Section 8.2)

4. <validation out>: path to output .labels file to which the prediction on the validation data
should be written (see Section 8.2)

5. <metrics out>: path of the output .txt file to which metrics such as train and validation error
should be written (see Section 8.3)

6. <num epoch>: integer specifying the number of times backpropagation loops through all of the
training data (e.g., if <num epoch> equals 5, then each training example will be used in backpropa-
gation 5 times).

7. <hidden units>: positive integer specifying the number of hidden units.

8. <init flag>: integer taking value 1 or 2 that specifies whether to use RANDOM or ZERO initial-
ization (see Section 7.1 and Section 7)—that is, if init_flag==1 initialize your weights randomly
from a uniform distribution over the range [-0.1, 0.1] (i.e. RANDOM), if init_flag==2 initialize
all weights to zero (i.e. ZERO). For both settings, always initialize bias terms to zero.

9. <learning rate>: float value specifying the learning rate for SGD.

As an example, if you implemented your program in Python, the following command line would run your
program with 4 hidden units on the small data provided in the handout for 2 epochs using zero initialization

21 of 26



Homework 5: Neural Networks 10-301 / 10-601

and a learning rate of 0.1.

python3 neuralnet.py small_train.csv small_validation.csv \
small_train_out.labels small_validation_out.labels \
small_metrics_out.txt 2 4 2 0.1

The command line arguments are parsed for you in neuralnet.py using the Python builtin argparse
package.

8.2 Output: Labels Files
Your program should write two output .labels files containing the predictions of your model on train-
ing data (<train out>) and validation data (<validation out>). Each should contain the predicted
labels for each example printed on a new line. Use \n to create a new line.

Your labels should exactly match those of a reference implementation – this will be checked by the auto-
grader by running your program and evaluating your output file against the reference solution.

We’ve included code which outputs correctly formatted labels for you in neuralnet.py.

Note: You should output your predicted labels using the same integer identifiers as the original training
data. You should also insert an empty line (using ’\n’) at the end of each sequence (as is done in the input
data files).

8.3 Output: Metrics
Generate a file where you report the following metrics:

cross entropy After each epoch, report mean cross entropy on the training data crossentropy(train)
and validation data crossentropy(validation) (See Equation 9). These two cross-entropy
values should be reported at the end of each epoch and prefixed by the epoch number. For example,
after the second pass through the training examples, these should be prefixed by epoch=2. The to-
tal number of train losses you print out should equal num epoch—likewise for the total number of
validation losses.

error After the final epoch (i.e. when training has completed fully), report the final training error error(train)
and validation error error(validation).

A sample output for the small data set is given below. It contains the train and validation losses for the first
2 epochs and the final error rate output by the command given at the end of section 8.1 Command Line
Arguments.

epoch=1 crossentropy(train): 2.1415670910950144
epoch=1 crossentropy(validation): 2.1502231738985618
epoch=2 crossentropy(train): 1.8642629963917074
epoch=2 crossentropy(validation): 1.8780601379038728
error(train): 0.73
error(validation): 0.72

Take care that your output has the exact same format as shown above. There is an equal sign = between the
word epoch and the epoch number, but no spaces. There should be a single space after the epoch number
(e.g. a space after epoch=1), and a single space after the colon preceding the metric value (e.g. a space

22 of 26



Homework 5: Neural Networks 10-301 / 10-601

after epoch=1 crossentropy(train):). Each line should be terminated by a Unix line ending \n.
We’ve include code which correctly formats your metrics for you in neuralnet.py.

8.4 Unit Tests
To help you debug your code, we’ve included a unit test file in your handout, tests.py. This is a nonex-
haustive set of unit tests which are meant to help you make sure your implementation is correct. Passing
these tests does not guarantee a full score in your Gradescope submission, but it will help you identify func-
tions which have errors. Do not edit these tests as we will not be able to guarantee correctness if you modify
these tests.

To run the unit tests, run the following command lines:

To run one test: python -m unittest tests.TestRandomInit.test_shape
To run one set of tests: python -m unittest tests.TestRandomInit
To run all tests: python -m unittest tests

If the above commands give you errors, try replacing python with python3.

9 Gradescope Submission
You should submit your neuralnet.py to Gradescope. Any other files will be deleted. Please do not
use any other file name for your implementation. This will cause problems for the autograder to correctly
detect and run your code.

Make sure to read the autograder output carefully. The autograder for Gradescope prints out some additional
information about the tests that it ran. For this programming assignment we’ve specially designed some
buggy implementations that you might implement and will try our best to detect those and give you some
more useful feedback in Gradescope’s autograder. Make wise use of autograder’s output for debugging your
code.

Note: For this assignment, you may make up to 10 submissions to Gradescope before the deadline, but only
your last submission will be graded.

23 of 26



Homework 5: Neural Networks 10-301 / 10-601

10 Module-Based Neural Net Implementation
10.1 Module-based Method of Implementation
Module-based automatic differentiation (AD) is a technique that has long been used to develop libraries for
deep learning, and is the method of implementation that you are encouraged to follow in this assignment.
Dynamic neural network packages are those that allow a specification of the computation graph dynamically
at runtime, such as Torch1, PyTorch2, and DyNet3—these all employ module-based AD in the sense that we
will describe here.4

The key idea behind module-based AD is to componentize the computation of the neural-network into
layers. Each layer can be thought of as consolidating numerous nodes in the computation graph (a subset of
them) into one vector-valued node. Such a vector-valued node should be capable of the following and we
call each one a module (corresponding to a class in Python):

1. Forward computation of output b = [b1, . . . , bB] given input a = [a1, . . . , aA] via some differentiable
function f . That is, b = f(a).

2. Backward computation of the gradient of the input ga = ∂J
∂a = [ ∂ℓ

∂a1
, . . . , ∂ℓ

∂aA
] given the gradient of

output gb = ∂J
∂b = [ ∂ℓ

∂b1
, . . . , ∂ℓ

∂bB
], where J is the final real-valued output of the entire computation

graph. This is done via the chain rule ∂ℓ
∂ai

=
∑B

j=1
∂ℓ
∂bj

∂bj
∂ai

for all i ∈ {1, . . . , A}.

10.1.1 Module Definitions

In our implementation, the modules we will define for our neural network correspond to a Linear layer
and a Sigmoid layer. While it is possible to additionally define modules for Softmax and Cross-Entropy,
we keep them as functions for simplicity (though you are welcome to turn them into modules as well if
you wish). Each module defines a forward method b = *.FORWARD(a), and a backward method ga =
*.BACKWARD(gb). In other words, the forward method yields the output, b, given the input, a; meanwhile,
the backward method yields the gradient with respect to the input, ga, given the gradient with respect to the
output, gb. Each module may also store certain values as appropriate (for instance, the Linear layers store
the weight matrices α,β).

Note that for linear modules in particular, while the gradients with respect to the inputs and outputs are
passed in and out of the modules, the gradients with respect to the weight matrices, gα and gβ are not.
This follows the object-oriented design principle of encapsulation – gα and gβ are only required by their
respective linear layers, so we only store them within the linear module itself. Later on, they will be used
for a SGD update, which will be performed by an additional STEP method. (Alternatively, since the SGD
update for this assignment is always applied per example, you may directly perform the SGD update within
BACKWARD, though you should be extra careful about the order of your operations.)

Further, if you’ve completed Written Question 2, you might notice that though we only pass gb, the gradient
with respect to the module output, into *.BACKWARD(gb), we may need more than that to calculate some
of the layer’s gradients. Specifically, if you inspect your expressions for the gradient, you may notice that
they use certain values from the forward pass. Hence, in your forward methods, you will want to cache
certain values to be used later on in the backward pass. In the starter code, we do so via a cache dictionary

1http://torch.ch/
2http://pytorch.org/
3https://dynet.readthedocs.io
4Static neural network packages are those that require a static specification of a computation graph which is subsequently

compiled into code. Examples include Theano, Tensorflow, and CNTK. These libraries are also module-based but the particular
form of implementation is different from the dynamic method we recommend here.

24 of 26

http://torch.ch/
http://pytorch.org/
https://dynet.readthedocs.io


Homework 5: Neural Networks 10-301 / 10-601

as a class attribute, wherein you can store parameter names as keys that map to their cached values.

Finally, you’ll want to pay close attention to the dimensions that you pass into and return from your modules.
The dimensions A and B are specific to the module such that we have input a ∈ RA, output b ∈ RB ,
gradient of output ga ≜ ∇aJ ∈ RA, and gradient of input gb ≜ ∇bJ ∈ RB .

We have provided you the pseudocode for the Linear Module as an example.

Linear Module

1: procedure FORWARD(a)
2: Compute b using this layer’s weight matrix
3: Cache intermediate value(s) for the backward pass ▷ See Written Question 1.2(d)
4: return b

5: procedure BACKWARD(gb)
6: Bring the necessary cached values into scope
7: Compute gα
8: Compute ga
9: Store gα for subsequent SGD update

10: return ga

11: procedure STEP( )
12: Apply SGD update to weights α using stored gradient gα

10.1.2 Module-based AD for Neural Network

Given that our one hidden layer neural network is a composition of modules, we can define functions for
forward and backward propagation using these modules as follows:

Algorithm 1 Forward Computation
1: procedure NNFORWARD(Training example (x, y))
2: a = LINEAR1.FORWARD(x) ▷ First linear layer module
3: z = SIGMOID.FORWARD(a) ▷ Sigmoid activation module
4: b = LINEAR2.FORWARD(z) ▷ Second linear layer module
5: ŷ = SOFTMAX(b) ▷ Softmax function
6: J = CROSSENTROPY(y, ŷ) ▷ CrossEntropy function
7: return J, ŷ

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(y, ŷ)
2: gJ = ∂J

∂J = 1 ▷ Base case
3: gb = DSOFTMAXCROSSENTROPY(y, ŷ, gJ) ▷ See Written Question 1.2(b)
4: gz = LINEAR2.BACKWARD(gb)
5: ga = SIGMOID.BACKWARD(gz)
6: gx = LINEAR1.BACKWARD(ga) ▷ We discard gx

Here’s the big takeaway: we can actually view these two functions as themselves defining another module!
It is a 1-hidden layer neural network module. That is, the cross-entropy of the neural network for a single

25 of 26



Homework 5: Neural Networks 10-301 / 10-601

training example is itself a differentiable function and we know how to compute the gradients of its inputs,
given the gradients of its outputs.

10.2 Training Procedure
Consider the neural network described in Section 7 applied to the ith training example (x,y) where y
is a one-hot encoding of the true label. Our neural network outputs ŷ = hα,β(x), where α and β are
the parameters of the first and second layers respectively and hα,β is a one-hidden layer neural network
with a sigmoid activation and softmax output. The loss function is negative cross-entropy J = ℓ(ŷ,y) =
−yT log(ŷ). J = Jx,y(α,β) is actually a function of our training example (x,y) as well as our model
parameters α,β, though we write just J for brevity.

In order to train our neural network, we are going to apply stochastic gradient descent (SGD). Because we
want the behavior of your program to be approximately deterministic for testing on Gradescope, we will
require that (1) you should use our provided shuffle function to shuffle your data at the start of each epoch
and (2) you will use a fixed learning rate.

SGD proceeds as follows, where E is the number of epochs and γ is the learning rate.

Algorithm 3 Training with Stochastic Gradient Descent (SGD)
1: procedure SGD(Training data Dtrain, test data Dt)
2: Initialize parameters α,β ▷ Use either RANDOM or ZERO from Section 7.1
3: for e ∈ {1, 2, . . . , E} do ▷ For each epoch
4: D = SHUFFLE(Dtrain, e)
5: for (x,y) ∈ D do ▷ For each training example
6: Compute neural network forward prop:
7: J, ŷ = NN.FORWARD(x,y,α,β)
8: Compute gradients via backprop:

9:
gα =

∂J

∂α

gβ =
∂J

∂β

 given by NN.BACKWARD(y, ŷ)

10: Update parameters with SGD updates gα,gβ:
11: α← α− γgα
12: β ← β − γgβ

13: Evaluate training mean cross-entropy JD(α,β)
14: Evaluate test mean cross-entropy JDt(α,β)

15: return parameters α,β

10.3 Testing Procedure
At test time, we output the most likely prediction for each example:

Algorithm 4 Prediction at Test Time

1: procedure PREDICT(Unlabeled train or test dataset D′)
2: for x ∈ D′ do
3: Compute neural network prediction ŷ = h(x)
4: Predict the label with highest probability l = argmaxk ŷk

26 of 26


	LaTeX Point and Template Alignment
	Example Feed Forward and Backpropagation
	Empirical Questions
	Collaboration Questions
	The Task
	The Datasets
	Model Definition
	Initialization

	Implementation
	Command Line Arguments
	Output: Labels Files
	Output: Metrics
	Unit Tests

	Gradescope Submission
	Module-Based Neural Net Implementation
	Module-based Method of Implementation
	Module Definitions
	Module-based AD for Neural Network

	Training Procedure
	Testing Procedure


