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Reminders

Midterm Exam 1
— Tue, Feb. 18, 7:00pm - 9:00pm
Homework 4: Logistic Regression

— Out: Wed, Feb. 19
— Due: Fri, Feb. 28 at 11:59pm

Today’s In-Class Poll
— http://p10.mlcourse.org

Reading on Probabilistic Learning is reused
later in the course for MLE/MAP




MLE

Suppose we have data D = {z(V1V

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. N .
""" = argmax Hp(x(’) 0)
d =

Maximum Likelihood Estimate (MLE) (i(‘? :/(())




MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



MOTIVATION:
LOGISTIC REGRESSION



Example: Image Classification
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Example: Image Classification




Example: Image Classification




LOGISTIC REGRESSION



Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete. |
D = {x ¢y wherex ¢ RM andy € {0,1}

We are back to
classification.

Despite the name
logistic regression.



NE:

oéking ahead:

L

We’ll see a number of

.........

commonly used Linear =

Classifiers

These include:
Perceptron
Logistic Regression

Naive Bayes (under
certain conditions)

Support Vector
Machines

.............
,,,,,,

S

4.5

—|hyperplane would use a
i decision function:

h(x) = sign(6” x)

> .
e e 0 s | O o
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Background: Hyperplanes%

Hyperplane (Definition 1):
H={x:w'x=0b
Hyperplane (Definition 2):
H={x:0"x=0
and Lo = 1}
0 =[b,wi,...,wyl|"

Half-spaces:

HY ={x:0"x>0andzy = 1}
H™ ={x:0"x <0andzy = 1}



Using gradient ascent for linear

classifiers
Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)

3. Optimize it with gradient descent to learn
parameters

4. Predict the class with highest probability under
the model



Using gradient ascent for linear
classifiers




Using gradient ascent for linear
classifiers




Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs

are discrete. | |
D = {x ¢y wherex ¢ RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1]x) =

1 + exp(—0" %)
Learning: finds the parameters that minimize some

objective function. @* — argmin J(0)
0

Prediction: Output is the most probable class.

y = argmax pg(y|x)
y€4{0,1}



Logistic Regression

Whiteboard

— Bernoulli interpretation
— Logistic Regression Model
— Decision boundary



Learning for Logistic Regression

Whiteboard

— Partial derivative for Logistic Regression
— Gradient for Logistic Regression



LOGISTIC REGRESSION ON
GAUSSIAN DATA



Logistic Regression
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Logistic Regression

Logistic Regression Distribution

28



Logistic Regression

Classification with Logistic Regression

29



LEARNING LOGISTIC REGRESSION



Maximum Conditional
Likelihood Estimation

Learning: finds the parameters that minimize some
objective function.
0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(6) = —log ]| [ pe(y"x"")

i=1
Why?
1. We-can’t maximize likelihoo inINaf s)
because ave ajol

2. It worked well for Linear Regression (least squares is
MCLE)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach 1: Gradient Descent
(take larger — more certain — steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

222

(set derivatives equal to zero and solv
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SGD for Logistic Regression

Question:
Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we...
5 A. (1) compute the gradient of the log-likelihood for all examples (2) update all

the parameters using the gradient
(a1t 37 ip GD for Logistic Regression, (2) w@' i m,

at answer

(5 €. (1) compute the gradient of the log-likelihood for all examples (2) randomly
pick an example (3) update only the parameters for that example
|9 D. (1)randomly pick a parameter, (2) compute the partial derivative of the log-
likelihood with respect to that parameter, (3) update that parameter for all
examples
sé E. (1) randomly pick an example, (2) compute the gradient of the log-likelihood
for that example, (3) update all the parameters using that gradient
\é, F. (1) randomly pick a parameter and an example, (2) compute the gradient of
the log-likelihood for that example with respect to that parameter, (3) update
that parameter using that gradient




Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 89)

1:

2 0 — 6

3: while not converged do
4 00— "YVeoJ(0O)

5 return 6

......

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

VoJ(0) =




Stochastic Gradient Descent (Sm

Algorithm 1 Stochastic Gradient Descent (SG D)
procedure SGD(D, )

1:

x 0«00

3: while not converged do 0N NN
4: fori € shuffle({1,2,...,N})do | =~

5: 0+ 0 —1VeJ?(0) Yoo s v g
6 return 6

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(6) = >_;, J@(6)
where J()(0) = — log pe (y*|x?).



Logistic Regression vs. Perceptron

Question:

True or False: Just like Perceptron, one
step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the N

parameters only if the current example is u
incorrectly classified. + +
T 4
Answer: T
A~ el + +

=T
%c,"‘? [0



Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression

he(x) = p(y|x)

0 0, + (ho(xD) — y)

2. Least Mean Squares

he(x) = 0 x

5. 1

0, <+ 0 : .
§ b+ 1+ exp A(he(x(®)) — (@)

3. Perceptron
he(x) = sign(6” x)

6. . _ :
O < O + A(ho(x) — y@)zV

A. 1=5, 2=4, 3=6
B. 1=5, 2=6, 3=4
C°1:6)2=4)3:4
D. 1=5, 2=6, 3=6

E.1=6, 2=6, 3=6
F.1=6, 2=5, 3=5
G. 1=5, 2=5, 3=5
H. 1=4, 2=5, 3=6

38




OPTIMIZATION METHOD #4:
MINI-BATCH SGD



Mini-Batch SGD

* Gradient Descent:
Compute true gradient exactly from all N
examples

 Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient
of one randomly chosen example

* Mini-Batch SGD:
Approximate true gradient by the average
gradient of& randomly chosen examples

5



Mini-Batch SGD

bvhile not converged: 0 < 6 — Xg

Three variants of first-order optimization:

N
1 .
Gradient Descent: g = V.J(0) = N E vJ® ()
i=1

SGD: g = VJ(0) where i sampled uniformly
s

1 .
Mini-batch SGD: g = — E V) () where i sampled uniformly Vs

;ﬂ?cwR(€§ — /\/

41



Summary

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parameters in LR are learned by iterative
optimization (e.g. SGD)



Logistic Regression Objectives

You should be able to...

Apply the principle of maximum likelihood estimation (MLE) to
learn the parameters of a probabilistic model

Given a discriminative probabilistic model, derive the conditional
log-likelihood, its gradient, and the corresponding Bayes
Classifier

Explain the practical reasons why we work with the log of the
likelihood

Implement logistic regression for binary or multiclass
classification

Prove that the decision boundary of binary logistic regression is
linear

For linear regression, show that the parameters which minimize

squared error are equivalent to those that maximize conditional
likelihood



MULTINOMIAL LOGISTIC
REGRESSION






Multinomial Logistic Regression
Chalkboard

— Background: Multinomial distribution
— Definition: Multi-class classification

— Geometric intuitions

— Multinomial logistic regression model
— Generative story

— Reduction to binary logistic regression
— Partial derivatives and gradients

— Applying Gradient Descent and SGD

— Implementation w/ sparse features



Debug that Program!

In-Class Exercise: Think-Pair-Share

Debug the following program which is (incorrectly)
attempting to run SGD for multinomial logistic regression

Buggy Program:

while not converged:
for i in shuffle([1,...,N]):
forkin[1,...,K]:
thetalk] = theta[k] - lambda * grad(x][i], y[i], theta, k)

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative log-likelihood of
the training example (x[i],y[i]) with respect to vector theta[k]. lambda is the learning
rate. N = # of examples. K = # of output classes. M = # of features. thetaisa Kby M
matrix.



FEATURE ENGINEERING



Handcrafted Features

p(y|x) o
exp(0,°f




Feature Engineering

Where do features come from?

A

hand-crafted
features

Sun et al., 2011

O

3

O

Zhou et al.,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning
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Feature Engineering

Where do features come from?

A

hand-crafted
features

O

Sun et al., 2011

O

3

O

Zhou et al.,
2005

Look-up table Classifier
input embeddin o
(context words) g —> missing word
unsupervised
learning

similar words, cat: | .11 | .23 .45
similar embeddings

dog:| 0.13 | .26 -.52

CBOW model in Mikolov et al. (2013)

word /

embeddings
O O Mikolov et al.,

2013

Feature Learning
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Feature Engineering

Where do features come from?

l ] 1 ] | ] | ] l || || ]
-~ - - -
- N - 0~
I - B > > ~
- -
__________

| ] ] [ ] | I_LIIJLIIJLIIA_I

The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A4
Zhou et al., .
2005 word string
embeddings
O embeddings ____ > Socher, 2011
O wikolov etal, O Collobert & Weston,
2013 2008

Feature Learning



Feature Engineering

Where do features come from?

A
" ol
Wipvp ,’
e :p
Wpr NN, / Wy, NN, / tree
embeddings
| O Socher et aI
ﬂ ﬂ‘ ﬁ‘ ﬂ‘ O,emanc
A Hermann & Blunsom,
The [movie] showed [wars] | / 2013
III
7005 word ,’I string
/¢~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning

64



Feature Engineering

Where do features come from?

A eﬁb@
S fe )
word embedding 9'77.9,,{ ,afl/,-e,bbedd,
hand-crafted features / %J'h s Wiy - n
features o~ ----- >O l‘eq.
e Turian et al. O ,C,})f
O O 2010 © Hermann et al. o
Sun et al., 2011 Koo etal. 2014
O 22008 tree
embeddings
O Socher et aI.,g

3

O

Aermann & Blunsom,
2013

O/ 01
N
/

Zhou et al., h .
2005 word ,’I strmg
) /¢~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning

65



Feature Engineering

Where do features come from?

A
word embedding best of both
hand-crafted features 1ds?
features o ----- > O e s WOrias:
_2 Turian et al. O
O- O 2010
Hermann et al. A
Sun etal., 2011 Koo etal. 501 )
4 1
O 2008 ‘ tr
. | ee
! O embeddings
! Socher et aI
; O 2013
I A Hermann & Blunsom,
i / 2013
o /
H /
Zhou et al,, : / .
2005 I ] string
word /
/¢~ embeddings
O embeddmgs _____ > Socher, 2011
O Mikolov etal, O Collobert & Weston,
2013 2008 s

Feature Learning

66



Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

Blees

The movie | watched depicted hope




Feature Engineering for NLP

Per-word Features:

x( x(2) x(3) x(4) x(5) x(6)
is-capital (w,) 1 1
endswith (w,, “e”) 1 1 1
endswith (w,, “d”) 1 1
endswith (w,, “ed”) 1 1
w; == “aardvark”
w, == “hope” 1

Blees

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(" x(2) x(3) x(4) x(5) x(6)
w, == “watched” 1
w,,; == “watched” 1
w,_; == “watched” 1
w,,, == “watched” 1
w._, == “watched” 1

Blees

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x(2) x(3) x(4) x(5) x(6)
w, == “I” 1
Wiy == VT 1
Wiy == N7 1
Wiy == V17 1
Wy, == 17 1

Blees

The movie | watched depicted hope




Table from Manning (2011)

Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

M odel Feature Templates # Sent. Token Unk.

Feats A cc. A cc. A cc.
3gramMemm See text 248,798 52.07% 96.92% 88.99%
naacl 2003 Seetext and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication’  +rareFeatureThresh=5 482,364 55.67% 97.19% 88.96%
Sw + [to, w- 2 [to, Wo [] 730,178 56.23% 97.20% 89.03%
5w Shapes + [1o,s- 10, [to, S0l [to,S+1[] 731,661 56.52% 97.25% 89.81%
SwShapesDS + distributional similarity 737,955 56.79% 97.28% 90.46%

Blees

The movie

| watched depicted hope



Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Figures from http://opencv.org
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Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

Sde
(firgt
octave)

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
Figure 3: Model images of planar objects are shown in the produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
toprow. Recognitionresults below show model outlines and to produce the difference-of-Gaussian images on the right. Afier each octave, the Gaussian image is
image keys used for matching. down-sampled by a factor of 2, and the process repeated.

Figure from Lowe (1999) and Lowe (2004)
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NON-LINEAR FEATURES



Nonlinear Features

aka. “nonlinear basis functions’”’

So far, input was always X = [z1, ..., Z]

Key Idea: let input be some function of x

o M
— originalinput: x € R  where M’
x' ¢ RM

— new input:

— define X' = b(x) = [b1(x), b2(xX), ..., by (X)]
where b; : RM — Ris any function

Examples: (M = 1)
polynomial

radial basis function
sigmoid

log

bj(z) = a?

—(z — py)’

> M (usually)

bj(z) = exp ( 52

Vie{l,...,J}

)

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
X

Examples:

- Perceptron

- Linear regression

- Logistic regression



Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function

2.5
2.0 - o °
1.5-
y
1.0 -
0.5 -
true “unknown”
target function is
linear with 0.0~
negative slope
and gaussian 05 - |
noise Lo b

2.5

3.0



Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=1)

2.0 -

1.5 -

0.5 -

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

0.0 -




Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=2)

2.0 -

1.5 -

0.5 -

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

0.0 -




Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=3)

true “unknown”
target function is
linear with
negative slope
and gaussian | | |
nOise 1.5 2.0 2.5




Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)

true “unknown”
target function is
linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function

2.0 -
1.5 -
y 1.0 -
0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
-0.5 -

and gaussian
noise

1.5

Linear Regression (poly=8)

2.0

2.5

3.0



Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=9)

2.0 -

1.5 -

y 1.0 -

0.5 -

true “unknown”

target function is 0.0 -
linear with
negative slope
and gaussian
noise

-0.5 -

1.5 2.0 2.5




Over-fitting

—©— Training
—O— Test

05¢

Frms

0 3 M 6 9

Root-Mean-Square (RMS) Error:  Erus = \/2E(w*)/N

Slide courtesy of William Cohen



Polynomial Coefficients

M=0 M=1 M=3 M =9
6o 0.19  0.82 0.3l 0.35
6, 127 7.99 232.37
6, -25.43 -5321.83
0, 17.37 48568.31
6, -231639.30
5 640042.26
s -1061800.52
6, 1042400.18
s -557682.99
s 125201.43

Slide courtesy of William Cohen



Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function | Linear Regression (poly=9)

2.0 -

1.5 -

y 1.0 -

0.5 -

true “unknown”

target function is 0.0 -
linear with
negative slope
and gaussian
noise

-0.5 -

1.5 2.0 2.5




Example: Linear Regression

Same as before, but now

Goal: Learny = w' f(x) + b with N = 100 points

where f(.) is a polynomial
basis function | Linear Regression (poly=9)

true “unknown”
target function is
linear with
negative slope
and gaussian
noise




REGULARIZATION



Overfitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

Example: Stock Prices

* Suppose we wish to predict
Google’s stock price at time t+1

* What features should we use? I—
(putting all computational concerns = . !
aside) W Ee I/

— Stock prices of all other stocks at - p‘\ A ',{."
timest, t-1,t-2,...,t-k i v
— Mentions of Google with positive/ -

negative sentiment words in all jj
newspapers and social media outlets

* Do we believe that all of these
features are going to be useful?



Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis

* What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)

2. small number of “important” features
(shrinkage)



Regularization

Given objective function: J(6)
Goal is to find: @ = argmin J(0) + Ar(0)
0

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple

Choose form of r(0): y )
— Example: g-norm (usually p-norm) r(6) =i6ll, = [Z ||9m||q]

q 7(0) yields parame- name  optimization notes
ters that are...
0 |[|8]lo =>_1(0 #0) zerovalues Loreg. no good computa-
tional solutions
L ||0]]1 = |0m] zero values Lireg. subdifferentiable

2 (||8]]2)% =02, small values L2reg. differentiable




Regularization

Question:

Suppose we are minimizing J’(0)

where
J'(0) = J(0) + \r(0)

As A increases, the minimum of J’(0)

will move...

A. ...towards the midpoint between
J’(6) and r(0)

B. ...towards the minimum of J(©)

C. ...towards the minimum of r(0)

D. ...towards a theta vector of positive
infinities

E. ...towards atheta vector of negative

infinities

2

7z

r(6) = 16]];

N\

S

v



Regularization Exercise




Regularization

Question:

Suppose we are minimizing J’(0)

where
J'(0) = J(0) + \r(0)

As we increase A from o, the the
validation error will...

A.

mo N w

...increase

...decrease

... first increase, then decrease
... first decrease, then increase
... stay the same

\@/

ﬁ
S
0l

r(6) = ||

(Wl \V)

v



Regularization

Don’t Regularize the Bias (Intercept) Parameter!

In our models so far, the bias [ intercept parameter is
usually denoted by 6, -- that is, the parameter for which
we fixed xy = 1

Regularizers always avoid penalizing this bias [ intercept
parameter

Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data

It’s common to whiten each feature by subtracting its
mean and dividing by its variance

For regularization, this helps all the features be penalized
in the same units
(e.g. convert both centimeters and kilometers to z-scores)




Training
Data

Test
Data

Example: Logistic Regression

For this example, we
construct nonlinear features
(i.e. feature engineering)

Specifically, we add
polynomials up to order 9 of
the two original features x,
and x,

Thus our classifier is linear in
the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized in
low-dimensions (i.e. the
original two dimensions)



error

Example: Logistic Regression
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e-05)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.0001)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.001)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=10)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)
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Example: Logistic Regression

~ Classification with Logistic Regression (lambda=10000)

118



Example: Logistic Regression

- Classification with Logistic Regression (lambda=100000) |
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+06) |
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+07) |
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error

Example: Logistic Regression
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Regularization as MAP

* L1and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation

of the parameters
 To be discussed later in the course...



1.

Takeaways

Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

. Nonlinear features are require no changes

to the model (i.e. just preprocessing)

. Regularization helps to avoid overfitting
. Regularization and MAP estimation are

equivalent for appropriately chosen priors



Feature Engineering [ Regularization

Objectives
You should be able to...
* Engineer appropriate features for a new task

* Use feature selection techniques to identify and
remove irrelevant features

* ldentify when a model is overfitting

* Add aregularizer to an existing objective in order to
combat overfitting

* Explain why we should not regularize the bias term

* Convert linearly inseparable dataset to a linearly
separable dataset in higher dimensions

* Describe feature engineering in common application
areas



