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Reminders

Homework 4: Logistic Regression
— Out: Wed, Feb. 19
— Due: Fri, Feb. 28 at 11:59pm

Homework 5: Neural Networks
— Out: Fri, Feb. 28
— Due: Wed, Mar. 18 at 11:59pm
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Scaling Up
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— http://poll.mlcourse.org
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Q&A

Do | need to know Matrix Calculus to derive the
backprop algorithms used in this class?

No. We’ve carefully constructed our assignments so
that you do not need to know Matrix Calculus.

That said, it’s kind of handy.



Matrix Calculus

Lety, x € Rbescalars,
y € RMandx € RY
be vectors, and

Y ¢ RMXNgndX €
RP*XQ be matrices
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Matrix Calculus
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Matrix Calculus
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Matrix Calculus
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Question:
Suppose y = g(u) and u = h(x)
= —

Which of the following is the
correct definition of the chain rule?

Matrix Calculus

Recall: 'aTy
by | oms
ox

Ay
| Oxp
Answer:

. None of the above



BACKPROPAGATION



Training Backpropagation

Chalkboard

— Example: Backpropagation for Chain Rule #1

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Tz sin(log(x))

y = exp(z2) - log(x) | xrz




Training Backpropagation

Chalkboard
— SGD for Neural Network
— Example: Backpropagation for Neural Network



Training Backpropagation




Training Backpropagation




Training Backpropagation

Why is the backpropagation algorithm efficient?

1.

Reuses computation from the forward pass in
the backward pass

Reuses partial derivatives throughout the
backward pass (but only if the algorithm reuses
shared computation in the forward pass)

(Key idea: partial derivatives in the backward

pass should be thought of as variables stored
for reuse)
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Training SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

1
2
3
4:
5
6
7
8:

9:
10:
11:

12:
13:
14:

: procedure SGD(Training data D, test data D,)

Initialize parameters o, 3 f“-\vw 7 , 2éCo

fore € {1,2,...,E} do 4.__9?,(\,\
for (x, y) € Dﬂo

Compute neural network layers:
o = object(x,a,b,z,¥,J) = NNFORWARDm
Compute gradlents via backprop:

8a = VaJ
gs = VgJ

Update parameters:
Q@ <— O — Y8

B+ B—gs
Evaluate training mean cross-entropy Jp(a, 3)

Evaluate'%t’ ean cross-entropy Jp, (o, 3)
return parameters «

=\§NBACKWARD(X, y,a, 3,0
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Training Backpropagation
Simple Example: The goal is to compute J = cos(sin(z?) + 3z°)
on the forward pass and the derivative % on the backward pass.

Forward

J = cos(u)
U= Uy + U2

up = sin(t)




Training

Simple Example:
on the forward pass and the derivative

Forward

J = cos(u)
U = U1 + U

up = sin(t)

Backpropagation

The goal is to compute J = cos(sin(z?) + 3z?)
dJ

= on the backward pass.

Backward

dJ

T = —sin(u)

&f G du 4, du
du1 du duy’  duy; dus  dudus’ —dus
dt  duy dt’ dt

dJ ,_ dJ dup dus _ 4

dt  dug dt’ dt

dJ dJ dt dt

— += : = 2T

dx dt dx dx



Training Backpropagation

Case1:
Logistic
Regression
Forward
dJ _y*  (1-y")
J =vy"locy + (1 —vy*)log(l — = +
y logy + (1 —y)log(l —y) | Zo ="+ ——
B 1 dJ dJdy dy exp(—a)
=1 + exp(—a) da dyda’ da  (exp(—a)+1)2
D
dJ dJ da da
a=) b do;  dadf; do; '’
=0 j j J
dJ dJ da da
_ — 0,

de;  dadz; dz;



Training

Output

Hidden Layer

Backpropagation

[ (E) Output (sigmoid)
1

Y= 1+exp(—0b)

?

[ (D) Output (linear)
D
b=>i_0Bjz

?

[ (C) Hidden (sigmoid)
Zj = 1 \V/]

14+exp(—aj)’

?

[ (B) Hidden (linear)
aj = Yty jitis Vi

?

(A) Input
Givenz;, V1
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Training

Output

Hidden Layer

Backpropagation

[ (E) Output (sigmoid)
_ 1
Y= Trexp(—0)

?

[ (D) Output (linear)
b=3"1" 0Bz

?

[ (C) Hidden (sigmoid)
Rz = L \V/j

14+exp(—aj)’

?

[ (B) Hidden (linear)
aj = imo i, Vi

?

(A) Input
Given x;, Vi
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Training
Case 2: Forward
Neural WTJ = y*logy + (1 — y*)log(1 — y)
Network
B 1
YTIT exp(—b)
D
b = Z ,Bij
§=0
o 1
“i 1 + exp(—a,)
M
aj = Z Olji.’L'Z
i=0

Backpropagation

Backward
dJ _y-  (1-y")
dy Yy y—1
dJ dJdy dy exp(—b)
db  dydb db (exp(—b) +1)?
dJ dJ db db _
dg;  dbdp;’ d3;
dJ dJ db db _ 5
de a db de’ de -
dJ  dJdz dz; = exp(—ay)
da; dzjda;’ da; (exp(—a;)+1)2
dJ . dJ daj daj -
dOdjz' N dCLj dOéj,L" dOéji -
dJ daj daj
d.zc@ Z daxJ dr;’ dr; Ay
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Training Backpropagation

Case >

Loss

Sigmoid

Linear

Sigmoid

Linear

Forward Backward
* * dJ * 1 — y*
J =y logy + (1 —y")log(l —y) d—y:%Jr(y_l)
. 1 ‘l d’y _ exp( b)
‘T 1 + exp(—b) ;] - db’l db exp(—b) + 1)2
D =
db
J=0 utr =< 5
" o% 1
_ 1 dJ _ dJ dz
= I+ exp(—aj) daj a de da,j’
M
dJ dJ da; __
a; = ;aﬁ:{:i G = e dOéjz" T = x;

Z dJ da; da;
¢ da dr;’ dr;

al:jl:Z



Derivative of a Sigmoid

First suppose that

(1)

To obtain the simplified form of the derivative of a sigmoid.

Ef_ exp(—b)
'%‘meM+n;] @)
exp(—b) +1—1

" (lexp(—b) +1+1-1)2 G)
exp(—b)+1—1
= Texp(=b) 1 1)2 )
_exp(—b)+1 1
= (en(D) + 12 (exp(=b) + 1)? )
1 1
- - (6)

(exp(=b) +1)  (exp(—b) +1)2

1 1 1
= (exp(—b) + 1) a ((exp(—b) + 1) (exp(—b) + 1)) (7)

iiiigfl)@(mmlw+n) EZ




Training
Cace o Forward
Loss J =y logy + (1 —y*)log(l —y)
B 1
Sigmoid YTt exp(—b)
D
b= Z ,Bij
Linear =0
o .d L 1
Sgimel KA exp(—a;)
M
a; = Z Qi Ly
: i=0
Linear

Backpropagation

Backward
a _y*  (1-y)

dy y  y-—1
dJ dJdy dy exp(—b)

db  dydb’ db  (exp(—b)+ 1)
dJ dJ db db
dB;  dbdpB;’ dp;
dJ dJ db db _ 3
dz;  dbdzj’ dz;

dJ  dJdz dz;  exp(—ay)

da; dzjda;’ da; (exp(—a;)+ 1)

dJ . dJ daj daj
dOéji a daj dOéj,b" dOéji

Z dJ da; da;

dmz dayJ dr;’ dx;



Training Backpropagation
Cace > Forward Backward
daj _y*  (1-y)
Loss J=vy*logy+ (1 -9y )log(l—y) — ==
(1-y)logli—y) G- =L +T2
_ 1 dJ dJdy dy_(l_)
Slgiele YT T+ exp(-h) b dydy b 7
D
dJ db db
b= Bz | _
. ; 7 db dp;’ dp;
Linear
daJ dJ db db _ 5,
dzj dbdz;’ dz; 7
Sghnane 7 1+ exp(—aj;) da; dzjda;’ da; ™’ ’
M
. dJ . dJ daj da,j o
A Zaﬁxz daj,i a daj dO{ji7 dajz- — b
. 1=0
Linear
dJ da; da;
d:):z Z “ da;j dz;’ dz; Bk



Training Backpropagation




Training Backpropagation




Training SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)

1: procedure SGD(Training data D, test data D;)
2 Initialize parameters «, 3

3 fore e {1,2,...,EF}do

4: for (x,y) € Ddo
5:
6
7

Compute neural network layers:
o0 = object(x,a,b,z,y,J) = NNFORWARD(X,y, o, 3)
Compute gradients via backprop:

8: 8o = Va/| _ NNBACKWARD(X, y, ., 3, 0)
gs = VpJ

o: Update parameters:

10: O <—a—78q

1: B pB—gs

12: Evaluate training mean cross-entropy Jp(a, 3)

13: Evaluate test mean cross-entropy Jp, (o, 3)

14: return parameters o, 3







OTHER APPROACHES TO
DIFFERENTIATION



Training Finite Difference Method

The centered finite difference approximation is:

0 GOt seca)

—

where d; is a 1-hot vector consisting of all zeros except for the ith
entry of d;, which has value 1.
Jd(e:)

Notes:

* Suffers from issues of
floating point precision, in
practice -

* Typically only appropriate
to use on small examples
with an appropriately o
chosen epsilon C L >




E‘L‘ v Qoo

Training Differentiation Quiz

Differentiation Quiz #1:

Suppose x =2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

y = cos(rz) log(2) | log(2)

2 exp(sin(z))
C"\\C“\"M 7Answer: Answers below are in the form [dy/dx, dy/dz]
\dﬁrfﬁ,—a,—;;] E. [8.1,12.2]
B. [7.2,-4.2] F.  [12.2,8.1]
C. [1.10,2.7] G. [-0.97,-1.28]
D. [2.7,1.10] H. [-1.28,-0.97]
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Training Symbolic Differentiation

Differentiation Quiz #2:
A neural network with 2 hidden layers can be written as:

y=0(8"o((@?) o ((@V)"x))

where y € R, x € RP"” 3 ¢ RP®” and a isa D® x DG-D
matrix. Nonlinear functions are applied elementwise:

o(a) = [o(ay),... ,o(a,K)]T
Let o be sigmoid: o(a) = 1+6;p_a

. B_y 3y ..
What is 95 and 5D forall z, 5.
J




Summary

1. Neural Networks...
— provide a way of learning features
— are highly nonlinear prediction functions

— (can be) a highly parallel network of logistic
regression classifiers

— discover useful hidden representations of the
input
2. Backpropagation...
— provides an efficient way to compute gradients

— is a special case of reverse-mode automatic
differentiation



Backprop Objectives

You should be able to...

Construct a computation graph for a function as specified by an
algorithm

Carry out the backpropagation on an arbitrary computation graph

Construct a computation graph for a neural network, identifying all the
given and intermediate quantities that are relevant

Instantiate the backpropagation algorithm for a neural network

Instantiate an optimization method (e.g. SGD) and a regularizer (e.g.
L2) when the parameters of a model are comprised of several matrices
corresponding to different layers of a neural network

Apply the empirical risk minimization framework to learn a neural
network

Use the finite difference method to evaluate the gradient of a function

|dentify when the gradient of a function can be computed at all and
when it can be computed efficiently



DEEP LEARNING



Deep Learning Outline

Background: Computer Vision
— Image Classification
— ILSVRC2010-2016
— Traditional Feature Extraction Methods
— Convolution as Feature Extraction

Convolutional Neural Networks (CNNs)
— Learning Feature Abstractions

— Common CNN Layers:
* Convolutional Layer
¢ Max-Pooling Layer
* Fully-connected Layer (w/tensor input)
* Softmax Layer
* RelU Layer

— Background: Subgradient
— Architecture: LeNet
— Architecture: AlexNet

Training a CNN
— SGD for CNNs
— Backpropagation for CNNs



Why is everyone talking
about Deep Learning?

* Because alot of money is invested in it...

— DeepMind: Acquired by Google for $400
million
— DNNResearch: Three person startup

(including Geoff Hinton) acquired by Google
for unknown price tag

— Enlitic, Ersatz, MetaMind, Nervana, Skylab:

Deep Learning startups commanding millions
of VC dollars

* Because it made the front page of the
New York Times

Gssgle

Ehe New Aork Cimes




Why is everyone talking
about Deep Learning?

(s1geos  Deep learning:
— Has won numerous pattern recognition

~—

1 31980s competitions
& — Does so with minimal feature
~31990s engineering

—

%2006

1
\

~\/\

Y 2016

No




BACKGROUND: COMPUTER VISION



Example: Image Classification
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IM&GENET

Home  Explore
About Download

Bird

Not logged in. Login | Signup

=
2126 92.85% ’-_l

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures  Popularity ~ Wordnet

£
-
- biped (0)

- predator, predatory animal (1)
. larva (49)

- acrodont (0)

- feeder (0)

- stunt (0)

“- chordate (3087)

marine animal, marine creature, sea animal, sea creature (1)
scavenger (1)

| tunicate, urochordate, urochord (6)
.- cephalochordate (1)
- vertebrate, craniate (3077)

| mammal, mammalian (1169)

e
- hen (0)

- nester (0)

~ night bird (1)

- bird of passage (0)

- protoavis (0)

- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)

- |bero-mesornis (0)

- archaeornis (0)

- ratite, ratite bird, flightless bird (10)

- carinate, carinate bird, flying bird (0)

- passerine, passeriform bird (279)

- nonpasserine bird (0)

- bird of prey, raptor, raptorial bird (80)

- gallinaceous bird, gallinacean (114)

- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)

cock (1)

Percentile IDs

Treemap Visualization Images of the Synset Downloads




IM&GENET

Not logged in. Login | Signup

. . . . (P=n]
German iris, Iris kochii 469  49.6% L

Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures nggﬂﬂﬁg :ggfdﬂet
I

i~ halophyte (0)
i succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

- weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (0)

- vine (272)

- creeper (0)

i woody plant, ligneous plant (1868)

- geophyte (0)

i desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

i aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

7 bulbous plant (179)

“. iridaceous plant (27)

“. iris, flag, fleur-de-lis, sword lily (19)

+. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
- German iris, Iris germanica (0)

- German iris, Iris kochii (0)

.. Dalmatian iris, Iris pallida (0)

I beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)




IM&GENET

Not logged in. Login | Signup

)

Court, courtyard 165  92.61% E
An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ggrpc“;f‘;"}g l‘gg’d”“

' Numbers in brackets: (the number of synsets in the subtree ). Treemap Visualization lmages of the Synset Downloads

¥ ImageNet 2011 Fall Release (32326) TRl ; o

ri-- plant, flora, plant life (4486)
w geological formation, formation (175)
- natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
I instrumentality, instrumentation (5494)
structure construction (1405)
i~ airdock, hangar, repair shed (0)
w altar (1)
- arcade, colonnade (1)
+- arch (31)
) area (344)
- aisle (0)
rs-- auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
-- choir (0)
i corner, nook (2)
3 - court, courtyard (6)
i atrium (0)
- bailey (0)
- cloister (0)
- food court (0)
- forecourt (0)
i. narvie fNY

P ST eaalll ¥ R 2000 il T




Feature Engineering for CV

Edge detection (Canny)

Ongnal Image Edge Image

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Difference of
Gaussian Gaussian (DOG)

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
igure 3: ) ges of planar objects are shown in the produce the set ?f scale space inges shown on the l_eﬁ Adjacent Gaussian images are su_buacleld
oprow. Recogaition results below show model cutlines and to produce the difference-of-Gaussian images on the right After each octave, the Gaussian image is
mage kevs used for matching down-samnled by a factor of 7 and the nrocess reneated

o

Figures from http://opencv.org Figure from Lowe (1999) and Lowe (2004)



Example: Image Classification




CNNs for Image Recognition

Research
Revolution of Depth 282
152 layers e
o
[ 22 [ayers ‘ [ 19 Iayers
\ 6.7 I
357 8layers 8Iayers shallow

i —
- e e -
— - -

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

’BICCV}..S

i e

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

50
Slide from Kaiming He



CONVOLUTION



What’s a convolution?

* Basicidea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the
inner product operation

* Key point:
— Different convolutions extract different types of low-level
“features” from an image

— All that we need to vary to generate these different features is the
weights of F

/X v :L i»?-)" cluww.‘ y i OU“‘TJ" CLavml.‘
;-gd\—- COWV w&__ 7" = Ky Xn + K‘z,xﬂ. 4'%|xz‘ 4 “ZZX?.'L +N°

X)) \Xw. X E & . )"z = KuXe * Kgxg +0Q1Xn + Koz Xzg 4o,
n (r
Xor | %z |X2 ! l“&v az a - ny Yo 7 Koy, * KipXp + 091 X5 4 Koz Xs2 x,
- \ T
o [%s2% Y2z = KXz * Kipkez +0Q1 Xy 4 0z Xg3 +4,

Slide adapted from William Cohen



Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3|2
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

30212
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

31212 |3

61



Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

|dentity , , , ,
Convolution 1 1 1 1 1
(0] (0] (0] 1
o|1]0 1
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image
Blurring
Convolution

67



What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice = Load|

Use filtered image|

Filter
Edge 3 v
0¢/| O0%|| O%
19| 29| 1%

0% 0% 0%
Filter normalization

O Apply filter

Slide from William Cohen



What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice = Load|

Use filtered image|

Filter
Sharpen v
O |19/ O%
19| 5% 1%
0s -1% 0%

Filter normalization

O Apply filter

Slide from William Cohen



What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice v LLM,

Use filtered image|

Filter

4»

Edge &
Ov  -1+% Ov
07 | 2%/ | 0%
O¢  -1+% O+v
Filter normalization

O Apply filter

Slide from William Cohen



What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice = Load[

Use filtered image|

Filter
Sharpen v
0  -1% H
19/ 5% 1%

0% -1% 0%
Filter normalization

O Apply filter

Slide from William Cohen



What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

Rice v Lo_adl

Use filtered imageI

Filter

m
Q.

09
4]
4>
<

0 | 15 | -2%
0% | 49| 1%
0% | 0%/ O%
Filter normalization

O Apply filter

Slide from William Cohen



What’s a convolution?

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

Image

/g Rice id]

Use filtered |mage|

Filter

m

Q
0Qq

4]
>
4>

2% | 15| 0%
19| 45|| 0%
Ov/| O%/| O%
Filter normalization

O Apply filter

Slide from William Cohen



What’s a convolution?

* Basicidea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the
inner product operation

* Key point:
— Different convolutions extract different types of low-level
“features” from an image

— All that we need to vary to generate these different features is the
weights of F

/X v :L i»?-)" cluww.‘ y i OU“‘TJ" CLavml.‘
;-gd\—- COWV w&__ 7" = Ky Xn + K‘z,xﬂ. 4'%|xz‘ 4 “ZZX?.'L +N°

X)) \Xw. X E & . )"z = KuXe * Kgxg +0Q1Xn + Koz Xzg 4o,
n (r
Xor | %z |X2 ! l“&v az a - ny Yo 7 Koy, * KipXp + 091 X5 4 Koz Xs2 x,
- \ T
o [%s2% Y2z = KXz * Kipkez +0Q1 Xy 4 0z Xg3 +4,

Slide adapted from William Cohen



Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

Convolution
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output
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CONVOLUTIONAL NEURAL NETS



A Recipe for

Background , :
Machine Learning

1. Given training data: 3. Define goal:

{xi,y, N al

i»Yifi=1 0" = arg meingf(fe(wi),yi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (213@) (take small steps

opposite the gradient)
— Loss function

((y,y;) € R 0D = 00— V(folw:).v.)



~neVe(fo(xi), ;)



Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT S @208 ps 16@

|
Full comlection I Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.



Convolutional Layer

CNN key idea:
Treat convolution matrix as
parameters and learn them!

Input Image @
Convolved Image

Learned
Convolution

e11 e12 e13
e21 ezz e23
0,,16,,|0;

31
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Downsampling by Averaging
Downsampling by averaging used to be a common approach
This is a special case of convolution where the weights are fixed to a

uniform distribution
The example below uses a stride of 2

Input Image

Convolved Image

Convolution
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Max-Pooling

Max-pooling is another (common) form of downsampling

Instead of averaging, we take the max value within the same range as
the equivalently-sized convolution

The example below uses a stride of 2

Input Image

Max-Pooled
Image

Max-
pooling

Yij = max(zij,

Li 41,
Li+1,j5

Tit1,j+1) §



TRAINING CNNS



A Recipe for

Background , :
Machine Learning

1. Given training data: 3. Define goal:

{xi,y, N al

i»Yifi=1 0" = arg meingf(fe(wi),yi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (213@) (take small steps

opposite the gradient)
— Loss function

((y,y;) € R 0D = 00— V(folw:).v.)






SGD for CNNs

[SGD fe CAU- |
Ex: Acchile cle : Guer ;, y*
5; I(Y/y*/)
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Z = Cowy (X, 0() Rrb‘ﬂl : >/= he(y(l)) ) 31(9) =1(}’,}")

Backwesd: Véj[(e)e..
UF”“ ’é*’ 8 — D57 6)



LAYERS OF A CNN



Common CNN Layers

Whiteboard
— RelLU Layer
— Background: Subgradient
— Fully-connected Layer (w/tensor input)
— Softmax Layer
— Convolutional Layer
— Max-Pooling Layer



RelLU Layer
[RelU Logs] Tph: %R Ok 7R

Torwsd et et oot
/_>7 _ o_(.)?) &4— /Ql %3 C Q A_¥L |
L I - dy b gkt
O'{q) = \M‘\X(O,Ct) )
ot AoNT o 8 ke vO
O« C
M@( ) X (O O‘I'L.tw-"ifl
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Softmax Layer
JEST

Tapots X eR¥ Dulpet 961(“

Erwﬂ‘:‘= B«cL.«rvcl M
- = exp(ﬁz 4F ééj—éfé
/ %lexf(xk) dx, dy dx;

e _dyi _ Cyi(l-y) W e
&x") -Y&\/j o”w-wc‘u



Fully-Connected Layer
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Convolutional Layer
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Convolutional Layer

Sx: Fogh doo ) CTodph o [0S
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Max-Pooling Layer
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Max-Pooling Layer
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Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT S @208 ps 16@

|
Full comlection I Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical. 107



Architecture #2: AlexNet




CNNs for Image Recognition

Research
Revolution of Depth 282
152 layers e
o
[ 22 [ayers ‘ [ 19 Iayers
\ 6.7 I
357 8layers 8Iayers shallow

i —
- e e -
— - -

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

’BICCV}..S

i e

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

109
Slide from Kaiming He



CNN VISUALIZATIONS



3D Visualization of CNN

http://scs.ryerson.ca/~aharley/vis/conv/




Convolution of a Color Image

* Colorimages consist of 3 floats per pixel for
RGB (red, green blue) color values

* Convolution must also be 3-dimensional

activation map

__— 32x32x3 image

5x5x3 filter /
=
>@ ”

convolve (slide) over all

spatial locations
28

3 1

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)




Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)



MNIST Digit Recognition with CNNs

(in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Network Visualization

input (24x24x1)
max activation: 1, min: 0
max gradient: 0.00015, min: -0.00014

Activations:

Activation Gradients:

conv (24x24x8)

filter size 5x5x1, stride 1

max activation: 4.78388, min: -3.44063
max gradient: 0.00005, min: -0.00006
parameters: 8x5x5x1+8 = 208

Activations:

- £

Activation Gradients:

-u = .-.'

Weights:

()2 ) (8 ) () (1 (B ) () (o)
Weight Gradients:

() () (™)(=)(F)(A)(=)(®)

softmax (1x1x10)
max activation: 0.99768, min: 0
max gradient: 0, min: 0

Activations:
H EEEEEEEER

Example predictions on Test set

I B R
i B N

Figure from Andrej Karpathy

8
B-
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CNN Summary

CNNs

— Are used for all aspects of computer vision, and
have won numerous pattern recognition
competitions

— Able learn interpretable features at different levels
of abstraction

— Typically, consist of convolution layers, pooling
layers, nonlinearities, and fully connected layers

Other Resources:
— Readings on course website
— Andrej Karpathy, C5231n Notes



RECURRENT NEURAL NETWORKS



Data:

D — {m(n), y(n)}ff;f:1

Dataset for Supervised

Part-of-Speech (POS) Tagging

e @ @ ©® @ @
we: @ @ @ @ ©
e @ @ ©® @ @
OO,
@ © © @ @
&,




Dataset for Supervised
Handwriting Recognition
Data: D = {«™ ¢y

B XOXOROIOXOX JOROTONNSE

latel<Flelel7e]/ i

B YoloY YoYoloY TS
(DI CIA]0] JCR
" 90000000 v
IIIIHHEE e

Figures from (Chatzis & Demiris, 201



Data:

Dataset for Supervised
Phoneme (Speech) Recognition

D — {m(n), y(n)}ﬁf:

QQQQCCCQQQ by

Figures from (Jansen & Niyogi, 2013)



Time Series Data

Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a
prediction task with variable length input/output?

© 0 ® @ 0 i
S

120



Time Series Data

Question 1: How could we apply the neural networks we’ve
seen so far (which expect fixed size input/output) to a
prediction task with variable length input/output?

®© @6 ® @& 0O i
SRR




Time Series Data

Question 2: How could we incorporate context (e.g.

words to the left/right, or tags to the left/right) into our

® I
® 1

solution?

()
O,

Multiple
Choice:

Working left-
to-right, use
features of...

O,
O,

O,
O,

Xi-1 Xi Xi+ Yi-1 Yi Yi+1
A v
B v
C v v
D v v v v
E v v v v v
7 v v v v
G v v v v v
H v v v v v v
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Recurrent Neural Networks (RNNs)

inputs:

hidden units:

outputs

nonlinearity:

— (ylay27"°

"'axT)axi ERI
= (hl,hg,...,hT),h,i c R’

ayT)ay’L’ S RK

Definition of the RNN:
hy = H (Wenze + Whphi—1 + bp)
Yt = Whyht + by
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Recurrent Neural Networks (RNNs)

inputs: x = (z1,29,..., xr),T; € RY
hidden units: h = (hq, ho, ..., hr),hi € R’

outputs: y = (y1,y2,...,yr),yi € R®
nonlinearity: H

Definition of the RNN:
hy = H (Wanxe + Whphi—1 + by)

Yt — Whyht + by %

This form of RNN is

[ called an
Elman Network

e s

=) [0




Recurrent Neural Networks (RNNs)

inputs:

hidden units:

outputs

nonlinearity:

- (ylay27"'

"'axT)axz’ GRI
= (h1,ha,...,hr),h; € R’

7yT)7yz' S RK

Definition of the RNN:
hy = H (Wenze + Whphi—1 + bp)
Yt = Whyht -+ by
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A Recipe for

Background

1. Given training data:
N

2. Choose each of these:
— Decision function

y = fo(xi)

— Loss function

g(gv yz) S R

Machine Learning

3. Define goal:

N
0" = arg i ; U(fo(xi), y;)

4. Train with SGD:

(take small steps
opposite the gradient)

o(t+1l) — g(t) _ neVe(fo(x;),y;)



sion function

= fo(x;)




Recurrent Neural Networks (RNNs)

inputs:

hidden units:

outputs

nonlinearity:

7)), € RE Definition of the RNN:

— (hi,hay. . hy) b € R | he = H (Wanxe + Winhe—1 + by,)

= (y1,92, -

yr) v € RT | yp = Whyhe + by,




Recurrent Neural Networks (RNNs)

inputs:

hidden units:

outputs

nonlinearity:

— (ylay27"'

"'axT)axz’ ERI
= (hl,hg,...,hT),hi c R’

ayT)7yz' S RK

Definition of the RNN:
hy = H (Wenze + Whphi—1 + bp)
Yt = Whyht + by
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Recurrent neural
network:

BPTT:

1. Unroll the
computation
over time

2. Run
backprop
through the
resulting feed-
forward
network



Bidirectional RNN

Recursive Definition:

inputs: x = (z1,Z2,...,27),%; € R! N
Bo=H (W, e+ Wy

%
hidden units: h and %
e
outputs: y = (y1,Y2,. .., Y1), Yi € RE hy=™H (Wm%xt + Weeh 11 + b%)

nonlinearity:

S

Ny




Bidirectional RNN

Recursive Definition:

inputs: x = (1,%2,...,27),2; € R’ _ —
ht =H (Wxﬁxt + Wﬁﬁ ht—l -+ bﬁ)

%
hidden units: h and (H
— —
outputs: y = (y1,¥2,...,yr).yi € R* | hi=H (Wx%xt + Wog hip + bi)

nonlinearity:

X

— <—
yt:Wﬁyht‘FW%yht‘Fby

rl (o |
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Bidirectional RNN

Recursive Definition:

inputs: x = (1,%2,...,27),2; € R’ _ —
ht =H (Wxﬁxt + Wﬁﬁ ht—l -+ bﬁ)

%
hidden units: h and (H
— —
outputs: y = (y1,¥2,...,yr).yi € R* | hi=H (Wx%xt + Wog hip + bi)

nonlinearity:

X

— <—
yt:Wﬁyht‘FW%yht‘Fby

rl (o |
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Bidirectional RNN

Recursive Definition:

inputs: x = (1,%2,...,27),2; € R’ _ —
ht =H (Wxﬁxt + Wﬁﬁ ht—l -+ bﬁ)

%
hidden units: h and ;
— —
outputs: y = (y1,¥2,...,yr).yi € R* | hi=H (Wx%f”t + Wog hip + bi)

nonlinearity:

Ny

— <—
yt:Wﬁyht‘FW%yht—Fby

rl /|
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Deep RNNs

: Recursive Definition:
inputs: x = (x1,29,...,27),2; € R’

outputs: y = (y1,ya,-..,yr),yi € RE | hi =H (Wyn-1pnhy ™ + Wynpn by + b})

nonlinearity: H

Yt = WhNyhiv + by

- Yt—1 Yt Ygt+1 - - -

- Tt T Ti41 - - -

135
Figure from (Graves et al., 2013)



Deep Bidirectional RNNs

inputs: x = (x1,22,...,27),2; € R'

outputs: y = (y1,¥2,---.yr), ¥ € R™
nonlinearity: H

Figure from (Graves et al., 2013)



Long Short-Term Memory (LSTM)

Motivation:

* Standard RNNs have trouble learning long
distance dependencies

e LSTMs combat this issue

500 . ES 60




Long Short-Term Memory (LSTM)

Motivation:
* Vanishing gradient problem for Standard RNNs

 Figure shows sensitivity (darker = more sensitive) to the input at
time t=1

x Fa Bl _."_'-._ _.-'_'-._
Cutpits ’ . I\',_ﬁ'l ( _-:l (Y () L)
: LS M i
".r"’ T T i 1]
Hadiden alk O en e SRR s,
e - —{ = = )
Ly o A L N L L
i i § i i

-I----.‘- ...--—‘-‘l l-r--.-. -I----.‘- ..--—‘-- --.-
| ; ! f Y "
rfpuls . |/ |___--_.-._I I__-_--Ii_l o, Ix__;l I__-_--li_l

Time 1 2 3 4 3 L 7

Figure from (Graves, 2012)



Long Short-Term Memory (LSTM)

Motivation:
e LSTM units have arich internal structure

* The various “gates’” determine the propagation of information
and can choose to “remember” or “forget” information

TTTTITTT

_ _ — @) — O _

Hidden

v @ Q- @@ @@ O
O - - - - - O

-900000¢

Time

Figure from (Graves, 2012)



Long Short-Term Memory (LSTM)




Long Short-Term Memory (LSTM)

o oy

it = 0 (Wasxy + Whihi—1 + Weie—1 + by) / T N
fi=0Wysri + Whihi—1 + Weper—1 + by)

ct = frci—1 + iy tanh (Wyexy + Wiehi—1 + bc)

ot = 0 (Waoxt + Whohi—1 + Weocr + bo)

]’Lt — O¢ tanh(ct)
Figure from (Graves et al., 2013)
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Long Short-Term Memory (LSTM)




Deep Bidirectional LSTM (DBLSTM)




Deep Bidirectional LSTM (DBLSTM)

How important is this
particular architecture?

T
i

Jozefowicz et al. (2015)
evaluated 10,000
different LSTM-like
architectures and
found several variants
that worked just as
well on several tasks.

T




RNN Training Tricks

* Deep Learning models tend to consist largely of
matrix multiplications
* Training tricks:
— mini-batching with masking

Metric DyC++ DyPy Chainer | DyC4++4 Seq Theano TF
RNNLM (MB=1) words/sec 190 190 114 494 189 298

(
RNNLM (MB=4) words/sec 830 825 295 1510 567 473
RNNLM (MB=16) words/sec 1820 1880 794 2400 1100 606
RNNLM (MB=64) words/sec 2440 2470 1340 2820 1260 636

— sorting into buckets of similar-length sequences, so
that mini-batches have same length sentences

— truncated BPTT, when sequences are too long, divide
sequences into chunks and use the final vector of the
previous chunk as the initial vector for the next chunk
(but don’t backprop from next chunk to previous chunk)

Table from Neubig et al. (2017)



RNN Summary

* RNNs

— Applicable to tasks such as sequence labeling,
speech recognition, machine translation, etc.

— Able to learn context features for time series
data

— Vanishing gradients are still a problem - but
LSTM units can help

* Other Resources
— Christopher Olah’s blog post on LSTMs



