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Q

Q

Q&A

Why do we shuffle the examples in SGD?

This is how we do sampling without replacement

1.

2.

Theoretically we can show sampling without replacement is not
significantly worse than sampling with replacement (Shamir, 2016)

Practically sampling without replacement tends to work better

What is “bias’’?

That depends. The word “bias” shows up all over machine learning!
Watch out...

1.
2.

The additive term in a linear model (i.e. b in w'x + b)

Inductive bias is the principle by which a learning algorithm
generalizes to unseen examples

Bias of a model in a societal sense may refer to racial, socio-
economic, gender biases that exist in the predictions of your
model

The difference between the expected predictions of your model
and the ground truth (as in “bias-variance tradeoff”)



Reminders

 Homework 5: Neural Networks
— Out: Fri, Feb 28
— Due: Sun, Mar 22 at 11:59pm

* Today’s In-Class Poll
— http://poll.mlcourse.org
* New collaboration policy for programming
assignments
— goal: encourage collaboration of a particular fashion

— for each programming assignment, you will be
randomly assigned to a homework group

— within that homework group, you will be able to
collaborate more fully (e.g. via Zoom) than before

— stay tuned on Piazza for more details




Panopto

* Don’t forget to click “play” - if you refresh
the page or go away and come back

* Use the discusion forum for questions
— one of your TAs will monitor this




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) + log(5)] la-
Fini beled examples are sufficient so that with

te |H| probability (1—46) all h € H with R(h) =0
have R(h) < e.

Infinite |H|




Example: Conjunctions

Question:

Suppose H = class of
conjunctions over x in {0,1}V

Example hypotheses:

- h(x) = x, (1-x,) X, (1-X)

If M =10, € = 0.1, 0 = 0.01, how
many examples suffice
according to Theorem 12

—h(x) = x; (1-x;) X, <= Xy AN

(

Answer:
10*(2*In(10)+In(100 )) = 92 20%
B. 10*(3*In(10)+In(100)) = 116
C. 10*(19*In(2)+In(100)) = 116 0%
10*(10*In(3)+In(100)) = 156
E—T00x RO (O =69 el
F. 100*(3*In(10)+In(10)) = 922
G. 100*(10*In(2)+In(10)) = 924
H. 100*(10*In(3)+In(10)) = 1329

b

L

M=% > pm W > L {log(H) + log(1)] la-

\ |Hl = WO |°)(3) beled examples are sufficient so that with

:’7% probability (1— &) all b € H with B(k) = 0
have R(h) < e.’\

Y (o

e

1P le



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

\
Four Cases we care about... e N <& ¢)

HeH

Realizable Agnostic

probability (1—4) all h € # with R(h) = 0 | with probability (1 — ) forallh € H we
have R(h) < e. have that |R(h) — R(h)| < e.

——

Thm. 1 N > 1[log(|H|) +1log(3)] la-| Thm. 2 N > 35 [log(|H|) + log(3)]
inite | | beled examples are sufficient so that with | labeled example$®&re sufficient 30 that

Infinite |H|




Finite |H|

Infinite ||

1.  Boundis inversely linear in
epsilon (e.g. halving the error
requires double the examples)

2. Boundis only logarithmic in
[H| (e.g. quadrupling the
hypothesis space only requires
double the examples)

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
[H| (i.e. same as Realizable
case)

Realizable

% Agnostic

Thm. 1 N > 2 [log(|H|) + log(3)] la-
beled examples are sufficient so that with
probability (1—4) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5 [log(|H]) + log(%)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |[R(h) — R(h)| < e.




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with

respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 1[log(|H|) +1log(3)] la-| Thm. 2 N > 35 [log(|H|) + log(3)]
Finite |H| beled examples are sufficient sq= IO cient so that

o1 : .We.neecli al new definitic;n of
probability (1—4) all b € H wit] «complexity” for a Hypothesis space [or all b € H we
have R(h) < e. <e

for these results (see VIC Dimension)

A

Infinite |H| y ly




to1).

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

Four Cases we care about...

Finite |H|

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 1[log(|H])+ log(5)] la-
beled examples are suffitient so that with
probability (1—46) all h ¢ H with R(h) = 0
have R(h) < e.

Thm. 2 N > 53 [log(|H]) + log(3
labeled examples are sufficient so that
with probability ( 1 — for allh € H we
have that |R(h) —

Thm. 3 N=O({ [VC(H)log(1) +log(3)])
labeled examples—are sufficient so that
with probability (1 — §) all A € H with
R(h) = 0have R(h) < ¢

Thm. 4 N = O( ;15 log(
labeled examples are 3u ent SO that

with probability (1 — )for allh € Hwe
have that |R(h) — R(h)| < e.

13




VC DIMENSION



E.g., thresholds on the real line |

E.g., intervals on the real line

Slide from Nina Balcan



Shattering, VC-dimension
Definition: bypblases
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if |H[S]| = 2/°I.

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2!5! possible ways; i.e., all possible ways of
classifying points in S are achievable using concepts in H.

Slide from Nina Balcan



VC Dimension

Whiteboard:
— Shattering example: binary classification



Shattering, VC-dimension
Definition:
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if |H[S]| = 2/°!.
A set of points S is shattered by H is there are hypotheses in H

that split S in all of the 2!5! possible ways:; i.e., all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)
The VC-dimension of a hypothesis space H is the cardi??lim of
the largest set S that can be shattered by H. size oF

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o

Slide from Nina Balcan



VC Dimension

Whiteboard:

— VC Dimension Example: linear separators
— Proof sketch of VCDim for linear separators in 2D



Shattering, VC-dimension

Definition: VC-dimension (Vaphik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Eac‘l': If H is finite, then VCdim(H) < log(JH]).

Slide from Nina Balcan




Shattering, VC-dimension

E.g., H= linear separators in R? \ /
VCdim(H) = 3 >(

Slide from Nina Balcan



Shattering, VC-dimension

E.g., H= linear separators in R?
VCdim(H) < 4

Case 1: one point inside the triangle formed by
the others. Cannot label inside point as positive
and outside points as negative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other @
two as negative.

Fact: VCdim of linear separators in RY is d+1

Slide from Nina Balcan



dvs.V

VCDIim

— Proving VC Dimension requires us to show that
there exists (3) a dataset of size d that can be
shattered and that there does not exist (7) a
dataset of size d+1 that can be shattered

Shattering

— Proving that a particular dataset can be
shattered requires us to show that for all (V)
labelings of the dataset, our hypothesis class

contains a hypothesis that can correctly classity
it

24



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Thresholds on the real line —
w
VCdim(H) = 1 C& .2 + T

- O O

E.g., H= Intervals on the real line i
do e —

VCdim(H) = 2

e

Slide from Nina Balcan

@)




Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k
H" N Y T R
| | | |

: A sample of size 2k shatters
>
VCdim(H) = 2k (treat each pair of points as a
separate case of intervals)

VCdim(H) < 2k + 1

+ -

O
<

+
|

O
O
(¥
O

Slide from Nina Balcan



to1).

Four C

Finite |H|

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

ases we care about...

Realizable

N——

Thm. 1 N > 1[log(|H])+ log(5)] la-
beled examples are sufficient so that with
/probablllty (1—6)allh € Hwith R(h) =0
have R(h) < e.

Thm. 2 N > 55 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

(

Infinite |H|

r/ — \
Thm. 3 N=O(% [VC(H)log(1) +log(3)])
labeled examples are sufficient so that

with probability (1 — §) all A € H with

R(h) = O have R :
(h) @E_e

Thm. 4 N = O(zlf [VC('H) +log(§)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(R)=R(h)| <e. —
——

29




SLT-style Corollaries

Thm.& L 2,%1 %log(ﬂil) + log(3)] la-

beled examples are sufficient so that with
probability (1—46) all h € H with R(h) = 0
have R(h) < e.

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

N

Corollary 1 (Realizable, Finite |#|). For some § > 0, with probabil-

ity at least (1 — ), for any h in H consistent with the training data
(i.e. R(h) = 0),

We can obtain
similar corollaries for
each of the
theorems...

30



SLT-style Corollaries

Corollary 1 (Realizable, Finite |#|). For some § > 0, with probabil-
ity at least (1 — 4), for any h in H consistent with the training data
(i.e. R(h) = 0),

Corollary 2 (Agnostic, Finite |#|). ForsomeJ > 0, with probability
at least (1 — 9), for all hypotheses h in H,

<A+ o [+ (3)

— f

31



SLT-style Corollaries

Corollary 3 (Realizable, Infinite |7{|). For some § > 0, with proba-
bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) <O (% [vcm) it <vc](v?{)> il (%)D (1)

Corollary 4 (Agnostic, Infinite |[#|). Forsome d > 0, with probabil-
ity at least (1 — 9), for all hypotheses h in H,

wemeo(fifenn())) o




SLT-style Corollaries

Corollary 3 (Realizable, Infinite |[#|). For some § > 0, with proba-
bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

a0 (2 eoom () +m (D)) o

Corollary 4 (Agnostic, Infinite [#|). Forsome d > 0, with probabil-
ity at least (1 — 9), for all hypotheses h in H,

% Should these corollaries inform
how we do model selection?




Generalization and Overfitting

Whiteboard:

— Model Selection

— Empirical Risk Minimization

— Structural Risk Minimization
— Motivation for Regularization



1.

Questions For Today

Given a classifier with zero training error, wha
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?

(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)

38



Learning Theory Objectives

You should be able to...

|dentify the properties of a learning setting and
assumptions required to ensure low generalization
error

Distinguish true error, train error, test error

Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

Apply sample complexity bounds to real-world
learning examples

Distinguish between a large sample and a finite
sample analysis

Theoretically motivate regularization



CLASSIFICATION AND
REGRESSION



ML Big Picture

B

Theoretical Foundations:
inciples guide learning?
QO (probabilistic

ation theoretic
O evolutionary search

RS oprimzRton >




Classification and Regression:

The Big Picture
Whiteboard

— Decision Rules [ Models
— Objective Functions

— Regularization

— Update Rules

— Nonlinear Features



PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
y O = o* (x)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x() ~ p* ()
y ~ p (- x1?)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



PROBABILITY



Random Variables: Definitions

Discrete X Random variable whose values come
Random from a countable set (e.g. the natural
Variable numbers or {True, False})
Probability p(l‘) Function giving the probability that
mass discrete r.v. X takes value x.
function

r) =P(X ==z
(o) p(z) == P( )




Random Variables: Definitions

Continuous
Random
Variable

X

Random variable whose values come
from an interval or collection of
intervals (e.g. the real numbers or the

range (3, 5))

Probability
density
function

(pdf)

f(z)

Function the returns a nonnegative
real indicating the relative likelihood
that a continuous r.v. X takes value x

* Forany continuous random variable: P(X =x) = 0

* Non-zero probabilities are only available to intervals:

Pla < X <) :/bf(x)d:z:




Random Variables: Definitions

Cumulative
distribution
function

Function that returns the probability
that a random variable Xis less than or
equal to x:

F(z) = P(X < z)

* For discrete random variables:

X<:13

=) P(X=a)=) p

' <x ' <x

* For continuous random variables:

:P(XS:IJ):/aj f(x")dx'




Notational Shortcuts

A convenient shorthand:

P(A B)
P(A|B) = ’
= For all values of a and b:
P(A=a,B
P(A=a|B=0) = P(B =



Notational Shortcuts
But then how do we tell P(E) apart from P(X) ?
[evene [ [Tadar |7
Instead of writing: P(A, B)
P(A|B) =
We should write: Pa g(A, B)

... but only probability theory textbooks go to such lengths.



COMMON PROBABILITY
DISTRIBUTIONS



Common Probability Distributions

* For Discrete Random Variables:
— Bernoulli
— Binomial
— Multinomial
— Categorical
— Poisson

* For Continuous Random Variables:
— Exponential
— Gamma
— Beta
— Dirichlet
— Laplace
— Gaussian (1D)
— Multivariate Gaussian



Common Probability Distributions

Beta Distribution

probability density function:

0 0.2 0.4 1

1
f(lo, B) = 21— 2)"
’ B(a, B)

4 T T T T T T T T T

3 — a=0.1,6=0.9
= 1 — a=0.5,6=0.5
%” 2 {1 — a=10,8=1.0
~ | — a=5.0,8=5.0

1 — a=10.0,3=5.0

O | | 1 | 1 | S~

0.6 0.8
¢



Common Probability Distributions

Dirichlet Distribution

probability density function:

0 0.2 0.4 1

1
f(lo, B) = 21— 2)"
’ B(a, 9)

4 T T T T T T T T T

3 — a=0.1,6=0.9
= 1 — a=0.5,6=0.5
%” 2 {1 — a=10,8=1.0
~ | — a=5.0,8=5.0

. — a=10.0,3=5.0

O | | 1 | 1 | S~

0.6 0.8
¢



(plb)d

Common Probability Distributions
Dirichlet Distribution

probability density function:

. 1 2
p(¢la) = Bla) H prr
k=1

15

10

5

(pld)d

0.8

0.4



EXPECTATION AND VARIANCE



Expectation and Variance

The expected value of X'is E/X]. Also called the mean.

* Discrete random variables:

Suppose X can take any value in the set &.

E[X]= ) p()

reX




Expectation and Variance

The variance of Xis Var(X).
Var(X) = E[(X — E[X])"]

* Discrete random variables:

Var(X) = 3 (¢ — u)*p(a)

reX




MULTIPLE RANDOM VARIABLES



Joint Probability

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e \We call this a joint ensemble and write
p(z,y) = prob(X =z and Y = y)

zZ

TN

p(X,y,z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(z) =) plz,y)
Y

e This is like adding slices of the table together.

y p(x.y)

e Another equivalent definition: p(z) = >, p(z|y)p(y).

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.

p(zly) = p(z,y)/p(y)

v
e

Z\

p(x.ylz)

Slide from Sam Roweis (MLSS, 2005)



Independence and
Conditional Independence

e Two variables are independent iff their joint factors:

p(z,y) = p(z)p(y)

p(x.y)
p(x)

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,y|z) = p(z|2)plylz) V=

Slide from Sam Roweis (MLSS, 2005)



