
Workflow and debugging
10-601 Recitation
Fall 2020

How to write code, in a better way?
Why don’t we start with a good IDE or text editor?

- IDEs: Spyder, PyCharm, Eclipse, CLion, XCode, ...
- Text editors: Visual Studio Code, Sublime Text, Atom, …

Benefits:

- Auto-completion, Syntax checks, Formatting options
- Interactive environment, Debugger, Command line support

An example workflow
Modularity: think about the conceptual flow rather than the concrete implementation.

⬅ Don’t do this!

……………………..
……………………..………
………………………………
………………………………………
………………………………………
………………………………………
………………………………………
……………………………………………
……………………………………………
………………………………………
………………………………

An example workflow
Modularity: think about the conceptual flow rather than the concrete implementation.

……………………..
……………………..………
………………………………
………………………………………
………………………………………
………………………………………
………………………………………
……………………………………………
……………………………………………
………………………………………
………………………………

Read data

Train a
model

Predict on
train data

Compute
train error

Modularity: think about the conceptual flow rather than the concrete implementation.

An example workflow

def read_data(input_file):
……………………..………
………………………………

def train(x_train, y_train):
………………………………
………………………………………

def predict(model, x_train):
………………………………………
………………………………………

def error(y_train, y_pred):
………………………………

input_file = sys.argv[0]
x_train, y_train = read_data(input_file)

model = train(x_train, y_train)

y_pred = predict(model, x_train)

train_error = error(y_train, y_pred)

Read data

Train a
model

Predict on
train data

Compute
train error

An example workflow
Modularity: think about the conceptual flow rather than the concrete implementation.

- Separation of complex functionalities
- Better readability
- Easier debugging and maintenance
- Facilitate code reuse

An example workflow
Write your awesome code, as well as your awesome comments.

def read_data(input_file):
 """Code author: Matt Gormley"""
 with open(input_file, 'r') as f:
 lines = f.readlines()

 # Drop header
 lines = lines[1:]
 # Convert to list of lists of strings
 rows = [l.strip().split('\t') for l in lines]
 # Convert to numpy array
 return np.array(rows)

An example workflow
After finishing your code, do some unit tests right away, if possible.

- Unit test (noun.): test for the individual components of a software [Modularity!]
- A good practice is to separate tests from the main program

def transpose(A):
 # do something plausible
 return A

A = np.array([[1, 2], [3, 4]])
A_true_transpose = np.array([[1, 3], [2, 4]])
assert np.array_equal(transpose(A), A_true_transpose)

An example workflow
After finishing your code, an error occurs!

- Understand the error message
- Google it if you don’t understand the error
- Quickly locate your error from the error message

An example workflow
After finishing your code, an error occurs!

- Understand the error message
- Google it if you don’t understand the error
- Quickly locate your error from the error message

- Use a debugger
- PDB for Python, JDB for Java, GDB/LLDB for C++; Debugging tools in IDE
- Print relevant variables to see if the program works as expected
- Logging in Python/Java: advanced print for debugging

Coding Style Conventions
- Why have good style?
- Not required for the class but ….

- Make it easier when you are coding through ideas
- Makes debugging easier

- What’s a good coding style to follow?
- Python PEP 8 Style Guide
- Full guide can be found if you just google that

Spacing and Maximum Line Length
- Tabs vs Spaces

- 1 tab or 4 spaces
- Stay consistent, don’t mix!!!

- Try using blank lines to separate different chunks of code
- Do not have more than 79 characters per line

- Usually text editors will tell you how many characters there are
on a certain line

Importing and Comments
- Import packages on seperate lines, not on same

line!
- Do not import wildcard

- Never do: “from os import *”
- Comments are super important and useful!

- When looking back it's easier to figure out what
certain chunks of code do

- Helps with debugging
- Use # for commenting out a single line

Variable Naming Conventions
- Do not give variables and functions non descriptive names:

- Bad examples: “x”, “a”, “myFun”
- Having descriptive variable and function names is similar to good

commenting
- Easier coding and debugging
- You won’t forget what a variable is being used for if it’s descriptive

- Constant names should be in all caps
- In general DON’T USE global variables

Debugging: Common Python Errors

- SyntaxError: invalid syntax
- Forgetting the parens around the arguments to print
- Forgetting the colon at the end of the condition in an if statement
- Trying to use a reserved word as a variable name

- IndentationError: expected an indented block
- Forgetting to indent the statements within a compound statement (such as

the bodies of if and for)
- Forgetting to indent the statements of a user-defined function

- IndexError: list index out of range
- Trying to access an item in a list at an invalid index

Debugging: Common Python Errors

- KeyError
- Trying to access a non-existing key in a dict

- TypeError: 'list' object cannot be interpreted as an integer
- Forgetting the len() call in a for loop statement.

- IndexError
- Trying to access an item in a list at an invalid index

- UnboundLocalError: local variable 'foobar' referenced before assignment
- Using a local variable (with the same name as a global variable) in a function

before assigning the local variable

