
Recitation 5
Logistic Regression

10-601: Introduction to Machine Learning

3/12/2021

This recitation consists of 3 parts: In part 1, we will go over how to represent data
features using dense and sparse representation. Part 2 will go over the negative log
likelihood and gradient derivations for binary logistic regression, as well as a small
toy example. Part 3 will focus on multinomial logistic regression. The materials were
designed to help you with Homework 4.

1 Feature Vector Representation

In many machine learning problems, we will want to find the set of parameters that optimize
our objective function. Usually, a naive (dense) representation will suffice, but sometimes
careful consideration must be taken to afford tenable run times.

1. A Naive Representation

(a) Consider a feature vector x defined by x0 = 1, x1 = 0, x2 = 2, x3 = 0, x4 = 1. Write
the pseudo code to naively represent such a vector in Python.

X = [1, 0, 2, 0, 1]

(b) One thing we often want to do in many machine learning algorithms is take the dot
product of the feature vector with a parameter vector. Given the naive representa-
tion above, write a function that takes the dot product between two vectors.

def dot(X, W):

product = 0.0

# TODO: Implement dot product

return product

def dot(X, W):

product = 0.0

for x_i, w_i in zip(X, W):

product += x_i * w_i



10-601: Recitation 5 Page 2 of 10 3/12/2021

return product

(c) Now let our parameter vector w be defined by w0 = 0, w1 = 1, w2 = 2, w3 = 3, w4 =
4. Time how long it takes to take the dot product x ·w. What if you append 10, 000
zeros on the end of both x and w

In a jupyter python3 environment:

W = [0, 1, 2, 3, 4]

%time dot(X, W)

X = X + [0] * 10000

W = W + [0] * 10000

%time dot(X, W)

As a note to TAs: If you choose to use python during recitation, it might be good to
show how even using numpy-backed arrays will not save you from naively taking the dot
product between sparse vectors.

2. Take Advantage of Nothing

(a) Something key to notice in the larger x and w is that they have a large amount of
zeros. This is called being sparse (as opposed to being dense). We can hope to take
advantage of this. Write a better representation of x in code that takes advantage
of sparsity.

X = {

0: 1,

2: 2,

4: 1,

}

(b) Like in the question before, write a function that takes the dot product between
two vectors x and w, this time taking advantage of the fact that x is sparse.

def sparse_dot(X, W):

product = 0.0

# TODO: Implement sparse dot product

return product

def sparse_dot(X, W):

product = 0.0
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for i, v in X.items():

product += W[i] * v

return product

(c) Now time this new dot product function on extremely sparse inputs and compare
to the naive representation.

%time dot(X, W)

3. Sparse Vector Operations

Define an add function that adds a sparse vector to a dense vector

def sparse_add(X, W):

# TODO: Implement updating W by adding values in X

return W

def sparse_sub(X, W):

# TODO: Implement updating W by subtracting values in X

return W

def sparse_add(X, W):

for i, v in X.items():

W[i] += v

return W

def sparse_sub(X, W):

for i, v in X.items():

W[i] -= v

return W
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2 Binary Logistic Regression

1. For binary logistic regression, we have the following dataset:

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ RM , y(i) ∈ {0, 1}

A couple of reminders from lecture

1.

σ(θTx(i)) =
1

1 + exp(−θTx(i))
=

exp(θTx(i))

1 + exp(θTx(i))

2.

p
(
y(i) | x(i),θ

)
=

{
σ(θTx(i)) y(i) = 1

1− σ(θTx(i)) y(i) = 0

= σ(θTx(i))y
(i)

(1− σ(θTx(i)))(1−y
(i))

3.
φ(i) = σ(θTx(i))

4.
∂σ(z)

∂z
= σ(z)(1− σ(z))

5. if z = f(θ) then
∂σ(f(θ))

∂θj
= σ(f(θ))(1− σ(f(θ)))

∂f(θ)

∂θj

In binary logistic regression, this is

∂φ(i)

∂θj
= φ(i) ∗ (1− φ(i)) ∗ ∂θ

Tx(i)

∂θj

6. remember that
∂ log(f(z))

∂z
=

1

f(z)

∂f(z)

∂z

2. (a) Write down our objective function, J(θ), which is 1
N

times the negative conditional
log-likelihood of data, in terms of N and p

(
y(i) | x(i),θ

)
where θ ∈ RM . As usual,

assume y(i) are independent and identically distributed.
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J(θ) = − 1

N
log(

N∏
i=1

p
(
y(i) | x(i),θ

)
)

J(θ) = − 1

N

N∑
i=1

log(p
(
y(i) | x(i),θ

)
)

(b) Write J(θ) in terms of σ(θTx(i)). simplify as much as possible. Then write in terms
of φ(i)

J(θ) = − 1

N

N∑
i=1

log
(
σ(θTx(i))y

(i)

(1− σ(θTx(i)))(1−y
(i))
)

= − 1

N

N∑
i=1

(y(i) log
(
σ(θTx(i))

)
+ (1− y(i)) log

(
1− σ(θTx(i))

)
)

= − 1

N

N∑
i=1

(y(i) log
(
φ(i)
)

+ (1− y(i)) log
(
1− φ(i)

)
)

(c) In stochastic gradient descent, we use only a single x(i). Given φ(i) = σ(θTx(i)) and

J (i)(θ) = −y(i) log(φ(i))− (1− y(i)) log(1− φ(i))

Show that the partial derivative of J (i)(θ) with respect to the jth parameter θj is
as follows:

∂J (i)(θ)

∂θj
= (σ(θTx(i))− yi)x(i)j

Remember,
∂φ(i)

∂θj
= φ(i) ∗ (1− φ(i)) ∗ ∂θ

Tx(i)

∂θj

note
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∂θTx(i)

∂θj
= x

(i)
j

∂J (i)(θ)

∂θj
= − y

(i)

φ(i)

∂φ(i)

∂θj
− (1− y(i))

1− φ(i)

∂(1− φ(i))

∂θj

= − y
(i)

φ(i)

∂φ(i)

∂θj
+

(1− y(i))
1− φ(i)

∂φ(i)

∂θj

= − y
(i)

φ(i)
φ(i) ∗ (1− φ(i)) ∗ ∂θ

Tx(i)

∂θj
+

(1− y(i))
1− φ(i)

φ(i) ∗ (1− φ(i)) ∗ ∂θ
Tx(i)

∂θj

= (−y(i)(1− φ(i)) + (1− y(i))φ(i)))x
(i)
j

= (−y(i) + y(i)φ(i) + φ(i) − y(i)φ(i))x
(i)
j

= (φ(i) − y(i))x(i)
j

= (σ(θTx(i))− yi)x(i)
j

3. Let’s go through a toy problem.

Y X1 X2 X3

1 1 2 1
1 1 1 -1
0 1 -2 1

(a) What is J(θ) of above data given initial θ =

−2
2
1

?

J(θ) = −1
3
[log(σ(3)) + log(σ(−1)) + log(1− σ(−5))] ≈ 0.46

(b) Calculate ∂J(1)(θ)
∂θ1

, ∂J
(1)(θ)
∂θ2

and ∂J(1)(θ)
∂θ3

for first training example. Note that σ(3) ≈
0.95.



10-601: Recitation 5 Page 7 of 10 3/12/2021

∂J (1)(θ)

∂θ1
= (σ(3)− 1)1 = −0.05

∂J (1)(θ)

∂θ2
= (σ(3)− 1)2 = −0.10

∂J (1)(θ)

∂θ3
= (σ(3)− 1)1 = −0.05

(c) Calculate ∂J(2)(θ)
∂θ1

, ∂J
(2)(θ)
∂θ2

and ∂J(2)(θ)
∂θ3

for second training example. Note that σ(−1) ≈
0.25.

∂J (2)(θ)

∂θ1
= (σ(−1)− 1)1 = −0.75

∂J (2)(θ)

∂θ2
= (σ(−1)− 1)1 = −0.75

∂J (2)(θ)

∂θ3
= (σ(−1)− 1)− 1 = 0.75

(d) Assuming we are doing stochastic gradient descent with a learning rate of 1.0, what
are the updated parameters θ if we update θ using the second training example?

−2
2
1

− 1

−0.75
−0.75
0.75

 =

−1.25
2.75
0.25


(e) What is the new J(θ) after doing the above update? Should it decrease or increase?

J(θ) = 0.09

It should decrease for logistic classifier to learn.
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(f) Given a test example where (X1 = 1, X2 = 3, X3 = 4), what will the classifier
output following this update?
σ(θTX) > 0.5 =⇒ Y = 1
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3 Multinomial Logistic Regression (Optional Learning)

1. Definition

Multinomial logistic regression, also known as softmax regression or multiclass logistic
regression, is a generalization of binary logistic regression.

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ RM , y(i) ∈ {1, . . . , K} for i = 1, . . . , N

Here N is the number of training examples, M is the number of features, and K is the
number of possible classes, which is usually greater than two to be interesting.

p
(
Y (i) = y(i) | x(i),Θ

)
=

exp
(
Θy(i)x

(i)
)∑K

j=1 exp (Θjx(i))
= softmax(Θx(i))y(i) (1)

where Θ is the parameter matrix of size K × (M + 1), and Θy(i) denotes the y(i)th row

of Θ, which is the parameter vector for the y(i)th class.

2. Suppose K = 4 and N = 10, M = 3. What could Θ look like?

Θ will have K rows because there are K distinct labels. Θ will have M+1 columns
because there are M features plus a bias term. So any K by (M+1) matrix is a possible
candidate for Θ.


0.5 −2 5 7
0 0.22 6 1
9 2 0.1 6
7 −0.5 0 1


3. A one-hot encoding is a vector representation of a one dimensional integer defined as

such: a vector c of length K is a one-hot encoding of integer n ⇐⇒ |c| = K and for
all j 6= n, cj = 0 and cn = 1. Give some examples of one-hot encodings where K = 5.

Let n = 1, =⇒ c = [1, 0, 0, 0, 0]T

Let n = 3, =⇒ c = [0, 0, 1, 0, 0]T

Let n = 4, =⇒ c = [0, 0, 0, 1, 0]T
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4. In multinomial logistic regression, we form the matrix T where the ith row of T is the
one-hot encoding of label y(i). Draw T if y = [1, 3, 1, 4, 4]T and K = 4.


1 0 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 0 0 1




	Feature Vector Representation
	Binary Logistic Regression
	Multinomial Logistic Regression (Optional Learning)

