RECITATION 5
LOGISTIC REGRESSION

10-601: INTRODUCTION TO MACHINE LEARNING
3/12/2021

This recitation consists of 3 parts: In part 1, we will go over how to represent data
features using dense and sparse representation. Part 2 will go over the negative log
likelihood and gradient derivations for binary logistic regression, as well as a small
toy example. Part 3 will focus on multinomial logistic regression. The materials were
designed to help you with Homework 4.

1 Feature Vector Representation

In many machine learning problems, we will want to find the set of parameters that optimize
our objective function. Usually, a naive (dense) representation will suffice, but sometimes
careful consideration must be taken to afford tenable run times.

1. A Naive Representation

(a) Consider a feature vector x defined by o = 1,21 = 0,29 = 2,23 = 0,24 = 1. Write
the pseudo code to naively represent such a vector in Python.

X = [1: O, 2; O, 1]

(b) One thing we often want to do in many machine learning algorithms is take the dot
product of the feature vector with a parameter vector. Given the naive representa-
tion above, write a function that takes the dot product between two vectors.

def dot(X, W):
product = 0.0
TODO: Implement dot product

return product

def dot(X, W):
product = 0.0
for x_i, w_i in zip(X, W):
product += x_i * w_i

10-601: Recitation 5 Page 2 of 10 3/12/2021

return product

(¢) Now let our parameter vector w be defined by wy = 0, w; = 1,wy = 2, w3 = 3,wy =
4. Time how long it takes to take the dot product x-w. What if you append 10, 000
zeros on the end of both x and w

In a jupyter python3 environment:

w=1[0,1, 2,3, 4]
%time dot (X, W)

X X + [0] * 10000
W W + [0] * 10000
%time dot (X, W)

As a note to TAs: If you choose to use python during recitation, it might be good to
show how even using numpy-backed arrays will not save you from naively taking the dot
product between sparse vectors.

2. Take Advantage of Nothing

(a) Something key to notice in the larger x and w is that they have a large amount of
zeros. This is called being sparse (as opposed to being dense). We can hope to take
advantage of this. Write a better representation of x in code that takes advantage
of sparsity.

X =
0: 1,
2: 2,
4: 1,

}

(b) Like in the question before, write a function that takes the dot product between
two vectors x and w, this time taking advantage of the fact that x is sparse.

def sparse_dot(X, W):
product = 0.0
TODO: Implement sparse dot product

return product

def sparse_dot(X, W):
product = 0.0

10-601: Recitation 5 Page 3 of 10 3/12/2021

for i, v in X.items():
product += W[i] * v
return product

(¢) Now time this new dot product function on extremely sparse inputs and compare
to the naive representation.

%time dot (X, W)

3. Sparse Vector Operations

Define an add function that adds a sparse vector to a dense vector

def sparse_add(X, W):
TODO: Implement updating W by adding values in X

return W
def sparse_sub(X, W):

TODO: Implement updating W by subtracting values in X

return W

def sparse_add(X, W):
for i, v in X.items():
Wli] += v
return W

def sparse_sub(X, W):
for i, v in X.items():
Wil —= v
return W

10-601: Recitation 5 Page 4 of 10 3/12/2021

2 Binary Logistic Regression
1. For binary logistic regression, we have the following dataset:

D= {(x(l), y(l)) e (X(N),y(N))} where x¥ € RM) € {0,1}

A couple of reminders from lecture

1.

T (1
o(6"x") = 1 eXp(l—eTxm) 1 jxfég(;;;?w
2. » |
01200 {1y oo
= o(0Tx)Y" (1 — o(6TxD))—")
3.
PV = U(GTX(i))
B do(z)
7 o)1 - o(2)
5. if » = f(6) then
P = a7~ o(f(6))
In binary logistic regression, this is
a;;;) s) ae;;(n

6. remember that

dlogl(f(=) 1 0f(2)
0z f(z) 0z

2. (a) Write down our objective function, J(8), which is + times the negative conditional

log-likelihood of data, in terms of N and p (y(i) | x]\(]i), 9) where 8 € RM. As usual,
assume 4y are independent and identically distributed.

10-601: Recitation 5 Page 5 of 10 3/12/2021

N

7(0) =~ toa([T p (4 | x©,)

=1

1 & o
J(0) = == D _los(p (v | x".0))
=1

(b) Write J(0) in terms of o(87x). simplify as much as possible. Then write in terms
of ¢t

N
1 o ,
J(0) = — > log (0(9TX(7‘))7J((1 — o(6Tx)) 1! >>>
=1
1 <L, . _
= =5 217 og (¢(6"x")) + (1 = yP)log (1 - o(8"x)))

N
- —; > (" og () + (1 =y log (1 — ¢))

(c) In stochastic gradient descent, we use only a single xV. Given ¢V = ¢(67x®) and
J9(6) =~y log(69) — (1 —) log(1 —)

Show that the partial derivative of J@(8) with respect to the jth parameter ; is

as follows: o (0)
9J (0 T (i iy ,.(8)
Remember,
Ot 007x)

— ¢ (1- 97

06; a0,

note

10-601: Recitation 5 Page 6 of 10 3/12/2021
8073((@') (i)
= X
d0; J
0I0(0) _ 4P 36 (1—y9) 31— ¢
00, “ 9l 08, 1—¢<> aej
y® 3(/5 y@) og"”
“ o0 08, 1f¢<z> 06;
@) N 00Tx (1—9y9) 00Tx"
Yy (0) Yy (i) _ Bl
= g (19 T+ I (1 9l0)
= (- y“(¢0) + (1 —yD)p"))x;”
= (¢ +yz>¢ + ¢ —yDe)x)
= (¢ =y
= (o(6"x") —y')x;

3. Let’s go through a toy problem.

Y | X; | Xo | X3
111 2 1
111 1] -

0] 1 |-2]1

(a) What is J(@) of above data given initial @ = | 2 |7

J(6) =

aJM () aJM)
(b) Calculate ‘]801(0), ‘]89(0
0.95.

1

—3[log(c(3)) +log(o(—1)) +log(1 — o(=5))] ~ 0.46

nd a‘]()(0 for first training example. Note that o(3) ~

10-601: Recitation 5 Page 7 of 10 3/12/2021

ajge)fe) =(0(3) —1)1 =—-0.05
8J§9)2(0) = (c(3) —1)2=—-0.10
o ;23(9) — (0(3) = 1)1 = —0.05
(c) Calculate %;1(9), %0)2(9) and %;3(9) for second training example. Note that o(—1) ~
0.25.

0J2)(0)

e (o(—1) — 1)1 = —0.75
0J@(0) B

o, (o(—1)— 1)1 = —0.75
0J@(6) B

Fr (o(~=1)—1) = 1=0.75

(d) Assuming we are doing stochastic gradient descent with a learning rate of 1.0, what
are the updated parameters 0 if we update @ using the second training example?

-2 —0.75 —1.25
2 | =1|-075] = | 2.75
1 0.75 0.25

(e) What is the new J(0) after doing the above update? Should it decrease or increase?
J(8) = 0.09

It should decrease for logistic classifier to learn.

10-601: Recitation 5 Page 8 of 10 3/12/2021

(f) Given a test example where (X; = 1,Xs = 3, X35 = 4), what will the classifier
output following this update?
c(07X)>05 = Y =1

10-601: Recitation 5 Page 9 of 10 3/12/2021

3 Multinomial Logistic Regression (Optional Learning)

1. Definition

Multinomial logistic regression, also known as softmax regression or multiclass logistic
regression, is a generalization of binary logistic regression.

D= {(x(l),y(l)),...,(X(N),y(N))} where x e RM 4@ e {1,... K} fori=1,...,N

Here N is the number of training examples, M is the number of features, and K is the
number of possible classes, which is usually greater than two to be interesting.

exp (@ymx(i))

YO =@ | xD @) =
p(y |) Zﬁilexp(@jx(i))

= softmax(@x(i))y(i) (1)

where © is the parameter matrix of size K x (M +1), and ©,:) denotes the y@th row
of ®, which is the parameter vector for the y”th class.

2. Suppose K =4 and N = 10, M = 3. What could © look like?

® will have K rows because there are K distinct labels. ® will have M+1 columns
because there are M features plus a bias term. So any K by (M+1) matrix is a possible
candidate for ©.

05 -2 5 7
0 022 6 1
9 2 01 6
7 =05 0 1

3. A one-hot encoding is a vector representation of a one dimensional integer defined as
such: a vector ¢ of length K is a one-hot encoding of integer n <= |c| = K and for
all 7 #n, ¢c; =0 and ¢, = 1. Give some examples of one-hot encodings where K = 5.

Letn=1, = c=[1,0,0,0,0]"
Let n =3, = ¢=10,0,1,0,0]"
Let n=4, = ¢=[0,0,0,1,0]"

10-601: Recitation 5 Page 10 of 10 3/12/2021

4. In multinomial logistic regression, we form the matrix T where the ith row of T is the
one-hot encoding of label 4. Draw T if y = [1,3,1,4,4]" and K = 4.

OO = O =
OO OO
o OO
_ = O O

	Feature Vector Representation
	Binary Logistic Regression
	Multinomial Logistic Regression (Optional Learning)

