RECITATION &
(GRAPHICAL MODELS

10-601: INTRODUCTION TO MACHINE LEARNING
4/23/2021

1 Warm-Up: Probability Review

X; | X3 | Probability
0 0 0.45
1 0 0.15
0 1 0.2
1 1 0.2

Table 1: Joint Probability Table

1. What is the joint probability P(X; =1, Xy = 0)? From table, 0.15.
2. What is the marginal probability P(X, = 0)7 Add the table items, 0.45 4 0.15 = 0.6.

3. What is the conditional probability P(X; = 1|X, = 0)7
Definition of conditional probability:

P(X;=1,X,=0) 0.15
P(X, =0) 0.6

=0.25
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Figure 1: A and B are d-seperated by C in the first two graphs, but not in the third.

2 Bayesian Networks

2.1 D-seperation

Suppose we have three sets of random variables (X, Y, and Z). X and Y are d-seperated
by Z (and therefore conditionally independent given Z) if and only if every path from from
every variable in X to every variable in Y is blocked. A path is blocked if either:

o Arrows meet head-to-tail or tail-to-tail at a node in Z

e Arrows on the path meet head-to-head at a node, and neither that node, nor any of
its descendants, is in Z

2.2 Practice problems

Figure 2: Graphical Model

1. Write down the factorization of the above directed graphical model.
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P(X17X27X37X47X5> - P(Xl)P<X2)P(X3|X1~X‘Z)P(X4‘X5)P(X5

2. Given X3, what are the relationships (cond. independent or not) between the random
variables listed below

[ ] (Xl_X4>|X3
[ ] (Xl_XQ)’Xg
[} <X4_X5)’X3

1. conditionally independent 2. not conditionally independent 3. conditionally inde-
pendent

3. Given the graph structure and assuming all variables are boolean valued, how many
parameters are required to learn the graphical model?

1+1+44+24+2=10

4. Without the Bayesian network, how many parameters are required to learn the joint
probability model of these five random variables?

2° —1=31
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3 Expectation Maximization

Consider the following problem set-up. We have two coins, coin A and coin B. Each coin
has a probability of coming up heads that we would like to estimate, i.e. 64,05. Suppose
we now have the following procedure:

e Randomly choose one of the coins.
e Using the chosen coin, perform 6 independent coin flips.
e Repeat the process 3 times.

Now suppose we observe the following data for each of the 3 trials:

Trial 1l 1 H|H|H|H H|T
Trial 2 | T | T |T|T|T|H
Trial 3 | H| T | T |T|T|H

Table 2: Coin Flip Data

If we knew what coin was selected for each trial, we could easily use MLE estimation to
estimate 04, 0p. Instead, we will assume that we don’t know which coin was selected, and
will have to learn the latent factor describing which coin was selected to maximize the

likelihood.

We would like to use the EM algorithm to estimate 0 A, 0. Rather than picking the single
most likely completion of the missing coin assignments on each iteration, the expectation
maximization algorithm computes probabilities for each possible completion of the missing
data, using the current parameters. These probabilities are used to create a weighted training
set consisting of all possible completions of the data.

To estimate the unknown values in the E-step at iteration t, for each trial ¢ we will compute
weights «;, 8; representing how likely the data is to come from coin A versus coin B.

As a results,
B P(Di]0y)
P(D;|6) + P(D;0%))

Q;

and,

P(D;|0"

- 0 ARV
P(D;|0y) —l—P(DimB)()

where D, is the data for trial 7.

Once we have estimated «;, 3; for each trial, we will then perform the M-step of maximizing
the parameters 64, 6p5.
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To do so, we will compute

e _ Z «; * Number of heads in trial ¢
A «; * Number of heads in trial i + «; * Number of tails in trial ¢

i

G+ Z B; * Number of heads in trial ¢
B - B; * Number of heads in trial ¢ + £; * Number of tails in trial ¢

Essentially, we are performing an MLE estimate weighted by our best guess of which coin
was selected for each trial under our current parameters.

Suppose our initial guesses are éff) = 0.6, ég) =0.5
1. Compute «;, 5; to 2 decimal places for each trial i.

Trial 1: P(D]6)) = 0.6° % 0.4
P(Dy|0%) = 0.5° %05

0.65%0.4 —~
M = gemoarossaas ~ 0-67

B~ 0.33

Trial 2: P(D;]6)) = 0.6 % 0.4
P(Dy|0%) = 0.5! % 0.5°
(= — 060D ) 98

0.61%0.454+0.53%0.53
By ~ 072

Trial 3: P(D1|ég))) — 0.62 %044
P(D,|0)) = 0.5 % 0.5

2,044
Q2 = 0.62*8,.544»%:1;2*0_54 ~ 0.37

Ba =~ 0.63

2. With the found values of «;, 5;, compute 9:(41), ég) in the M-step

e _ Z «; * Number of heads in trial ¢
A — o * Number of heads in trial 7 + «; * Number of tails in trial i
D _ 0.67%5+0.28%1+0.37%2 0552
A 0.67%5+0.28%1+0.37+2+0.67*1+0.28*5+0.37 x4
G+ _ Z B; * Number of heads in trial 7
B - B; * Number of heads in trial ¢ + [3; * Number of tails in trial ¢

= 0.360

G _ 0.33%5+0.72% 1+ 0.63 * 2
B 0335407251 4+063%2+033%x1+0.72%5+0.63%4
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4 Gaussian Naive Bayes

Priors 4D{Y =1}
Py=1)=">"tv "

|D|
#D{Y = 0}
PY=0)="——F—

|D|

Class conditional means, variances
1 N
fimg = = Y _XWx I(Y® = k)

Zizl I(Y(Z) - k) i=1

1 . .
~2 o (3) ~ 2 (3) _
0, = XY — fi) x (Y =k

1. Write down the Naive Bayes assumption.

Naive Bayes assumes that features are conditionally independent given the class, and
weights each feature equally.

2. When would we use Gaussian Naive Bayes?
When X; is continuous, we may use Gaussian Naive Bayes to assume that P(Xi]Y =
yk) follows a normal distribution.

3. Consider a simple Gaussian Naive Bayes example. Let’s say we want to use predict if
a person will go hiking today based on the temperature outside.

H Temperature (F) Hiking?

50.8 No
67.6 Yes
39.7 No
36.5 No
72.4 Yes
(a) Step 1: Find the class priors.
D{Y =Yes
PV = ves) = 224 st o
D]
DY =N
P(y = Noy = FPL R0 g5
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(b) Step 2: Find the class conditional mean, variance for X (temperature).

For each class k, find fiemp x, the mean over all values for the temperature where
the class is k.

1
SV I(YO) =Yes)

Htemp,Yes =

5
Z xl(f?mp « I(Y® = Yes)
i=1

1
= 5(50.8*0—1—67.6*1+39.7*O—|—36.5*O—|—72.4* 1) =70.0

5

. 1 (i) :
emp,No — : Xém *IY(z):NO
Htemp,N Z?ZI I(Y® = No) ZZI temp ( )

1
= 5(50.8 14+ 67.6%x0+39.7%x1+36.5+1+724%0)=42.33

Similarly, for each class k, calculate the variance.

5
1 ; ,
~2 _ (4) - 2 (i) _
o = E Xiemp — Mtempyes) * (Y =Yes

1
5((67.6 —70)% 4 (72.4 — 70)?)) = 5.76
Thus, the standard deviation o is v/5.76 = 2.4

5

1 ; .
A2 (1) n 2 (1) —
o = g Xiemp — Mtemp.No)~ * (Y = No
temp,No 2?21 [(Y(Z) NO) 7;:1( temp temp, N ) ( )

1
g((50.8 —42.33)%* + (39.7 — 42.33)%) + (36.5 — 42.33)%) = 37.55

Thus, the standard deviation o is v/37.55 = 6.128

(c) Calculate the following class-conditional probabilities for Temperature = 65 :

P(Xiemp = 69.5|Y = k) We estimate the class-conditional probability as a Gaus-

sian distribution:
X ~N(p, o?)

For class Y=Yes:
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\% 27TO_temp,Yes Otemp,Y es

1 1 /69.5—70.0\2
- exp| (== —0.1627
Vome24 ¥ ( 2 ( 2.4 ) )

For class Y=No:

1 1 - em es ?

1 1 (z— Htemp,No ’
PXenL :695Y:N = —_— _ s
( o | O) \% 271-0'1‘,emp,1\70 o ( 2 ( Otemp,No )

1 1 /69.5 —42.33\°
— x| o (2222 ) S p46e — 19
Vo %6128 F ( 2 ( 6.128 > )

(d) The red graph represents the class conditional mean for Y=Yes, and the green
graph represents the class conditional mean for Y=No. Based on your results
from the last question, interpret the graph below and explain how the output
predictions P(Y = k|Xyemp) are affected by different feature values.

-0:5

Figure 3: Class conditional probability for temperature, Y=Yes

Consistent with the answer from part c), we can see that at a temperature of
69.5 Fahrenheit the class-conditional probability for class ”Yes” (the red graph)
is around 0.1627, while for class "No” it is around 0.

Within this range (temperature is between 65 and 75), ”Yes” will always be
predicted as an output.
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