
Recitation 2
Decision Trees

10-301/10-601: Introduction to Machine Learning

02/11/2021

1 Programming: Tree Structures and Algorithms

Topics Covered:

• Depth and height of trees

• Recursive traversal of trees

– Depth First Search

∗ Pre Order Traversal

∗ Inorder Traversal

∗ Post Order Traversal

– Breadth First Search (Self Study)

• Debugging in Python

Questions:

1. Depth and height of a node examples

2. In class coding and explanation of Depth First Traversal in Python.

Pre-order, Inorder and Post-order Tree Traversal

This class represents an individual node

class Node:

def __init__(self,key):

self.left = None

self.right = None

self.val = key

A function to do preorder tree traversal

def printPreorder(root):

if root is not None:

10-301/10-601: Recitation 2 Page 2 of 8 02/12/2021

First print the data of node

print(root.val, "\t",end="")

Then recurse on left child

printPreorder(root.left)

Finally recurse on right child

printPreorder(root.right)

A function to do inorder tree traversal

def printInorder(root):

if root is not None:

First recur on left child

printInorder(root.left)

then print the data of node

print(root.val, "\t",end="")

now recur on right child

printInorder(root.right)

A function to do postorder tree traversal

def printPostorder(root):

if root is not None:

First recurse on left child

printPostorder(root.left)

then recurse on right child

printPostorder(root.right)

now print the data of node

print(root.val, "\t",end="")

Main body of the program

root = Node(1)

root.left = Node(2)

root.right = Node(3)

root.left.left = Node(4)

root.left.right = Node(5)

print("\n")

10-301/10-601: Recitation 2 Page 3 of 8 02/12/2021

input("press any key to display Preorder traversal")

print ("Preorder traversal of binary tree is: ")

printPreorder(root)

print("\n")

input("press any key to display Inorder traversal")

print ("Inorder traversal of binary tree is")

printInorder(root)

print("\n")

input("press any key to display Postorder traversal")

print ("Postorder traversal of binary tree is")

printPostorder(root)

print("\n")

Code Output

Preorder traversal of binary tree is:

Inorder traversal of binary tree is

Postorder traversal of binary tree is

10-301/10-601: Recitation 2 Page 4 of 8 02/12/2021

2 ML Concepts: Mutual Information

Information Theory Definitions:

• H(Y) = −
∑

y∈values(Y) P (Y = y) log2 P (Y = y)

• H(Y | X = x) = −
∑

y∈values(Y) P (Y = y|X = x) log2 P (Y = y|X = x)

• H(Y | X) =
∑

x∈values(X) P (X = x)H(Y | X = x)

• I(X;Y) = H(Y)−H(Y | X)

Exercises

• Calculate the entropy of tossing a fair coin.

• Calculate the entropy of tossing a coin that lands only on tails. Note: 0 · log2(0) = 0.

• Calculate the entropy of a fair dice roll.

• When is the mutual information I(X;Y) = 0?

10-301/10-601: Recitation 2 Page 5 of 8 02/12/2021

Used in Decision Trees:

Outlook (X1) Temperature (X2) Humidity (X3) Play Tennis? (Y)
sunny hot high no
overcast hot high yes
rain mild high yes
rain cool normal yes
sunny mild high no
sunny mild normal yes
rain mild normal yes

overcast hot normal yes

1. Using the dataset above, calculate the mutual information for each feature (X1, X2, X3)
to determine the root node for a Decision Tree trained on the above data.

2. Calculate what the next split should be.

3. Draw the resulting tree.

10-301/10-601: Recitation 2 Page 6 of 8 02/12/2021

3 ML Concepts: Construction of Decision Trees

In this section, we will go over how to construct our decision tree learner on a high level.
The following questions will help guide the discussion:

1. What exactly are the tasks we are tackling? What are the inputs and outputs?

2. How should we represent our decision tree? With which data structures?

3. At each node of the tree, what do we need to store?

4. At each node of the tree, what do we need to do?

5. What are some edge cases we need to think about?

10-301/10-601: Recitation 2 Page 7 of 8 02/12/2021

4 Programming: Debugging w/ Trees

pdb and common commands

• import pdb then pdb.set trace()

• n (next)

• ENTER (repeat previous)

• q (quit)

• p variable (print value)

• c (continue)

• b (breakpoint)

• l (list where you are)

• s (step into subroutine)

• r (continue until the end of the subroutine)

• ! python command

Real Practice

• In this (extremely contrived) example, we will reversing a 2d list in python.

Buggy Code

• add pdb.set trace() before the line that is causing the error

#reverse the rows of a 2D array

def reverse(original):

rows = len(original)

cols = len(original[0])

new = [[0]*cols]*rows

for i in range(rows):

for j in range(cols):

oppositeRow = rows-i

new[oppositeRow][j]=original[i][j]

return new

a = [[1,2],

[3,4],

[5,6]]

print(reverse(a))

10-301/10-601: Recitation 2 Page 8 of 8 02/12/2021

Buggy Code

import numpy as np

Mat = [[1,0,0,0],

[0,1,1,0],

[1,0,0,0],

[0,1,-1,1],

[0,0,1,0]]

#biggestCol takes a binary - 2d array without headers and returns

#the index of the column with the most non-zero values

def biggestCol(Mat):

#get the number of columns and initialize variables

numCol = len(Mat[0])

maxValue = -1

maxIndex = -1

#iterate over the columns of the matrix

for col in range(numCol):

#counts the number of nonzero values

count = np.count_nonzero(Mat[:,col])

#change max if needed

if count > maxValue:

maxValue = count

maxIndex = col

return maxIndex

#helper

def getCount(Mat,col):

numRow = len(Mat)

count = 0

for row in range(numRow):

count+= Mat[row][col] == 1

return count

#correct answer is column index 2!

print("column index %d has the most non-zero values" % biggestCol(Mat))

	Programming: Tree Structures and Algorithms
	ML Concepts: Mutual Information
	ML Concepts: Construction of Decision Trees
	Programming: Debugging w/ Trees

