RECITATION 5
LOGISTIC REGRESSION

10-601: INTRODUCTION TO MACHINE LEARNING
3/12/2021

This recitation consists of 3 parts: In part 1, we will go over how to represent data
features using dense and sparse representation. Part 2 will go over the negative log
likelihood and gradient derivations for binary logistic regression, as well as a small
toy example. Part 3 will focus on multinomial logistic regression. The materials were
designed to help you with Homework 4.

1 Feature Vector Representation

In many machine learning problems, we will want to find the set of parameters that optimize
our objective function. Usually, a naive (dense) representation will suffice, but sometimes
careful consideration must be taken to afford tenable run times.

1. A Naive Representation

(a)

(b)

()

Consider a feature vector x defined by o = 1,27 = 0,25 = 2,23 = 0,24 = 1. Write
the pseudo code to naively represent such a vector in Python.

One thing we often want to do in many machine learning algorithms is take the dot
product of the feature vector with a parameter vector. Given the naive representa-
tion above, write a function that takes the dot product between two vectors.

def dot(X, W):
product = 0.0
# TODO: Implement dot product

return product

Now let our parameter vector w be defined by wy = 0, w; = 1, wy = 2, w3 = 3, w4 =
4. Time how long it takes to take the dot product x-w. What if you append 10, 000
zeros on the end of both x and w

2. Take Advantage of Nothing

(a)

Something key to notice in the larger x and w is that they have a large amount of
zeros. This is called being sparse (as opposed to being dense). We can hope to take
advantage of this. Write a better representation of x in code that takes advantage
of sparsity.
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(b) Like in the question before, write a function that takes the dot product between
two vectors x and w, this time taking advantage of the fact that x is sparse.

def sparse_dot(X, W):
product = 0.0
# TODO: Implement sparse dot product

return product

(¢) Now time this new dot product function on extremely sparse inputs and compare
to the naive representation.

3. Sparse Vector Operations

Define an add function that adds a sparse vector to a dense vector

def sparse_add(X, W):
# TODO: Implement updating W by adding values in X

return W
def sparse_sub(X, W):

# TODO: Implement updating W by subtracting values in X

return W
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2 Binary Logistic Regression
1. For binary logistic regression, we have the following dataset:

D= {(x(l), y(l)) e (X(N),y(N))} where x¥ € RM ) € {0,1}

A couple of reminders from lecture

1.

T (1
o(6"x") = 1 eXp(l—eTxm) 1 jxfég(;;;?w
2. » |
01200 {1y oo
= o(0Tx)Y" (1 — o(6TxD))—")
3.
PV = U(GTX(i))
B do(z)
7 o)1 - o(2)
5. if » = f(6) then
P = a7~ o(f(6))
In binary logistic regression, this is
a;;;) s ) ae;;(n

6. remember that

dlogl(f(=) 1 0f(2)
0z f(z) 0z

2. (a) Write down our objective function, J(8), which is + times the negative conditional

log-likelihood of data, in terms of N and p (y(i) | x]\(]i), 9) where 8 € RM. As usual,
assume 4y are independent and identically distributed.
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(b) Write J(0) in terms of o(87x®). simplify as much as possible. Then write in terms
of ¢

(¢) In stochastic gradient descent, we use only a single x). Given ¢ = o(87x®) and
T9(0) = =y 1og(¢") — (1 =y log(1 — ')

Show that the partial derivative of J) (@) with respect to the jth parameter 0; is

as follows: o(0)
aJ" (0 T (i iy ,.(%)
Remember,
ot 00" x )
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3. Let’s go through a toy problem.

Y| X | Xo| X;
1] 1 2
1] 1 1] -
0|1 -2]1
—2
(a) What is J(0) of above data given initial @ = | 2 |7
1

(b) chlgiulate %‘:1(9), %;2(0) and %;3(0) for first training example. Note that o(3) &

8J2)(0) 0J2)(0)

8J(2)(0)
a0, g, and 905

(c) Calculate
0.25.

for second training example. Note that o(—1) ~

(d) Assuming we are doing stochastic gradient descent with a learning rate of 1.0, what
are the updated parameters @ if we update @ using the second training example?

(e) What is the new J(0) after doing the above update? Should it decrease or increase?
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(f) Given a test example where (X; = 1,Xs = 3, X35 = 4), what will the classifier
output following this update?
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3 Multinomial Logistic Regression (Optional Learning)

1. Definition

Multinomial logistic regression, also known as softmax regression or multiclass logistic
regression, is a generalization of binary logistic regression.

D= {(x(l),y(l)),...,(X(N),y(N))} where x e RM y® e {1,... K} fori=1,...,N

Here N is the number of training examples, M is the number of features, and K is the
number of possible classes, which is usually greater than two to be interesting.

exp (@yu)x(i))
Z]K:l exp (©,;x)

D (y(i) _ y(i) | X(i)’ (—)) — = softmax(@x(i))y(i) (1)

where © is the parameter matrix of size K x (M + 1), and © ;) denotes the yDth row
of ®, which is the parameter vector for the y”th class.

2. Suppose K =4 and N = 10, M = 3. What could © look like?

3. A one-hot encoding is a vector representation of a one dimensional integer defined as
such: a vector ¢ of length K is a one-hot encoding of integer n <= |c| = K and for
all 7 #n, ¢c; =0 and ¢, = 1. Give some examples of one-hot encodings where K = 5.

4. In multinomial logistic regression, we form the matrix T where the ith row of T is the
one-hot encoding of label y*. Draw T if y = [1,3,1,4,4]” and K = 4.
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