
Recitation 5
Logistic Regression

10-601: Introduction to Machine Learning

3/12/2021

This recitation consists of 3 parts: In part 1, we will go over how to represent data
features using dense and sparse representation. Part 2 will go over the negative log
likelihood and gradient derivations for binary logistic regression, as well as a small
toy example. Part 3 will focus on multinomial logistic regression. The materials were
designed to help you with Homework 4.

1 Feature Vector Representation

In many machine learning problems, we will want to find the set of parameters that optimize
our objective function. Usually, a naive (dense) representation will suffice, but sometimes
careful consideration must be taken to afford tenable run times.

1. A Naive Representation

(a) Consider a feature vector x defined by x0 = 1, x1 = 0, x2 = 2, x3 = 0, x4 = 1. Write
the pseudo code to naively represent such a vector in Python.

(b) One thing we often want to do in many machine learning algorithms is take the dot
product of the feature vector with a parameter vector. Given the naive representa-
tion above, write a function that takes the dot product between two vectors.

def dot(X, W):

product = 0.0

# TODO: Implement dot product

return product

(c) Now let our parameter vector w be defined by w0 = 0, w1 = 1, w2 = 2, w3 = 3, w4 =
4. Time how long it takes to take the dot product x ·w. What if you append 10, 000
zeros on the end of both x and w

2. Take Advantage of Nothing

(a) Something key to notice in the larger x and w is that they have a large amount of
zeros. This is called being sparse (as opposed to being dense). We can hope to take
advantage of this. Write a better representation of x in code that takes advantage
of sparsity.
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(b) Like in the question before, write a function that takes the dot product between
two vectors x and w, this time taking advantage of the fact that x is sparse.

def sparse_dot(X, W):

product = 0.0

# TODO: Implement sparse dot product

return product

(c) Now time this new dot product function on extremely sparse inputs and compare
to the naive representation.

3. Sparse Vector Operations

Define an add function that adds a sparse vector to a dense vector

def sparse_add(X, W):

# TODO: Implement updating W by adding values in X

return W

def sparse_sub(X, W):

# TODO: Implement updating W by subtracting values in X

return W
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2 Binary Logistic Regression

1. For binary logistic regression, we have the following dataset:

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ RM , y(i) ∈ {0, 1}

A couple of reminders from lecture

1.

σ(θTx(i)) =
1

1 + exp(−θTx(i))
=

exp(θTx(i))

1 + exp(θTx(i))

2.

p
(
y(i) | x(i),θ

)
=

{
σ(θTx(i)) y(i) = 1

1− σ(θTx(i)) y(i) = 0

= σ(θTx(i))y
(i)

(1− σ(θTx(i)))(1−y
(i))

3.
φ(i) = σ(θTx(i))

4.
∂σ(z)

∂z
= σ(z)(1− σ(z))

5. if z = f(θ) then
∂σ(f(θ))

∂θj
= σ(f(θ))(1− σ(f(θ)))

∂f(θ)

∂θj

In binary logistic regression, this is

∂φ(i)

∂θj
= φ(i) ∗ (1− φ(i)) ∗ ∂θ

Tx(i)

∂θj

6. remember that
∂ log(f(z))

∂z
=

1

f(z)

∂f(z)

∂z

2. (a) Write down our objective function, J(θ), which is 1
N

times the negative conditional
log-likelihood of data, in terms of N and p

(
y(i) | x(i),θ

)
where θ ∈ RM . As usual,

assume y(i) are independent and identically distributed.
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(b) Write J(θ) in terms of σ(θTx(i)). simplify as much as possible. Then write in terms
of φ(i)

(c) In stochastic gradient descent, we use only a single x(i). Given φ(i) = σ(θTx(i)) and

J (i)(θ) = −y(i) log(φ(i))− (1− y(i)) log(1− φ(i))

Show that the partial derivative of J (i)(θ) with respect to the jth parameter θj is
as follows:

∂J (i)(θ)

∂θj
= (σ(θTx(i))− yi)x(i)j

Remember,
∂φ(i)

∂θj
= φ(i) ∗ (1− φ(i)) ∗ ∂θ

Tx(i)

∂θj
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3. Let’s go through a toy problem.

Y X1 X2 X3

1 1 2 1
1 1 1 -1
0 1 -2 1

(a) What is J(θ) of above data given initial θ =

−2
2
1

?

(b) Calculate ∂J(1)(θ)
∂θ1

, ∂J
(1)(θ)
∂θ2

and ∂J(1)(θ)
∂θ3

for first training example. Note that σ(3) ≈
0.95.

(c) Calculate ∂J(2)(θ)
∂θ1

, ∂J
(2)(θ)
∂θ2

and ∂J(2)(θ)
∂θ3

for second training example. Note that σ(−1) ≈
0.25.

(d) Assuming we are doing stochastic gradient descent with a learning rate of 1.0, what
are the updated parameters θ if we update θ using the second training example?

(e) What is the new J(θ) after doing the above update? Should it decrease or increase?
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(f) Given a test example where (X1 = 1, X2 = 3, X3 = 4), what will the classifier
output following this update?
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3 Multinomial Logistic Regression (Optional Learning)

1. Definition

Multinomial logistic regression, also known as softmax regression or multiclass logistic
regression, is a generalization of binary logistic regression.

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ RM , y(i) ∈ {1, . . . , K} for i = 1, . . . , N

Here N is the number of training examples, M is the number of features, and K is the
number of possible classes, which is usually greater than two to be interesting.

p
(
Y (i) = y(i) | x(i),Θ

)
=

exp
(
Θy(i)x

(i)
)∑K

j=1 exp (Θjx(i))
= softmax(Θx(i))y(i) (1)

where Θ is the parameter matrix of size K × (M + 1), and Θy(i) denotes the y(i)th row

of Θ, which is the parameter vector for the y(i)th class.

2. Suppose K = 4 and N = 10, M = 3. What could Θ look like?

3. A one-hot encoding is a vector representation of a one dimensional integer defined as
such: a vector c of length K is a one-hot encoding of integer n ⇐⇒ |c| = K and for
all j 6= n, cj = 0 and cn = 1. Give some examples of one-hot encodings where K = 5.

4. In multinomial logistic regression, we form the matrix T where the ith row of T is the
one-hot encoding of label y(i). Draw T if y = [1, 3, 1, 4, 4]T and K = 4.
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