
HOMEWORK 4: LOGISTIC REGRESSION
10-301/10-601 Introduction to Machine Learning (Spring 2021)

http://mlcourse.org
OUT: Sunday, March 7, 2021

DUE: Wednesday, March 17, 2021 11:59 PM
TAs: Daniel, Young, Amanda

Summary In this assignment, you will build a sentiment polarity analyzer, which will be capable of ana-
lyzing the overall sentiment polarity (positive or negative) . In the Written component, you will warm up by
deriving stochastic gradient descent updates for logistic regression. Then in the Programming component,
you will implement a logistic regression model as the core of your natural language processing system.

START HERE: Instructions
• Collaboration Policy: Please read the collaboration policy here: https://www.cs.cmu.edu/
˜10601

• Late Submission Policy: See the late submission policy here: https://www.cs.cmu.edu/

˜10601

• Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, we will be using Gradescope (https://gradescope.com/). Please use the provided
template. Submissions must be written in LaTeX. Regrade requests can be made, however this
gives the staff the opportunity to regrade your entire paper, meaning if additional mistakes are
found then points will be deducted. Each derivation/proof should be completed in the boxes
provided. For short answer questions you should not include your work in your solution. If you
include your work in your solutions, your assignment may not be graded correctly by our AI
assisted grader.

– Programming: You will submit your code for programming questions on the homework to
Gradescope (https://gradescope.com). After uploading your code, our grading scripts
will autograde your assignment by running your program on a virtual machine (VM). When
you are developing, check that the version number of the programming language environment
(e.g. Python 3.6.9, OpenJDK 11.0.5, g++ 7.4.0) and versions of permitted libraries (e.g. numpy
1.17.0 and scipy 1.4.1) match those used on Gradescope. You have unlimited Gradescope
programming submissions. However, we recommend debugging your implementation on your
local machine (or the linux servers) and making sure your code is running correctly first before
submitting your code to Gradescope.

• Materials: The data that you will need in order to complete this assignment is posted along with the
writeup and template on Piazza.

1

http://mlcourse.org
https://www.cs.cmu.edu/~10601
https://www.cs.cmu.edu/~10601
https://www.cs.cmu.edu/~10601
https://www.cs.cmu.edu/~10601
https://gradescope.com/
https://gradescope.com

Linear Algebra Libraries When implementing machine learning algorithms, it is often convenient to
have a linear algebra library at your disposal. In this assignment, Java users may use EJMLa or ND4Jb and
C++ users Eigenc. Details below. (As usual, Python users have NumPy.)
EJML for Java EJML is a pure Java linear algebra package with three interfaces. We strongly

recommend using the SimpleMatrix interface. The autograder will use EJML version 0.38.
When compiling and running your code, we will add the additional command line argument
-cp "linalg_lib/ejml-v0.38-libs/*:linalg_lib/nd4j-v1.0.0-beta7-libs/*:./"
to ensure that all the EJML jars are on the classpath as well as your code.

ND4J for Java ND4J is a library for multidimensional tensors with an interface akin to
Python’s NumPy. The autograder will use ND4J version 1.0.0-beta7. When com-
piling and running your code, we will add the additional command line argument
-cp "linalg_lib/ejml-v0.38-libs/*:linalg_lib/nd4j-v1.0.0-beta7-libs/*:./"
to ensure that all the ND4J jars are on the classpath as well as your code.

Eigen for C++ Eigen is a header-only library, so there is no linking to worry about—just #include what-
ever components you need. The autograder will use Eigen version 3.3.7. The command line arguments
above demonstrate how we will call you code. When compiling your code we will include, the argument
-I./linalg_lib in order to include the linalg_lib/Eigen subdirectory, which contains all the head-
ers.

We have included the correct versions of EJML/ND4J/Eigen in the linalg_lib.zip posted on the
Piazza Resources page for your convenience. It contains the same linalg_lib/ directory that we will
include in the current working directory when running your tests. Do not include EJML, ND4J, or Eigen in
your homework submission; the autograder will ensure that they are in place.

ahttps://ejml.org
bhttps://deeplearning4j.org/docs/latest/nd4j-overview
chttp://eigen.tuxfamily.org/

Page 2

https://ejml.org
https://deeplearning4j.org/docs/latest/nd4j-overview
http://eigen.tuxfamily.org/

Written Questions (20 points)
1. Logistic Regression and Stochastic Gradient Descent

(a) (2 points) Which of the following are true about logistic regression?

Select all that apply:

� Our formulation of binary logistic regression will work with both continuous and binary
features.

� Binary Logistic Regression will form a linear decision boundary in our feature space.

� The function σ(x) = 1
1+e−x is convex.

� The negative log likelihood function for logistic regression. − 1
N

∑N
i=1 log(σ(x

(i))) is
non-convex so gradient descent may get stuck in a sub-optimal local minimum.

� None of above.

(b) (1 point) The negative log-likelihood J(θ) for binary logistic regression can be expressed as

J(θ) =
1

N

N∑
i=1

−y(i)
(
θTx(i)

)
+ log

(
1 + exp(θTx(i))

)
where x(i) ∈ RM+1 is the column vector of the feature values of ith data point, y(i) ∈ {0, 1} is the
i-th class label, θ ∈ RM+1 is the weight vector. When we want to perform logistic ridge regression
(i.e. with `2 regularization), we modify our objective function to be

f(θ) = J(θ) + λ
1

2

M∑
j=0

θ2j

where λ is the regularization weight, θj is the jth element in the weight vector θ. Suppose we are
updating θk with learning rate α, which of the following is the correct expression for the update?

Select one:

θk ← θk + α∂f(θ)∂θk
where ∂f(θ)

∂θk
= 1

N

∑N
i=1 x

(i)
k

(
y(i) − exp(θTx(i))

1+exp(θTx(i))

)
+ λθk

θk ← θk + α∂f(θ)∂θk
where ∂f(θ)

∂θk
= 1

N

∑N
i=1 x

(i)
k

(
−y(i) + exp(θTx(i))

1+exp(θTx(i))

)
− λθk

θk ← θk − α∂f(θ)∂θk
where ∂f(θ)

∂θk
= 1

N

∑N
i=1 x

(i)
k

(
−y(i) + exp(θTx(i))

1+exp(θTx(i))

)
+ λθk

θk ← θk − α∂f(θ)∂θk
where ∂f(θ)

∂θk
= 1

N

∑N
i=1 x

(i)
k

(
−y(i) − exp(θTx(i))

1+exp(θTx(i))

)
+ λθk

(c) (2 points) Data is separable in one dimension if there exists a threshold t such that all values less
than t have one class label and all values ≥ t have the other class label. If you train logistic re-
gression for infinite iterations without regularization on training data that is separable in at least
one dimension, the corresponding weight(s) can go to infinity in magnitude. What is an explana-
tion for this phenomenon? (Hint: Think about what happens to the probabilities if we train an
unregularized logistic regression, and the role of the weights when calculating such probabilities)

Page 3

Your Answer

(d) (2 points) How does regularization such as `1 and `2 help correct the problem?

Select all that apply:

� `1 regularization prevents weights from going to infinity by penalizing the count of non-
zero weights.

� `1 regularization prevents weights from going to infinity by reducing some of the weights
to 0, effectively removing some of the features.

� `2 regularization prevents weights from going to infinity by reducing the value of some of
the weights to close to 0 (reducing the effect of a feature but not necessarily removing it).

� None of the above.

Page 4

2. Logistic Regression on a Small Dataset
The following questions should be completed before you start the programming component of this
assignment.

The following dataset consists of 4 training examples, where x(i)k denotes the k-th dimension of the i-th
training example, and the corresponding label y(i). k ∈ {1, 2, 3, 4, 5} and i ∈ {1, 2, 3, 4}

i x1 x2 x3 x4 x5 y

1 0 0 1 0 1 0
2 0 1 0 0 0 1
3 0 1 1 0 0 1
4 1 0 0 1 0 0

A binary logistic regression model is trained on this data. After n iterations, the parameter vector θ =
[1.5, 2, 1, 2, 3]T . Note: There is no bias term used in this problem.

Use the data above to answer the following questions. For all numerical answers, please use one number
rounded to the fourth decimal place, e.g., 0.1234.

Showing your work in these questions is optional, but it is recommended to help us understand where
any misconceptions may occur.

(a) (2 points) Calculate J(θ), 1
N times the negative log-likelihood over the given data after iteration

n (Note here we are using natural log, i.e., the base is e).

J(θ)

Work

Page 5

(b) (2 points) Calculate the gradients ∂J(θ)
∂θj

with respect to θj , for all j ∈ {1, 2, 3, 4, 5}

∂J(θ)/∂θ1 ∂J(θ)/∂θ2 ∂J(θ)/∂θ3 ∂J(θ)/∂θ4 ∂J(θ)/∂θ5

Work

Page 6

(c) (1 point) Update the parameters following the parameter update step θj ← θj − α∂J(θ)∂θj
and give

the updated (numerical) value of the vector θ. use learning rate α = 1.

θ1 θ2 θ3 θ4 θ5

Work

Page 7

(d) (1 point) The following table shows the sparse feature representation for the given data

i label y(i) features x(i)

1 0 {x3 : 1, x5 : 1}
2 1 {x2 : 1}
3 1 {x2 : 1, x3 : 1}
4 0 {x1 : 1, x4 : 1}

Calculate the probability p
(
y|X = x(3),θ

)
after the update step in (c), using only k unique mul-

tiplication operations where k is the number of non-zero features in x(3). Explicitly show these
multiplication operations.

Answer including work showing multiplication operations

Page 8

3. Logistic Regression on an Image Dataset
Images can be represented numerically as a vector of values for each pixel. Image classification tasks
use this vector of pixel values as features to predict an image label. An automobile company is trying to
gather data by asking participants to submit grayscale images of cars. Each pixel has an intensity value
in the continuous range [0, 1]. The company is attempting to run a logistic regression model to predict
whether the photo actually contains a car. After training the model initially on a training dataset, the
company achieves a mediocre test error. The company wants to improve the model and offers monetary
compensation to people who can submit photos that contain a car and make the model predict “false”
(i.e., a false negative), as well as photos that do not contain a car and make the model predict “true” (i.e.,
a false positive). Furthermore, the company releases the parameters of their learned logistic regression
model. Let’s investigate how to use these parameters to understand the model’s weaknesses.

(a) (2 points) Given the company’s model parameters (i.e., the logistic regression coefficients), gradi-
ent ascent can be used to find the vector of pixel values that maximizes the “car” prediction. Write
pseudocode for the gradient update to do so. (Hint: Derive the gradient of the prediction function
with respect to the feature values.)

Your Answer

(b) (1 point) To generate an image, we require the feature values to be in the range [0, 1]. Propose
a different procedure that optimizes the “car” prediction subject to this constraint and does not
require a gradient calculation. What’s the runtime of this procedure?

Your Answer

Page 9

(c) (2 points) Modify the procedure to find the image that minimizes the “car” prediction.

Your Answer

(d) (2 points) Now let’s consider whether logistic regression is well-suited for this task. Suppose the
exact same white car in a dark background is used to generate train and test data. The training
photos were captured with the side view of the car centered in the photo at a distance of between
3-50 meters from the camera. Select which (if any) of the below descriptions of a test image
you expect the model to correctly predict as “car.”

� The car is centered and 60 meters from the camera.

� The car is located in the upper-right hand corner of the frame.

� The car in a training image is replaced with an equal size white cardboard cutout of the
car.

� The background of one of the training images is changed to white.

Page 10

4. Programming Empirical Questions (12 points)
The following questions should be completed as you work through the programming component of this
assignment.

(a) (2 points) For Model 1, using the data in the largedata folder in the handout, make a plot that
shows the average negative log likelihood for the training and validation data sets after each of 200
epochs. The y-axis should show the negative log likelihood and the x-axis should show the number
of epochs.

Your Answer

(b) (2 points) For Model 2, make a plot as in the previous question.

Your Answer

Page 11

(c) (2 points) Write a few sentences explaining the output of the above experiments. In particular do
the training and validation log likelihood curves look the same or different? Why?

Your Answer

(d) (2 points) Make a table with your train and test error for the large data set (found in the largedata
folder in the handout) for each of the 2 models after running for 50 epochs. Please use one number
rounded to the fourth decimal place, e.g., 0.1234.

Your Answer

Train Error Test Error

Model 1 ? ?
Model 2 ? ?

Table 1: “Large Data” Results

(e) (2 points) For Model 1, using the data in the largedata folder of the handout, make a plot comparing
the training average negative log-likelihood over epochs for three different values for the learning
rates, γ ∈ {0.0001, 0.1, 0.5}. The y-axis should show the negative log likelihood, the x-axis
should show the number of epochs (from 0 to 60 epochs), and the plot should contain three curves
corresponding to the three values of γ. Provide a legend that indicates γ for each curve.

Page 12

Your Answer

(f) (2 points) Compare how quickly each graph converges. In addition, describe the stability of the
graphs.

Your Answer

Page 13

Collaboration Questions
After you have completed all other components of this assignment, report your answers to the collabo-
ration policy questions detailed in the Academic Integrity Policies found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? Is so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? Is so, include full details.

3. Did you find or come across code that implements any part of this assignment ? If so, include full
details.

Your Answer

Page 14

http://www.cs.cmu.edu/~mgormley/courses/10601/about.html#7-academic-integrity-policies

Programming (70 points)
1 The Task
Your goal in this assignment is to implement a working Natural Language Processing (NLP) system, i.e.,
a sentiment polarity analyzer, using binary logistic regression. You will then use your algorithm to deter-
mine whether a review is positive or negative using movie reviews as data. You will do some very basic
feature engineering, through which you are able to improve the learner’s performance on this task. You
will write two programs: feature.{py|java|cpp} and lr.{py|java|cpp} to jointly complete
the task. The programs you write will be automatically graded using Gradescope. You may write your
programs in Python, Java, or C++. However, you should use the same language for all parts below.

Note: Before starting the programming, you should work through the written component to get a good
understanding of important concepts that are useful for this programming component.

2 The Datasets
Datasets Download the zip file from Piazza, which contains all the data that you will need in order to
complete this assignment. The handout contains data from the Movie Review Polarity dataset. 1 In the data
files, each line is a data point that consists of a label (0 for negatives and 1 for positives) and a attribute (a set
of words as a whole). The label and attribute are separated by a tab.2 In the attribute, words are separated
using white-space (punctuations are also separated with white-space). All characters are lowercased. The
format of each data point (each line) is label\tword1 word2 word3 ... wordN\n.

Examples of the data are as follows:

1 david spade has a snide , sarcastic sense of humor that works ...
0 " mission to mars " is one of those annoying movies where , in ...
1 anyone who saw alan rickman’s finely-realized performances in ...
1 ingredients : man with amnesia who wakes up wanted for murder , ...
1 ingredients : lost parrot trying to get home , friends synopsis : ...
1 note : some may consider portions of the following text to be ...
0 aspiring broadway composer robert (aaron williams) secretly ...
0 america’s favorite homicidal plaything takes a wicked wife in " ...

We have provided you with two subsets of the movie review dataset. Each dataset is divided into a training,
a validation, and a test dataset.

The small dataset (smalldata/train_data.tsv, valid_data.tsv, and test_data.tsv) can
be used while debugging your code. We have included the reference output files for this dataset after 30
training epochs (see directory smalloutput/). We have also included a larger dataset
(largedata/train_data.tsv, valid_data.tsv, test_data.tsv) with reference outputs for
this dataset after 60 training epochs (see directory largeoutput/) . This dataset can be used to ensure
that your code runs fast enough to pass the autograder tests. Your code should be able to perform 60-epoch
training and finish predictions through all of the data in less than one minute for each of the models: one
minute for Model 1 and one minute for Model 2.

Dictionary We also provide a dictionary file (dict.txt) to limit the vocabulary to be considered in
this assignment (this dictionary is constructed from the training data, so it includes all the words from the

1for more details, see http://www.cs.cornell.edu/people/pabo/movie-review-data/
2The data files are in tab-separated-value (.tsv) format. This is identical to a comma-separated-value (.csv) format except

that instead of separating columns with commas, we separate them with a tab character, \t

Page 15

http://www.cs.cornell.edu/people/pabo/movie-review-data/

training data, but some words in validation and test data may not be present in the dictionary). Each line in
the dictionary file is in the following format: word\tindex\n. Words (column 1) and indexes (column
2) are separated with whitespace. Examples of the dictionary content are as follows:

films 0
adapted 1
from 2
comic 3

3 Model Definition
Assume you are given a dataset with N training examples and M features. We first write down the 1

N times
the negative conditional log-likelihood of the training data in terms of the design matrix X, the labels y, and
the parameter vector θ. This will be your objective function J(θ) for gradient descent. (Recall that i-th row
of the design matrix X contains the features x(i) of the i-th training example. The i-th entry in the vector
y is the label y(i) of the i-th training example. Here we assume that each feature vector x(i) contains a bias
feature, e.g. x(i)0 = 1 ∀i ∈ {1, . . . , N}. As such, the bias parameter is folded into our parameter vector
θ.

Taking x(i) to be a (M + 1)-dimensional vector where x(i)0 = 1, the likelihood p (y | X,θ) is:

p(y|X,θ) =
N∏
i=1

p(y(i) | x(i),θ) =
N∏
i=1

(
eθ

Tx(i)

1 + eθTx(i)

)y(i) (
1

1 + eθTx(i)

)(1−y(i))
(1)

=

N∏
i=1

(
eθ

Tx(i)
)y(i)

1 + eθTx(i)
(2)

Hence, J(θ), that is 1
N times the negative conditional log-likelihood, is:

J(θ) = − 1

N
log p (y | X,θ) = 1

N

N∑
i=1

−y(i)
(
θTx(i)

)
+ log

(
1 + eθ

Tx(i)
)

(3)

The partial derivative of J(θ) with respect to θj , j ∈ {0, ...,M} is:

∂J(θ)

∂θj
= − 1

N

N∑
i=1

x
(i)
j

[
y(i) − eθ

Tx(i)

1 + eθTx(i)

]
(4)

The gradient descent update rule for binary logistic regression for parameter element θj is

θj ← θj − α
∂J(θ)

∂θj
(5)

Then, the stochastic gradient descent update for parameter element θj using the i-th datapoint (x(i), y(i)) is:

θj ← θj + α
x
(i)
j

N

[
y(i) − eθ

Tx(i)

1 + eθTx(i)

]
(6)

Page 16

4 Implementation
4.1 Overview
The implementation consists of two programs, a feature extraction program (feature.{py|java|cpp})
and a sentiment analyzer program (lr.{py|java|cpp}) using binary logistic regression. The program-
ming pipeline is illustrated as follows.

Figure 1: Programming pipeline for sentiment analyzer based on binary logistic regression

This first program is feature.{py|java|cpp}, that converts raw data (e.g., train_data.tsv,
valid_data.tsv, and test_data.tsv) into formatted training, validation and test data based on
the vocabulary information in the dictionary file dict.txt. To be specific, this program is to transfer
the whole movie review text into a feature vector using some feature extraction methods. The formatted
datasets should be stored in .tsv format. Details of formatted datasets will be introduced in Section 4.2 and
Section 5.1.

The second program is lr.{py|java|cpp}, that implements a sentiment polarity analyzer using binary
logistic regression. The file should learn the parameters of a binary logistic regression model that predicts
a sentiment polarity (i.e. label) for the corresponding feature vector of each movie review. The program
should output the labels of the training and test examples and calculate training and test error (percentage of
incorrectly labeled reviews). As discussed in Appendix A.2 and A.3, efficient computation can be obtained
with the help of the indexing information in the dictionary file dict.txt.

4.2 Feature Engineering
Your implementation of feature.{py|java|cpp} should have an input argument <feature flag>
that specifies one of two types of feature extraction structures that should be used by the logistic regression
model. The two structures are illustrated below as probabilities of the labels given the inputs.

Model 1 p
(
y(i) | φ1

(
x(i)
)
,θ
)
: This model uses a bag-of-words feature vector φ1

(
x(i)
)
= 1occur(x

(i),
Vocab) indicating which words in vocabulary Vocab of the dictionary occur at least once in the
movie review example x(i). Specifically, there are V = |Vocab| entries in this indicator vector, and

Page 17

the j-th entry will be set to 1 if the j-th word in Vocab occurs at least once in the movie review. The j-
th entry will be set to 0 otherwise. This bag-of-words model should be used when <feature flag>
is set to 1.

Model 2 p
(
y(i) | φ2

(
x(i)
)
,θ
)
: This model uses a trimmed bag-of-words feature vector φ2

(
x(i)
)
= 1trim(

x(i),Vocab, t
)

indicating: (1) which word in vocabulary Vocab of the dictionary occurs in the
movie review example x(i), AND (2) the count of the word is LESS THAN (<) threshold t. The entry
in the indicator vector associated with a word that satisfies both conditions will be set to 1 (otherwise,
it will be 0). This trimmed bag-of-words model should be used when <feature flag> is set to 2.
In this assignment, use the constant trimming threshold t = 4.

The motivation of Model 2 is that keywords that truly represent the sentiment may not occur too frequently,
this trimming strategy can make the feature presentation cleaner by removing highly repetitive words that
are useless and neutral, such as “the”, “a”, “to”, etc. You will observe whether this basic and intuitive
strategy will improve performance.

Note that above 1occur and 1trim are described as a dense feature representation as shown in Table 3 for
illustration purpose. In your implementation, you should further convert it to the representation in Table
4 for Model 1 and the representation in Table 6 for Model 2, such that the formatted data outputs match
Section 5.1.

4.3 Command Line Arguments
The autograder runs and evaluates the output from the files generated, using the following command (note
feature will be run before lr):

For Python: $ python feature.py [args1...]
$ python lr.py [args2...]

For Java: $ java feature.java [args1...]
$ java lr.java [args2...]

For C++: $ g++ feature.cpp ./a.out [args1...]
$ g++ lr.cpp ./a.out [args2...]

Where above [args1...] is a placeholder for eight command-line arguments: <train input>
<validation input> <test input> <dict input> <formatted train out>
<formatted validation out> <formatted test out> <feature flag>. These arguments
are described in detail below:

1. <train input>: path to the training input .tsv file (see Section 2)

2. <validation input>: path to the validation input .tsv file (see Section 2)

3. <test input>: path to the test input .tsv file (see Section 2)

4. <dict input>: path to the dictionary input .txt file (see Section 2)

5. <formatted train out>: path to output .tsv file to which the feature extractions on the train-
ing data should be written (see Section 5.1)

6. <formatted validation out>: path to output .tsv file to which the feature extractions on
the validation data should be written (see Section 5.1)

7. <formatted test out>: path to output .tsv file to which the feature extractions on the test
data should be written (see Section 5.1)

Page 18

8. <feature flag>: integer taking value 1 or 2 that specifies whether to construct the Model 1 feature
set or the Model 2 feature set (see Section 4.2)—that is, if feature_flag==1 use Model 1 features;
if feature_flag==2 use Model 2 features

Likewise, [args2...] is a placeholder for eight command-line arguments: <formatted train input>
<formatted validation input> <formatted test input> <dict input> <train out>
<test out> <metrics out> <num epoch>. These arguments are described in detail below:

1. <formatted train input>: path to the formatted training input .tsv file (see Section 5.1)

2. <formatted validation input>: path to the formatted validation input .tsv file (see Sec-
tion 5.1)

3. <formatted test input>: path to the formatted test input .tsv file (see Section 5.1)

4. <dict input>: path to the dictionary input .txt file (see Section 2)

5. <train out>: path to output .labels file to which the prediction on the training data should be
written (see Section 5.2)

6. <test out>: path to output .labels file to which the prediction on the test data should be written
(see Section 5.2)

7. <metrics out>: path of the output .txt file to which metrics such as train and test error should
be written (see Section 5.3)

8. <num epoch>: integer specifying the number of times SGD loops through all of the training data
(e.g., if <num epoch> equals 5, then each training example will be used in SGD 5 times).

As an example, if you implemented your program in Python, the following two command lines would run
your programs on the data provided in the handout for 60 epochs using the features from Model 1.

$ python feature.py train_data.tsv valid_data.tsv test_data.tsv \
dict.txt formatted_train.tsv formatted_valid.tsv formatted_test.tsv 1

$ python lr.py formatted_train.tsv formatted_valid.tsv formatted_test\
.tsv dict.txt train_out.labels test_out.labels metrics_out.txt 60

Important Note: You will not be writing out the predictions on validation data, only on train and test data.
The validation data is only used to give you an estimate of held-out negative log-likelihood at the end of
each epoch during training. You are asked to graph the negative log-likelihood vs. epoch of the validation
and training data in Programming Empirical Questions section. a

aFor this assignment, we will always specify the number of epochs. However, a more mature implementation would monitor
the performance on validation data at the end of each epoch and stop SGD when this validation log-likelihood appears to have
converged. You should not implement such a convergence check for this assignment.

5 Program Outputs
5.1 Output: Formatted Data Files
Your feature program should write three output .tsv files converting original data to formatted data
on <formatted train out>, <formatted valid out>, and <formatted test out>. Each

Page 19

should contain the formatted presentation for each example printed on a new line. Use \n to create a new
line. The format for each line should exactly match

label\tindex[word1]:value1\tindex[word2]:value2\t...index[wordM]:valueM\n

Where above, the first column is label, and the rest are ”index[word]:value” feature elements. index[word]
is the index of the word in the dictionary, and value is the value of this feature (in this assignment, the value
is one or zero). There is a colon, :, between index[word] and corresponding value. Columns are separated
using a table character, \t. The handout contains example <formatted train out>,
<formatted valid out>, and <formatted test out> for your reference.

The formatted output will be checked separately by the autograder by running your feature program on
some unseen datasets and evaluating your output file against the reference formatted files. Examples of
content of formatted output file are given below.

0 2915:1 21514:1 166:1 32:1 10699:1 305:1 ...
0 7723:1 51:1 8701:1 74:1 370:1 8:1 ...
1 229:1 48:1 326:1 43:1 576:1 55:1 ...
1 8126:1 1349:1 58:1 4709:1 48:1 8319:1 ...

5.2 Output: Labels Files
Your lr program should produce two output .labels files containing the predictions of your model on
training data (<train out>) and test data (<test out>). Each should contain the predicted labels for
each example printed on a new line. Use \n to create a new line.

Your labels should exactly match those of a reference implementation – this will be checked by the auto-
grader by running your program and evaluating your output file against the reference solution. Examples of
the content of the output file are given below.

0
0
1
0

5.3 Output Metrics
Generate a file where you report the following metrics:

error After the final epoch (i.e. when training has completed fully), report the final training error
error(train) and test error error(test).

All of your reported numbers should be within 0.01 of the reference solution. The following is the reference
solution for large dataset with Model 1 feature structure after 60 training epochs. See
model1_metrics_out.txt in the handout.

error(train): 0.092500
error(test): 0.222500

Take care that your output has the exact same format as shown above. Each line should be terminated by a
Unix line ending \n. There is a whitespace character after the colon.

Page 20

6 Evaluation and Submission
6.1 Evaluation
Gradescope will test your implementations on hidden datasets with the same format as the two datasets
provided in the handout. feature program and lr program will be tested separately. To ensure that your
code can pass the gradescope tests in under 5 minutes (the maximum time length) be sure that your code
can complete 60-epoch training and finish predictions through all of the data in the largedata folder in
around one minute for each of the models.

6.2 Requirements
Your implementation must satisfy the following requirements:

• The feature.{py|java|cpp} must produce a sparse representation of the data using the label-
index-value format {label index[word1]:value1 index[word2]:value2...\n }. We
will use unseen data to test your feature output separately. (see Section 5.1 and Section 4.2 on feature
engineering for details on how to do this).

• Ignore the words not in the vocabulary of dict.txt when the analyzer encounters one in the test or
validation data.

• Set the trimming threshold to a constant t = 4 for Model 2 feature extraction (see Section 4.2).

• Initialize all model parameters to 0.

• Use stochastic gradient descent (SGD) to optimize the parameters for a binary logistic regression
model. The number of times SGD loops through all of the training data (num epoch) will be speci-
fied as a command line flag. Set your learning rate as a constant α = 0.1.

• Perform stochastic gradient descent updates on the training data in the order that the data is given
in the input file. Although you would typically shuffle training examples when using stochastic
gradient descent, in order to autograde the assignment, we ask that you DO NOT shuffle trials in this
assignment.

• Be able to select which one of two feature extractions you will use in your logistic regression model
using a command line flag (see Section 4.2)

• Do not hard-code any aspects of the datasets into your code. We will autograde your programs on
multiple (hidden) datasets that include different attributes and output labels.

6.3 Hints
Careful planning will help you to correctly and concisely implement your program. Here are a few hints to
get you started.

• Work through the written component.

• (Python only) We strongly recommend you to write your own text parser rather than using parser
provided in various packages.

• Be sure to check that the output from your feature.{py|java|cpp} matches the reference out-
put given exactly before proceeding to lr.{py|java|cpp}.

• Write a function that takes a single SGD step on the i-th training example. Such a function should
take as input the model parameters, the learning rate, and the features and label for the i-th training
example. It should update the model parameters in place by taking one stochastic gradient step.

Page 21

• Write a function that takes in a set of features, labels, and model parameters and then outputs the error
(percentage of labels incorrectly predicted). You can also write a separate function that takes the same
inputs and outputs the negative log-likelihood of the regression model.

• You can either treat the bias term as separate variable, or fold it into the parameter vector. In either
case, make sure you update the bias term correctly.

6.4 Gradescope Submission
You should submit your feature.{py|java|cpp} and lr.{py|java|cpp} to Gradescope. Note:
please do not use other file names. This will cause problems for the autograder to correctly detect and run
your code.

Page 22

A Implementation Details for Logistic Regression
A.1 Examples of Features
Here we provide examples of the features constructed by Model 1 and Model 2. Table 2 shows an example
input file, where column i indexes the i-th movie review example. Rather than working directly with this
input file, you should transform the sentiment/text representation into a label/feature vector representation.

Table 3 shows the dense occurrence-indicator representation expected for Model 1. The size of each fea-
ture vector (i.e. number of feature columns in the table) is equal to the size of the entire vocabulary of
words stored in the given dict.txt (this dictionary is actually constructed from the same training data in
largeset). Each row corresponds to a single example, which we have indexed by i.

It would be highly impractical to actually store your feature vectors x(i) ∈ RM in the dense representation
shown in Table 3 which takes O(M) space per vector (M is around 40 thousands for the dictionary). This
is because the features are extremely sparse: for the second example (i = 2), only three of the features is
non-zero for Model 1 and only two for Model 2. As such, we now consider a sparse representation of the
features that will save both memory and computation.

Table 4 shows the sparse representation (bag-of-word representation) of the feature vectors. Each feature
vector is now represented by a map from the index of the feature (e.g. index["apple"]) to its value which
is 1. The space savings comes from the fact that we can omit from the map any feature whose value is zero.
In this way, the map only contains non-zero entry for each Model 1 feature vector.

Using the same sparse representation of features, we present an example of the features used by Model 2.
This involves two step: (1) construct the count-of-word representation of the feature vector (see Table 5);
(2) trim/remove the highly repetitive words/features and set the value of all remaining features to one (see
Table 6).

A.2 Efficient Computation of the Dot-Product
In simple linear models like logistic regression, the computation is often dominated by the dot-product θTx
of the parameters θ ∈ RM with the feature vector x ∈ RM . When a dense representation of x (such as that
shown in Table 3) is used, this dot-product requires O(M) computation. Why? Because the dot-product
requires a sum over each entry in the vector:

θTx =

M∑
m=1

θmxm (7)

However, if our feature vector is represented sparsely, we can observe that the only elements of the feature
vector that will contribute a non-zero value to the sum are those where xm 6= 0, since this would allow
θmxm to be nonzero. As such, we can write the dot-product as below:

θTx =
∑

m∈{1,...,M} s.t. xm 6=0

θmxm (8)

This requires only computation proportional to the number of non-zero entries in x, which is generally very
small for Model 1 and Model 2 compared to the size of the vocabulary. To ensure that your code runs
quickly it is best to write the dot-product in the latter form (Equation (8)).

A.3 Data Structures for Fast Dot-Product
Lastly, there is a question of how to implement this dot-product efficiently in practice. The key is choosing
appropriate data structures. The most common approach is to choose a dense representation for θ. In C++

Page 23

or Java, you could choose an array of float or double. In Python, you could choose a numpy array or a
list.

To represent your feature vectors, you might need multiple data structures. First, you could create a shared
mapping from a feature name (e.g. apple or boy) to the corresponding index in the dense parameter
vector. This shared mapping has already been provided to you in the dict.txt, and you can extract the
index of the word from the dictionary file for all later computation. In fact, you should be able to construct
the dictionary on your own from the training data (we have done this step for you in the handout). Once you
know the size of this mapping (which is the size of the dictionary file), you know the size of the parameter
vector θ.

Another data structure should be used to represent the feature vectors themselves. This assignment uses the
option to directly store a mapping from the integer index in the dictionary mapping (i.e. the index m) to the
value of the feature xm. Only the indices of words satisfying certain conditions will be stored, and all other
indices implicitly have zero value of the feature xm. This structure option will ensure that your code runs
fast so long as you are doing an efficient computation instead of the O(M) version.

Note for out-of-vocabulary features The dictionary in the handout is made from the same training data
in the large data set. You may encounter some words in the validation data and the test data that do not
appear in the vocabulary mapping. In this assignment, you should ignore those words during prediction and
evaluation.

Page 24

example index i sentiment y(i) review text x(i)

1 pos apple boy , cat dog
2 pos boy boy : dog dog ; dog dog . dog egg egg
3 neg apple apple apple apple boy cat cat dog
4 neg egg fish

Table 2: Abstract representation of the input file format. The ith row of this file will be used to construct the
ith training example using either Model 1 features (Table 4) or Model 2 features (Table 6).

i label y(i) features x(i)

zo
o
. .
.

ap
pl
e

bo
y

ca
t

do
g
eg
g

fi
sh

gi
rl

he
ad
. .
.

ze
ro

1 1 0 . . . 1 1 1 1 0 0 0 0 . . . 0
2 1 0 . . . 0 1 0 1 1 0 0 0 . . . 0
3 0 0 . . . 1 1 1 1 0 0 0 0 . . . 0
4 0 0 . . . 0 0 0 0 1 1 0 0 . . . 0

Table 3: Dense feature representation for Model 1 corresponding to the input file in Table 2. The ith row
corresponds to the ith training example. Each dense feature has the size of the vocabulary in the dictionary.
Punctuations are excluded.

i label y(i) features x(i)

1 1 { index[“apple”]: 1, index[“boy”]: 1, index[“cat”]: 1, index[“dog”]: 1 }
2 1 { index[“boy”]: 1, index[“dog”]: 1, index[“egg”]: 1 }
3 0 { index[“apple”]: 1, index[“boy”]: 1, index[“cat”]: 1, index[“dog”]:1 }
4 0 { index[“egg”]: 1, index[“fish”]: 1 }

Table 4: Sparse feature representation (bag-of-word representation) for Model 1 corresponding to the input
file in Table 2.

i label y(i) features x(i)

1 1 { index[“apple”]: 1, index[“boy”]: 1, index[“cat”]: 1, index[“dog”]: 1 }
2 1 { index[“boy”]: 2, index[“dog”]: 5, index[“egg”]: 2 }
3 0 { index[“apple”]: 4, index[“boy”]: 1, index[“cat”]: 2, index[“dog”]: 1 }
4 0 { index[“egg”]: 1, index[“fish”]: 1 }

Table 5: Count of word representation for Model 2 corresponding to the input file in Table 2.

Page 25

i label y(i) features x(i)

1 1 { index[“apple”]: 1, index[“boy”]: 1, index[“cat”]: 1, index[“dog”]: 1 }
2 1 { index[“boy”]: 1, index[“egg”]:1 }
3 0 { index[“boy”]: 1, index[“cat”]: 1, index[“dog”]: 1 }
4 0 { index[“egg”]: 1, index[“fish”]: 1 }

Table 6: Sparse feature representation for Model 2 corresponding to the input file in Table 2. Assume that
the trimming threshold is 4. As a result, ”dog” in example 2 and ”apple” in example 3 are removed and the
value of all remaining features are reset to value 1.

Page 26

	The Task
	The Datasets
	Model Definition
	Implementation
	Overview
	Feature Engineering
	Command Line Arguments

	Program Outputs
	Output: Formatted Data Files
	Output: Labels Files
	Output Metrics

	Evaluation and Submission
	Evaluation
	Requirements
	Hints
	Gradescope Submission

	Implementation Details for Logistic Regression
	Examples of Features
	Efficient Computation of the Dot-Product
	Data Structures for Fast Dot-Product

