
HOMEWORK 5: NEURAL NETWORKS
10-301/10-601 Introduction to Machine Learning (Spring 2021)

http://www.cs.cmu.edu/˜mgormley/courses/10601/
DUE: Monday, March 29, 2021 11:59 PM

Summary In this assignment, you will build a handwriting recognition system using a neural network. In
the Written component, you will walk through an on-paper example of how to implement a neural network.
Then, in the Programming component, you will implement an end-to-end system that learns to perform
handwritten letter classification.

START HERE: Instructions
• Collaboration Policy: Please read the collaboration policy here: http://www.cs.cmu.edu/
˜mgormley/courses/10601/

• Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/

˜mgormley/courses/10601/

• Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, we will be using Gradescope (https://gradescope.com/). Please use the provided
template. Submissions must be written in LaTeX. Regrade requests can be made, however this
gives the staff the opportunity to regrade your entire paper, meaning if additional mistakes are
found then points will be deducted. Each derivation/proof should be completed in the boxes
provided. For short answer questions you should not include your work in your solution. If you
include your work in your solutions, your assignment may not be graded correctly by our AI
assisted grader.

– Programming: You will submit your code for programming questions on the homework to
Gradescope (https://gradescope.com). After uploading your code, our grading scripts
will autograde your assignment by running your program on a virtual machine (VM). When
you are developing, check that the version number of the programming language environment
(e.g. Python 3.6.9, OpenJDK 11.0.5, g++ 7.4.0) and versions of permitted libraries (e.g. numpy
1.17.0 and scipy 1.4.1) match those used on Gradescope. You have a total of 10 Gradescope
programming submissions. Use them wisely. In order to not waste Gradescope submissions,
we recommend debugging your implementation on your local machine (or the linux servers) and
making sure your code is running correctly first before submitting you code to Gradescope.

• Materials: The data that you will need in order to complete this assignment is posted along with the
writeup and template on Piazza.

1

http://www.cs.cmu.edu/~mgormley/courses/10601/
http://www.cs.cmu.edu/~mgormley/courses/10601/
http://www.cs.cmu.edu/~mgormley/courses/10601/
http://www.cs.cmu.edu/~mgormley/courses/10601/
http://www.cs.cmu.edu/~mgormley/courses/10601/
https://gradescope.com/
https://gradescope.com

Linear Algebra Libraries When implementing machine learning algorithms, it is often convenient to
have a linear algebra library at your disposal. In this assignment, Java users may use EJMLa or ND4Jb and
C++ users Eigenc. Details below. (As usual, Python users have NumPy.)
EJML for Java EJML is a pure Java linear algebra package with three interfaces. We strongly

recommend using the SimpleMatrix interface. The autograder will use EJML version 0.38.
When compiling and running your code, we will add the additional command line argument
-cp "linalg_lib/ejml-v0.38-libs/*:linalg_lib/nd4j-v1.0.0-beta7-libs/*:./"
to ensure that all the EJML jars are on the classpath as well as your code.

ND4J for Java ND4J is a library for multidimensional tensors with an interface akin to
Python’s NumPy. The autograder will use ND4J version 1.0.0-beta7. When com-
piling and running your code, we will add the additional command line argument
-cp "linalg_lib/ejml-v0.38-libs/*:linalg_lib/nd4j-v1.0.0-beta7-libs/*:./"
to ensure that all the ND4J jars are on the classpath as well as your code.

Eigen for C++ Eigen is a header-only library, so there is no linking to worry about—just #include what-
ever components you need. The autograder will use Eigen version 3.3.7. The command line arguments
above demonstrate how we will call you code. When compiling your code we will include, the argument
-I./linalg_lib in order to include the linalg_lib/Eigen subdirectory, which contains all the head-
ers.

We have included the correct versions of EJML/ND4J/Eigen in the linalg_lib.zip posted on the
Piazza Resources page for your convenience. It contains the same linalg_lib/ directory that we will
include in the current working directory when running your tests. Do not include EJML, ND4J, or Eigen in
your homework submission; the autograder will ensure that they are in place.

ahttps://ejml.org
bhttps://deeplearning4j.org/docs/latest/nd4j-overview
chttp://eigen.tuxfamily.org/

Page 2

https://ejml.org
https://deeplearning4j.org/docs/latest/nd4j-overview
http://eigen.tuxfamily.org/

Written Questions (44 points)
1 Convolutional Neural Networks
In this problem, consider only the convolutional layer of a standard implementation of a CNN as described
in Lecture 12.

1. We are given image X and filter F below.

(a) (1 point) Let X be convolved with F using no padding and a stride of 1 to produce an output Y .
What is value of j in the output Y ?

Answer

(b) (1 point) Suppose you had an input feature map of size 6x4 and filter size 2x2, using no padding
and a stride of 2, what would be the resulting output size? Write your answer in terms of height ×
width.

Answer

Page 3

2. Parameter sharing is a very important concept for CNN because it drastically reduces the complexity of
the learning problem. For the following questions, assume that there is no bias term in our convolutional
layer.

(a) (1 point) Which of the following are parameters of a convolutional layer?
Select all that apply:

� stride size

� padding size

� image size

� filter size

� weights in the filter

� None of above.

(b) (1 point) Which of the following are hyperparameters of a convolutional layer?
Select all that apply:

� stride size

� padding size

� image size

� filter size

� weights in the filter

� None of above.

(c) (1 point) Suppose for the convolutional layer, we are given black and white images of size 22×22.
Using one single 4 × 4 filter with a stride of 2 and no padding, what is the number of parameters
you are learning in this layer?

Answer

(d) (1 point) Suppose instead of sharing the same filter for the entire image, you learn a new filter each
time you move across the image. Using 4× 4 filters with a stride of 2 and no padding, what is the
number of parameters you are learning in this layer?

Answer

(e) (1 point) Now suppose you are given a 40 × 40 colored image, which consists of 3 channels (so
your input is a 40 × 40 × 3 tensor), each representing the intensity of one primary color. Without

Page 4

sharing, using 4× 4 filters with a stride of 2 and no padding, what is the number of parameters you
are learning in this layer?

Answer

(f) (1 point) Parameter sharing is not usually used for fully-connected layers, but is usually used for
convolutional layers. In a sentence, describe a reason why parameter sharing is a good idea for
a convolutional layer, besides reduction in problem complexity. Hint: think about applications of
CNNs.

Answer

Page 5

2 Backpropagation

x1

x2

x3 z2

z1 ŷ1

ŷ2

Figure 1: A Directed Acyclic Graph (DAG)

Consider this above Directed Acyclic Graph (DAG). Notice that it looks different than the fully-connected
Neural Networks that we have seen before. Recall from lecture that you can perform back propagation on
any DAG. We will work through back propagation on this graph.

Let (x,y) be the training example that is considered, where x =
[
x1 x2 x3

]T and y =
[
y1 y2

]T .
All the other nodes in the graph are defined as:

z1 = ReLU(w1,1x1 + w2,1x2)

z2 = w2,2x
2
2 + w3,2x3 + b2

ŷ1 = σ(m1,1z
3
1 + c1)

ŷ2 = m1,2 sin(z1) +m2,2 cos(z2)

where σ(x) = 1
1+e−x is the sigmoid function, and ReLU(x) = max(0, x). Let θ be the set of all parameters

to be learned in this graph. We have that

θ = {w1,1, w2,1, w2,2, w3,2,m1,1,m1,2,m2,2, b2, c1}

For every set of input x = (x1, x2, x3), we will define objective of the problem as minimizing the loss
function

J(θ) = log
(
(y1 − ŷ1)2

)
+ log

(
(y2 − ŷ2)2

)
Assume that you have already gone through the forward pass with inputs x = (x1, x2, x3) and stored all
the relevant values. In the following questions, you will derive the backpropagation algorithm applied to the
above DAG.

(a) (1 point) First, we will derive the gradients with repect to the outputs. What are the expressions for
∂J
∂ŷ1

? Write your solution in terms of ŷ1.

Answer

Page 6

(b) Now, we will derive the gradients associated with the last layer, ie nodes y1, y2. Note that for the full
backpropagation algorithm, you would need to calculate the gradients of the loss function with respect
to every parameter (m1,1,m1,2,m2,2, c1) as well as every input of the layer (z1, z2), but we are not
asking for all of them in this part. For all of the questions in this part, you should use Chain Rule, and
write your solution in terms of values from the forward pass, or gradients with respect to the outputs
of this layer, ∂J

∂ŷ1
, ∂J
∂ŷ2

, because you have already calculated these values. In addition, use the sigmoid
function σ(x) in your answer instead of its explicit form.

(a) (1 point) What is the expression for ∂J
∂z1

?

Answer

(b) (1 point) What is the expression for ∂J
∂z2

?

Answer

(c) (1 point) What is the expression for ∂J
∂m1,1

?

Answer

(d) (1 point) What is the expression for ∂J
∂m1,2

?

Answer

(e) (1 point) What is the expression for ∂J
∂c1

?

Answer

Page 7

(f) (1 point) Lastly, we will derive the gradients associated with the second layer, ie nodes z1, z2. Note
that for the full backpropagation algorithm, you need to calculate the gradients of the loss function with
respect to every parameter (every wi,j , b2). However, we do not need to calculate the gradients with
respect to the inputs of this layer (x1, x2, x3), because they are fixed inputs of the model. For all of
the questions in this part, you should use Chain Rule, and write your solution in terms of values from
the forward pass or gradients with respect to the outputs of this layer, ∂J

∂z1
, ∂J
∂z2

, because you have
already calculated these values.

(a) (1 point) What is the expression for ∂J
∂w2,2

?

Answer

(b) (1 point) What is the expression for ∂J
∂b2

?

Answer

(c) (2 points) Recall that ReLU(x) = max(x, 0). The ReLU function is not differentiable at x = 0,
but for backpropagation, we define its derivative as

ReLU′(x) =

{
0, x < 0

1, otherwise

Now, what is the expression for ∂J
∂w1,1

? Explicitly write out the cases.

Answer

Page 8

3 Backpropagation Through Time
Consider the following one-layer many-to-many Recurrent neural network (RNN),

o

h

x

W�
U

V

Figure 2: A one hidden layer many-to-many Recurrent Neural Network

Recall from lecture, this is equivalent to

o(1)

h(1)h(0)

x(1)

o(2)

h(2)

x(2)

o(n)

h(n)

x(n)

.

h(...)

.

.

h(...)

.

Figure 3: The unfolding of the above RNN in time of the computation involved in its forward computation

Assume h(0) is given. To keep things simple, we consider an RNN with identity activation function and no
bias terms. We also assume that W = I , the identity matrix. For each timestep n ≥ 1, the hidden state and
output can be expressed as

h(n) = f(h(n−1), x(n), U) = Ux(n) + h(n−1)

o(n) = g(h(n), V) = V h(n)

where x(n) ∈ Ra, h(n) ∈ Rb, o(n) ∈ Rc, U ∈ Rb×a, and V ∈ Rc×b. Assume finite time N . The loss can
then be expressed as

J(θ) =

N∑
t=1

l(y(t), o(t))

where l(y(t), o(t)) is the loss at time step t.

For the following questions, express your answer in terms of x(n), h(n), o(n), U, V unless specified other-
wise. Some rules of matrix calculus may be helpful: for J ∈ R,x ∈ Rn,X ∈ Rn×m,

∂J

∂x
=


∂J
∂x1
∂J
∂x2
. . .
∂J
∂xn

 ∂J

∂X
=


∂J
∂x11

∂J
∂x12

. . . ∂J
∂x1m

∂J
∂x21

∂J
∂x22

. . . ∂J
∂x2m

...
...

. . .
...

∂J
∂xn1

∂J
∂xn2

. . . ∂J
∂xnm



Page 9

1. Assume N = 1. For the following subparts (a)-(d), you may give your answer in terms of ∂l
∂o(1)

.

(a) (1 point) What is ∂J
∂h(1)

?

Answer

(b) (1 point) What is ∂J
∂V ?

Answer

(c) (1 point) What is ∂J
∂U ?

Answer

2. Assume N = 2. For the following subparts (a)-(d), you may give your answer in terms of ∂l
∂o(1)

and
∂l

∂o(2)
.

(a) (1 point) What is ∂J
∂h(1)

?

Answer

(b) (1 point) What is ∂J
∂V ?

Answer

(c) (1 point) What is ∂J
∂U ?

Answer

Page 10

3. Now let’s generalize the result to an arbitrary time N > 1. For the following subparts (a)-(c), you may
give your answer in terms of ∂l

∂o(n) , n = 1, . . . , N .

(a) (2 points) What is ∂J
∂h(n) ?

Answer

(b) (2 points) What is ∂J
∂V ?

Answer

(c) (2 points) What is ∂J
∂U ?

Answer

Page 11

4 Empirical Questions
The following questions should be completed after you work through the programming portion of this
assignment.

For these questions, use the large dataset. Use the following values for the hyperparameters unless other-
wise specified:

Parameter Value
Number of Hidden Units 50

Weight Initialization RANDOM

Learning Rate 0.01

Please submit computer-generated plots for (a)i and (b)i. Note: we expect it to take about 5 minutes to train
each of these networks.

1. Hidden Units

(a) (2 points) Train a single hidden layer neural network using the hyperparameters mentioned in the
table above, except for the number of hidden units which should vary among 5, 20, 50, 100, and
200. Run the optimization for 100 epochs each time.

Plot the average training cross-entropy (sum of the cross-entropy terms over the training dataset
divided by the total number of training examples) on the y-axis vs number of hidden units on the
x-axis. In the same figure, plot the average validation cross-entropy.

Avg. Train and Validation Cross-Entropy Loss

Page 12

(b) (2 points) Examine and comment on the the plots of training and validation cross-entropy. What
is the effect of changing the number of hidden units?

Answer

2. Learning Rate

(a) (6 points) Train a single hidden layer neural network using the hyperparameters mentioned in the
table above, except for the learning rate which should vary among 0.1, 0.01, and 0.001. Run the
optimization for 100 epochs each time.

Plot the average training cross-entropy on the y-axis vs the number of epochs on the x-axis for the
mentioned learning rates. In the same figure, plot the average validation cross-entropy loss. Make
a separate figure for each learning rate.

Plot LR 0.1

Page 13

Plot LR 0.01

Plot LR 0.001

Page 14

(b) (2 points) Examine and comment on the plots of training and validation cross-entropy. How does
adjusting the learning rate affect the convergence of cross-entropy on the datasets?

Answer

3. Weight Initialization

(a) (2 points) For this exercise, you can work on any data set. Initialize α and β to zero and print
them out after the first few updates. For example, you may use the following command to begin:

$ python neuralnet.py smallTrain.csv smallValidation.csv \
smallTrain_out.labels smallValidation_out.labels \
smallMetrics_out.txt 1 4 2 0.1

Compare the values across rows and columns in α and β. Comment on what you observed. Do
you think it is reasonable to use zero initialization? Why or why not?

Answer

Page 15

Collaboration Questions
After you have completed all other components of this assignment, report your answers to these questions
regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? Is so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? Is so, include full details.

3. Did you find or come across code that implements any part of this assignment ? If so, include full
details.

Your Answer

Page 16

http://www.cs.cmu.edu/~mgormley/courses/10601/about.html

Programming (56 points)

Figure 4: 10 Random Images of Each of 10 Letters in OCR

5 The Task
Your goal in this assignment is to label images of handwritten letters by implementing a Neural Network
from scratch. You will implement all of the functions needed to initialize, train, evaluate, and make predic-
tions with the network.

The programs you write will be automatically graded using the Gradescope system. You may write your
programs in Python, Java, or C++. However, you should use the same language for all parts below.

6 The Datasets
Datasets We will be using a subset of an Optical Character Recognition (OCR) dataset. This data includes
images of all 26 handwritten letters; our subset will include only the letters “a,” “e,” “g,” “i,” “l,” “n,” “o,”
“r,” “t,” and “u.” The handout contains three datasets drawn from this data: a small dataset with 60 samples
per class (50 for training and 10 for validation), a medium dataset with 600 samples per class (500 for
training and 100 for validation), and a large dataset with 1000 samples per class (900 for training and 100
for validation). Figure 4 shows a random sample of 10 images of few letters from the dataset.

File Format Each dataset (small, medium, and large) consists of two csv files—train and validation. Each
row contains 129 columns separated by commas. The first column contains the label and columns 2 to 129
represent the pixel values of a 16 × 8 image in a row major format. Label 0 corresponds to “a,” 1 to “e,” 2
to “g,” 3 to “i,” 4 to “l,” 5 to “n,” 6 to “o,” 7 to “r,” 8 to “t,” and 9 to “u.” Because the original images are
black-and-white (not grayscale), the pixel values are either 0 or 1. However, you should write your code to

Page 17

accept arbitrary pixel values in the range [0, 1]. The images in Figure 4 were produced by converting these
pixel values into .png files for visualization. Observe that no feature engineering has been done here; instead
the neural network you build will learn features appropriate for the task of character recognition.

7 Model Definition
In this assignment, you will implement a single-hidden-layer neural network with a sigmoid activation
function for the hidden layer, and a softmax on the output layer. Let the input vectors x be of length M , the
hidden layer z consist of D hidden units, and the output layer ŷ be a probability distribution over K classes.
That is, each element ŷk of the output vector represents the probability of x belonging to the class k.

ŷk =
exp(bk)∑K
l=1 exp(bl)

bk = βk,0 +

D∑
j=1

βkjzj

zj =
1

1 + exp(−aj)

aj = αj,0 +

M∑
m=1

αjmxm

We can compactly express this model by assuming that x0 = 1 is a bias feature on the input and that z0 = 1
is also fixed. In this way, we have two parameter matrices α ∈ RD×(M+1) and β ∈ RK×(D+1). The extra
0th column of each matrix (i.e. α·,0 and β·,0) hold the bias parameters.

ŷk =
exp(bk)∑K
l=1 exp(bl)

bk =
D∑
j=0

βkjzj

zj =
1

1 + exp(−aj)

aj =

M∑
m=0

αjmxm

The objective function we will use for training the neural network is the average cross entropy over the
training dataset D = {(x(i),y(i))}:

J(α,β) = − 1

N

N∑
i=1

K∑
k=1

y
(i)
k log(ŷ

(i)
k) (1)

In Equation 1, J is a function of the model parameters α and β because ŷ(i)k is implicitly a function of x(i),
α, and β since it is the output of the neural network applied to x(i). Of course, ŷ(i)k and y(i)k are the kth
components of ŷ(i) and y(i) respectively.

Page 18

To train, you should optimize this objective function using stochastic gradient descent (SGD), where the
gradient of the parameters for each training example is computed via backpropagation. Note that SGD has
a slight impact on the objective function, where we are “summing” over the current point, i:

JSGD(α,β) = −
K∑
k=1

y
(i)
k log(ŷ

(i)
k) (2)

7.1 Initialization
In order to use a deep network, we must first initialize the weights and biases in the network. This is typically
done with a random initialization, or initializing the weights from some other training procedure. For this
assignment, we will be using two possible initialization:

RANDOM The weights are initialized randomly from a uniform distribution from -0.1 to 0.1.
The bias parameters are initialized to zero.

ZERO All weights are initialized to 0.

You must support both of these initialization schemes.

8 Implementation
Write a program neuralnet.{py|java|cpp|m} that implements an optical character recognizer using
a one hidden layer neural network with sigmoid activations. Your program should learn the parameters of
the model on the training data, report the cross-entropy at the end of each epoch on both train and validation
data, and at the end of training write out its predictions and error rates on both datasets.

Your implementation must satisfy the following requirements:

• Use a sigmoid activation function on the hidden layer and softmax on the output layer to ensure it
forms a proper probability distribution.

• Number of hidden units for the hidden layer should be determined by a command line flag.

• Support two different initialization strategies, as described in Section 7.1, selecting between them
via a command line flag.

• Use stochastic gradient descent (SGD) to optimize the parameters for one hidden layer neural network.
The number of epochs will be specified as a command line flag.

• Set the learning rate via a command line flag.

• Perform stochastic gradient descent updates on the training data in the order that the data is given
in the input file. Although you would typically shuffle training examples when using stochastic gra-
dient descent, in order to autograde the assignment, we ask that you DO NOT shuffle trials in this
assignment.

• In case there is a tie in the output layer ŷ, predict the smallest index to be the label.

• You may assume that the input data will always have the same output label space (i.e. {0, 1, . . . , 9}).
Other than this, do not hard-code any aspect of the datasets into your code. We will autograde your
programs on multiple data sets that include different examples.

• Do not use any machine learning libraries. You may use supported linear algebra packages. See
Section 8.1 for more details.

Page 19

Implementing a neural network can be tricky: the parameters are not just a simple vector, but a collection
of many parameters; computational efficiency of the model itself becomes essential; the initialization strat-
egy dramatically impacts overall learning quality; other aspects which we will not change (e.g. activation
function, optimization method) also have a large effect. These tips should help you along the way:

• Try to “vectorize” your code as much as possible—this is particularly important for Python. For ex-
ample, in Python, you want to avoid for-loops and instead rely on numpy calls to perform operations
such as matrix multiplication, transpose, subtraction, etc. over an entire numpy array at once. Why?
Because these operations are actually implemented in fast C code, which won’t get bogged down the
way a high-level scripting language like Python will.

• For low level languages such as Java/C++, the use of primitive arrays and for-loops would not pose
any computational efficiency problems—however, it is still helpful to make use of a linear algebra
library to cut down on the number of lines of code you will write.

• Implement a finite difference test to check whether your implementation of backpropagation is cor-
rectly computing gradients. If you choose to do this, comment out this functionality once your back-
ward pass starts giving correct results and before submitting to Gradescope—since it will otherwise
slow down your code.

8.1 Command Line Arguments
The autograder runs and evaluates the output from the files generated, using the following command:

For Python: $ python3 neuralnet.py [args...]

For Java: $ javac -cp "./lib/ejml-v0.38-libs/*:./" neuralnet.java
$ java -cp "./lib/ejml-v0.38-libs/*:./" neuralnet [args...]

For C++: $ g++ -g -std=c++11 -I./lib neuralnet.cpp; ./a.out [args...]

Where above [args...] is a placeholder for nine command-line arguments: <train input>
validation input> <train out> <validation out> <metrics out> <num epoch>
<hidden units> <init flag> <learning rate>. These arguments are described in detail be-
low:

1. <train input>: path to the training input .csv file (see Section 6)

2. <validation input>: path to the validation input .csv file (see Section 6)

3. <train out>: path to output .labels file to which the prediction on the training data should be
written (see Section 8.2)

4. <validation out>: path to output .labels file to which the prediction on the validation data
should be written (see Section 8.2)

5. <metrics out>: path of the output .txt file to which metrics such as train and validation error
should be written (see Section 8.3)

6. <num epoch>: integer specifying the number of times backpropogation loops through all of the
training data (e.g., if <num epoch> equals 5, then each training example will be used in backpro-
pogation 5 times).

7. <hidden units>: positive integer specifying the number of hidden units.

Page 20

8. <init flag>: integer taking value 1 or 2 that specifies whether to use RANDOM or ZERO initial-
ization (see Section 7.1 and Section 8)—that is, if init_flag==1 initialize your weights randomly
from a uniform distribution over the range [-0.1, 0.1] (i.e. RANDOM), if init_flag==2 initialize
all weights to zero (i.e. ZERO). For both settings, always initialize bias terms to zero.

9. <learning rate>: float value specifying the learning rate for SGD.

As an example, if you implemented your program in Python, the following command line would run your
program with 4 hidden units on the small data provided in the handout for 2 epochs using zero initialization
and a learning rate of 0.1.

$ python3 neuralnet.py smallTrain.csv smallValidation.csv \
smallTrain_out.labels smallValidation_out.labels smallMetrics_out.txt \
2 4 2 0.1

8.2 Output: Labels Files
Your program should write two output .labels files containing the predictions of your model on train-
ing data (<train out>) and validation data (<validation out>). Each should contain the predicted
labels for each example printed on a new line. Use \n to create a new line.

Your labels should exactly match those of a reference implementation – this will be checked by the auto-
grader by running your program and evaluating your output file against the reference solution.

Note: You should output your predicted labels using the same integer identifiers as the original training data.
You should also insert an empty line (again using ’\n’) at the end of each sequence (as is done in the input
data files). The first few lines of the predicted labels for the validation dataset is given below.

6
4
8
8

8.3 Output Metrics
Generate a file where you report the following metrics:

cross entropy After each Stochastic Gradient Descent (SGD) epoch, report mean cross entropy on the train-
ing data crossentropy(train) and validation data crossentropy(validation) (See
Equation 1). These two cross-entropy values should be reported at the end of each epoch and prefixed
by the epoch number. For example, after the second pass through the training examples, these should
be prefixed by epoch=2. The total number of train losses you print out should equal num epoch—
likewise for the total number of validation losses.

error After the final epoch (i.e. when training has completed fully), report the final training error error(train)
and validation error error(validation).

A sample output is given below. It contains the train and validation losses for the first 2 epochs and the final
error rate when using the command given above.

epoch=1 crossentropy(train): 2.18506276114
epoch=1 crossentropy(validation): 2.18827302588

Page 21

epoch=2 crossentropy(train): 1.90103257727
epoch=2 crossentropy(validation): 1.91363803461
error(train): 0.77
error(validation): 0.78

Take care that your output has the exact same format as shown above. There is an equal sign = between the
word epoch and the epoch number, but no spaces. There should be a single space after the epoch number
(e.g. a space after epoch=1), and a single space after the colon preceding the metric value (e.g. a space
after epoch=1 likelihood(train):). Each line should be terminated by a Unix line ending \n.

8.4 Tiny Data Set
To help you with this assignment, we have also included a tiny data set, tinyTrain.csv and
tinyValidation.csv, and a reference output file tinyOutput.txt for you to use. The tiny dataset
is in a format similar to the other datasets, but it only contains two samples with five features. The reference
file contains outputs from each layer of one correctly implemented neural network, for both forward and
back-propagation steps. We advise you to use this set to help you debug in case your implementation
doesn’t produce the same results as in the written part.

There is more information in the README.md file. Do read through the README file if you plan to use
it for debugging. For your reference, tinyOutput.txt is generated from the following command line
specifications:

$ python3 neuralnet.py tinyTrain.csv tinyValidation.csv \
tinyTrain_out.labels tinyValidation_out.labels tinyMetrics_out.txt \
1 4 2 0.1

The specific output file names are not important, but be sure to keep the other arguments exactly as they are
shown above.

9 Gradescope Submission
You should submit your neuralnet.{py|java|cpp} to Gradescope. Please do not use any other file
name for your implementation. This will cause problems for the autograder to correctly detect and run your
code.

Some additional tips: Make sure to read the autograder output carefully. The autograder for Gradescope
prints out some additional information about the tests that it ran. For this programming assignment we’ve
specially designed some buggy implementations that you might implement and will try our best to detect
those and give you some more useful feedback in Gradescope’s autograder. Make wise use of autograder’s
output for debugging your code.

Note: For this assignment, you may make up to 10 submissions to Gradescope before the deadline, but only
your last submission will be graded.

Page 22

A Implementation Details for Neural Networks
This section provides a variety of suggestions for how to efficiently and succinctly implement a neural
network and backpropagation.

A.1 SGD for Neural Networks
Consider the neural network described in Section 8 applied to the ith training example (x,y) where y is
a one-hot encoding of the true label. Our neural network outputs ŷ = hα,β(x), where α and β are the
parameters of the first and second layers respectively and hα,β(·) is a one-hidden layer neural network
with a sigmoid activation and softmax output. The loss function is negative cross-entropy J = `(ŷ,y) =
−yT log(ŷ). J = Jx,y(α,β) is actually a function of our training example (x,y), and our model parameters
α,β though we write just J for brevity.

In order to train our neural network, we are going to apply stochastic gradient descent. Because we want the
behavior of your program to be deterministic for testing on Gradescope, we make a few simplifications: (1)
you should not shuffle your data and (2) you will use a fixed learning rate. In the real world, you would not
make these simplifications.

SGD proceeds as follows, where E is the number of epochs and γ is the learning rate.

Algorithm 1 Stochastic Gradient Descent (SGD) without Shuffle
1: procedure SGD(Training data D, test data Dt)
2: Initialize parameters α,β . Use either RANDOM or ZERO from Section 7.1
3: for e ∈ {1, 2, . . . , E} do . For each epoch
4: for (x,y) ∈ D do . For each training example (No shuffling)
5: Compute neural network layers:
6: o = object(x,a,b, z, ŷ, J) = NNFORWARD(x,y,α,β)
7: Compute gradients via backprop:

8:
gα =

∂J

∂α

gβ =
∂J

∂β

 = NNBACKWARD(x,y,α,β,o)

9: Update parameters:
10: α← α− γgα
11: β ← β − γgβ
12: Evaluate training mean cross-entropy JD(α,β)
13: Evaluate test mean cross-entropy JDt(α,β)

14: return parameters α,β

At test time, we output the most likely prediction for each example:

Algorithm 2 Prediction at Test Time

1: procedure PREDICT(Unlabeled train or test dataset D′, Parameters α,β)
2: for x ∈ D′ do
3: Compute neural network prediction ŷ = h(x)
4: Predict the label with highest probability l = argmaxk ŷk

The gradients we need above are themselves matrices of partial derivatives. Let M be the number of input

Page 23

features, D the number of hidden units, and K the number of outputs.

α =


α10 α11 . . . α1M

α20 α21 . . . α2M
...

...
. . .

...
αD0 αD1 . . . αDM

 gα =
∂J

∂α
=


dJ
dα10

dJ
dα11

. . . dJ
dα1M

dJ
dα20

dJ
dα21

. . . dJ
dα2M

...
...

. . .
...

dJ
dαD0

dJ
dαD1

. . . dJ
dαDM

 (3)

β =


β10 β11 . . . β1D
β20 β21 . . . β2D

...
...

. . .
...

βK0 βK1 . . . βKD

 gβ =
∂J

∂β
=


dJ
dβ10

dJ
dβ11

. . . dJ
dβ1D

dJ
dβ20

dJ
dβ21

. . . dJ
dβ2D

...
...

. . .
...

dJ
dβK0

dJ
dβK1

. . . dJ
dβKD

 (4)

Observe that we have (in a rather tricky fashion) defined the matrices such that bothα and gα areD×(M+
1) matrices. Likewise, β and gβ are K× (D+1) matrices. The +1 comes from the extra columns α·,0 and
β·,0 which are the bias parameters for the first and second layer respectively. We will always assume x0 = 1
and z0 = 1. This should greatly simplify your implementation as you will see in Section A.3.

A.2 Recursive Derivation of Backpropagation
In class, we described a very general approach to differentiating arbitrary functions: backpropagation. One
way to understand how we go about deriving the backpropagation algorithm is to consider the natural con-
sequence of recursive application of the chain rule.

In practice, the partial derivatives that we need for learning are dJ
dαij

and dJ
dβkj

.

A.2.1 Symbolic Differentiation

Note In this section, we motivate backpropagation via a strawman: that is, we will work through the
wrong approach first (i.e. symbolic differentiation) in order to see why we want a more efficient method (i.e.
backpropagation). Do not use this symbolic differentiation in your code.

Suppose we wanted to find dJ
dαij

using the method we know from high school calculus. That is, we will
analytically solve for an equation representing that quantity.

1. Considering the computational graph for the neural network, we observe that αij has exactly one child
ai =

∑M
m=0 αimxm. That is ai is the first and only intermediate quantity that uses αij . Applying the

chain rule, we obtain
dJ

dαij
=
dJ

dai

dai
dαij

=
dJ

dai
xj

2. So far so good, now we just need to compute dJ
dai

. Not a problem! We can just apply the chain
rule again. ai just has exactly one child as well, namely zi = σ(ai). The chain rule gives us that
dJ
dai

= dJ
dzi

dzi
dai

= dJ
dzi
zi(1− zi). Substituting back into the equation above we find that

dJ

dαij
=
dJ

dzi
(zi(1− zi))xj

Page 24

3. How do we get dJ
dzi

? You guessed it: apply the chain rule yet again. This time, however, there are
multiple children of zi in the computation graph; they are b1, b2, . . . bK . Applying the chain rule gives
us that dJ

dzi
=
∑K

k=1
dJ
dbk

∂bk
∂zi

=
∑K

k=1
dJ
dbk
βki. Substituting back into the equation above gives:

dJ

dαij
=

K∑
k=1

dJ

dbk
βki(zi(1− zi))xj

4. Next we need dJ
dbk

, which we again obtain via the chain rule: dJ
dbk

=
∑K

l=1
dJ
dŷl

∂ŷl
∂bk

=
∑K

l=1
dJ
dŷl
ŷl(I[k =

l]− ŷk). Substituting back in above gives:

dJ

dαij
=

K∑
k=1

K∑
l=1

dJ

dŷl
ŷl(I[k = l]− ŷk)βki(zi(1− zi))xj

5. Finally, we know that dJ
dŷl

= −yl
ŷl

which we can again substitute back in to obtain our final result:

dJ

dαij
=

K∑
k=1

K∑
l=1

−yl
ŷl
ŷl(I[k = l]− ŷk)βki(zi(1− zi))xj

Although we have successfully derived the partial derivative w.r.t. αij , the result is far from satisfying.
It is overly complicated and requires deeply nested for-loops to compute.

The above is an example of symbolic differentiation. That is, at the end we get an equation representing the
partial derivative w.r.t. αij . At this point, you should be saying to yourself: What a mess! Isn’t there a better
way? Indeed there is and its called backpropagation. The algorithm works just like the above symbolic
differentiation except that we never subsitute the partial derivative from the previous step back in. Instead,
we work “backwards” through the steps above computing partial derivatives in a top-down fashion.

A.3 Matrix / Vector Operations for Neural Networks
Some programming languages are fast and some are slow. Below is a simple benchmark to show this
concretely. The task is to compute a dot-product aTb between two vectors a ∈ R500 and b ∈ R500 one
thousand times. Table 1 shows the time taken for several combinations of programming language and data
structure.

language data structure time (ms)

Python list 200.99
Python numpy array 1.01
Java float[] 4.00
C++ vector<float> 0.81

Table 1: Computation time required for dot-product in various languages.

Notice that Java1 and C++ with standard data structures are quite efficient. By contrast, Python differs dra-
matically depending on which data structure you use: with a standard list object
(e.g. a = [float(i) for x in range(500)]) the computation time is an appallingly slow 200+

1Java would approach the speed of C++ if we had given the just-in-time (JIT) compiler inside the JVM time to “warm-up”.

Page 25

milliseconds. Simply by switching to a numpy array (e.g. a = np.arange(500, dtype=float))
we obtain a 200x speedup. This is because a numpy array is actually carrying out the dot-product computa-
tion in pure C, which is just as fast as our C++ benchmark, modulo some Python overhead.

Thus, for this assignment, Java and C++ programmers could easily implement the entire neural network
using standard data structures and some for-loops. However, Python programmers would find that their
code is simply too slow if they tried to do the same. As such, particularly for Python users, one must convert
all the deeply nested for-loops into efficient “vectorized” math via numpy. Doing so will ensure efficient
code. Java and C++ programmers can also benefit from linear algebra packages since it can cut down on the
total number of lines of code you need to write.

A.4 Procedural Method of Implementation
Perhaps the simplest way to implement a 1-hidden-layer neural network is procedurally. Note that this
approach has some drawbacks that we’ll discuss below (Section A.4.1).

The procedural method: one function computes the outputs of the neural network and all intermediate
quantities o = NNFORWARD(x,y,α,β) = object(x,a,b, z, ŷ, J), where the object is just some struct.
Then another function computes the gradients of our parameters gα,gβ = NNBACKWARD(x,y,α,β,o),
where o is a data structure that stores all the forward computation.

One must be careful to ensure that functions are vectorized. For example, your Sigmoid function should be
able to take a vector input and return a vector output with the Sigmoid function applied to all of its elements.
All of these operations should avoid for-loops when working in a high-level language like Python. We can
compute the softmax function in a similar vectorized manner.

A.4.1 Drawbacks to Procedural Method

As noted in Section A.6, it is possible to use a finite difference method to check that the backpropaga-
tion algorithm is correctly computing the gradient of its corresponding forward computation. We strongly
encourage you to do this.

There is a big problem however: what if your finite difference check informs you that the gradient is not
being computed correctly. How will you know which part of your NNFORWARD() or NNBACKWARD()
functions has a bug? There are two possible solutions here:

1. As usual, you can (and should) work through a tiny example dataset on paper. Compute each inter-
mediate quantity and each gradient. Check that your code reproduces each number. The one that does
not should indicate where to find the bug.

2. Replace your procedural implementation with a module-based one (as described in Section A.5) and
then run a finite-difference check on each layer of the model individually. The finite-difference check
that fails should indicate where to find the bug.

Of course, rather than waiting until you have a bug in your procedural implementation, you could jump
straight to the module-based version—though it increases the complexity slightly (i.e. more lines of code)
it might save you some time in the long run.

A.5 Module-based Method of Implementation
Module-based automatic differentiation (AD) is a technique that has long been used to develop libraries for
deep learning. Dynamic neural network packages are those that allow a specification of the computation

Page 26

graph dynamically at runtime, such as Torch2, PyTorch3, and DyNet4—these all employ module-based AD
in the sense that we will describe here.5

The key idea behind module-based AD is to componentize the computation of the neural-network into
layers. Each layer can be thought of as consolidating numerous nodes in the computation graph (a subset of
them) into one vector-valued node. Such a vector-valued node should be capable of the following and we
call each one a module:

1. Forward computation of output b = [b1, . . . , bB] given input a = [a1, . . . , aA] via some differentiable
function f . That is b = f(a).

2. Backward computation of the gradient of the input ga = ∂J
∂a = [dJda1 , . . . ,

dJ
daA

] given the gradient of
output gb = ∂J

∂b = [dJdb1 , . . . ,
dJ
dbB

], where J is the final real-valued output of the entire computation

graph. This is done via the chain rule dJ
dai

=
∑M

j=1
dJ
dbj

∂bj
∂ai

for all i ∈ {1, . . . , A}.

A.5.1 Module Definitions

The modules we would define for our neural network would correspond to a Linear layer, a Sigmoid layer,
a Softmax layer, and a Cross-Entropy layer. Each module defines a forward function b = *FORWARD(a),
and a backward function ga = *BACKWARD(a,b,gb) method. These methods accept parameters if ap-
propriate. You’ll want to pay close attention to the dimensions that you pass into and return from your
modules.

Linear Module The linear layer has two inputs: a vector a and parameters ω ∈ RB×A. The output b is not
used by LINEARBACKWARD, but we pass it in for consistency of form.

1: procedure LINEARFORWARD(a, α)
2: Compute b
3: return b

4: procedure LINEARBACKWARD(a, α, b, gb)
5: Compute gα
6: Compute ga
7: return gα,ga

It’s also quite common to combine the Cross-Entropy and Softmax layers into one. The reason for this is the
cancelation of numerous terms that result from the zeros in the cross-entropy backward calculation. (Said
trick is not required to obtain a sufficiently fast implementation for Gradescope.)

A.5.2 Module-based AD for Neural Network

Using these modules, we can re-define our functions NNFORWARD and NNBACKWARD as follows.

2http://torch.ch/
3http://pytorch.org/
4https://dynet.readthedocs.io
5Static neural network packages are those that require a static specification of a computation graph which is subsequently

compiled into code. Examples include Theano, Tensorflow, and CNTK. These libraries are also module-based but the particular
form of implementation is different from the dynamic method we recommend here.

Page 27

http://torch.ch/
http://pytorch.org/
https://dynet.readthedocs.io

Algorithm 3 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters α, β)
2: a = LINEARFORWARD(x,α)
3: z = SIGMOIDFORWARD(a)
4: b = LINEARFORWARD(z,β)
5: ŷ = SOFTMAXFORWARD(b)
6: J = CROSSENTROPYFORWARD(y, ŷ)
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 4 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters α, β, Intermediates o)
2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gJ = ∂J

∂J = 1 . Base case
4: gŷ = CROSSENTROPYBACKWARD(y, ŷ, gJ)
5: gb = SOFTMAXBACKWARD(b, ŷ,gŷ)
6: gβ,gz = LINEARBACKWARD(z,β,gb)
7: ga = SIGMOIDBACKWARD(a, z,gz)
8: gα,gx = LINEARBACKWARD(x,α,ga) . We discard gx
9: return parameter gradients gα,gβ

Here’s the big takeaway: we can actually view these two functions as themselves defining another module!
It is a 1-hidden layer neural network module. That is, the cross-entropy of the neural network for a single
training example is itself a differentiable function and we know how to compute the gradients of its inputs,
given the gradients of its outputs.

A.6 Testing Backprop with Numerical Differentiation
Numerical differentiation provides a convenient method for testing gradients computed by backpropagation.
The centered finite difference approximation is:

∂

∂θi
J(θ) ≈ (J(θ + ε · di)− J(θ − ε · di))

2ε
(5)

where di is a 1-hot vector consisting of all zeros except for the ith entry of di, which has value 1. Unfortu-
nately, in practice, it suffers from issues of floating point precision. Therefore, it is typically only appropriate
to use this on small examples with an appropriately chosen ε.

In order to apply this technique to test the gradients of your backpropagation implementation, you will
need to ensure that your code is appropriately factored. Any of the modules including NNFORWARD and
NNBACKWARD could be tested in this way.

For example, you could use two functions: forward(x,y,theta) computes the cross-entropy for a
training example. backprop(x,y,theta) computes the gradient of the cross-entropy for a training
example via backpropagation. Finally, finite_diff as defined below approximates the gradient by the
centered finited difference method. The following pseudocode provides an overview of the entire procedure.

def finite_diff(x, y, theta):
epsilon = 1e-5

Page 28

grad = zero_vector(theta.length)
for m in [1, ..., theta.length]:

d = zero_vector(theta.length)
d[m] = 1
v = forward(x, y, theta + epsilon * d)
v -= forward(x, y, theta - epsilon * d)
v /= 2*epsilon
grad[m] = v

Compute the gradient by backpropagation
grad_bp = backprop(x, y, theta)
Approximate the gradient by the centered finite difference method
grad_fd = finite_diff(x, y, theta)

Check that the gradients are (nearly) the same
diff = grad_bp - grad_fd # element-wise difference of two vectors
print l2_norm(diff) # this value should be small (e.g. < 1e-7)

A.6.1 Limitations

This does not catch all bugs—the only thing it tells you is whether your backpropagation implementation
is correctly computing the gradient for the forward computation. Suppose your forward computation is
incorrect, e.g. you are always computing the cross-entropy of the wrong label. If your backpropagation is
also using the same wrong label, then the check above will not expose the bug. Thus, you always want to
separately test that your forward implementation is correct.

A.6.2 Finite Difference Checking of Modules

Note that the above would test the gradient for the entire end-to-end computation carried output by the neural
network. However, if you implement a module-based automatic differentiation method (as in Section A.5),
then you can test each individual component for correctness. The only difference is that you need to run the
finite-difference check for each of the output values (i.e. a double for-loop).

Page 29

	Convolutional Neural Networks
	Backpropagation
	Backpropagation Through Time
	Empirical Questions
	The Task
	The Datasets
	Model Definition
	Initialization

	Implementation
	Command Line Arguments
	Output: Labels Files
	Output Metrics
	Tiny Data Set

	Gradescope Submission
	Implementation Details for Neural Networks
	SGD for Neural Networks
	Recursive Derivation of Backpropagation
	Symbolic Differentiation

	Matrix / Vector Operations for Neural Networks
	Procedural Method of Implementation
	Drawbacks to Procedural Method

	Module-based Method of Implementation
	Module Definitions
	Module-based AD for Neural Network

	Testing Backprop with Numerical Differentiation
	Limitations
	Finite Difference Checking of Modules

