Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

HOMEWORK 6
NEURAL NETWORKS AND REINFORCEMENT LEARNING!

10-301/10-601 INTRODUCTION TO MACHINE LEARNING (SPRING 2021)
http://mlcourse.org

OUT: Mar. 30, 2021
DUE: Apr. 7, 2021 11:59 PM
TAs: Clay Yoo, Everett Knag, Varun Natu

Summary In this assignment, you will implement a reinforcement learning algorithm for solving the
classic mountain-car environment. As a warmup, the first section is as a review of neural network and regu-
larisation concepts. Later sections will then lead you through an on-paper example of how non-deterministic
value iteration and Q-learning work. Then, in Section 2, you will implement Q-learning with function ap-
proximation to solve the mountain car environment.

START HERE: Instructions

* Collaboration Policy: Please read the collaboration policy here: https://www.cs.cmu.edu/
~10601

» Late Submission Policy: See the late submission policy here: https://www.cs.cmu.edu/
~10601

* Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

— Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, we will be using Gradescope (https://gradescope.com/). Please use the provided
template. Submissions must be written in LaTeX. Regrade requests can be made, however this
gives the staff the opportunity to regrade your entire paper, meaning if additional mistakes are
found then points will be deducted. Each derivation/proof should be completed in the boxes
provided. If you do not follow the t your assignment may not be graded correctly by our Al
assisted grader.

— Programming: You will submit your code for programming questions on the homework to
Gradescope (https://gradescope.com). After uploading your code, our grading scripts
will autograde your assignment by running your program on a virtual machine (VM). When
you are developing, check that the version number of the programming language environment
(e.g. Python 3.6.9, OpenJDK 11.0.5, g++ 7.4.0) and versions of permitted libraries (e.g. numpy
1.17.0 and scipy 1.4.1) match those used on Gradescope. You have 30 Gradescope program-
ming submissions. We recommend debugging your implementation on your local machine (or
the Linux servers) and making sure your code is running correctly first before submitting you
code to Gradescope.

* Materials: The data that you will need in order to complete this assignment is posted along with the
writeup and template on Piazza.

'Compiled on Tuesday 30™ March, 2021 at 17:53

1 of 24

http://mlcourse.org
https://www.cs.cmu.edu/~10601
https://www.cs.cmu.edu/~10601
https://www.cs.cmu.edu/~10601
https://www.cs.cmu.edu/~10601
https://gradescope.com/
https://gradescope.com

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

Linear Algebra Libraries When implementing machine learning algorithms, it is often convenient to
have a linear algebra library at your disposal. In this assignment, Java users may use EIML? or ND4J” and
C++ users Eigen“. Details below. (As usual, Python users have NumPy.)

EJML for Java EJML is a pure Java linear algebra package with three interfaces. We strongly
recommend using the SimpleMatrix interface. The autograder will use EJML version 0.38.
When compiling and running your code, we will add the additional command line argument
—cp "linalg lib/ejml-v0.38-1libs/*:1linalg_lib/nd4j-v1.0.0-beta7-1libs/*:./"
to ensure that all the EIML jars are on the classpath as well as your code.

ND4J for Java ND4J is a library for multidimensional tensors with an interface akin to
Python’s NumPy. The autograder will use ND4J version 1.0.0-beta7. When com-
piling and running your code, we will add the additional command line argument
—cp "linalg lib/ejml-v0.38-1libs/*:1linalg_lib/nd4j-v1.0.0-beta7-1libs/*:./"
to ensure that all the ND4J jars are on the classpath as well as your code.

Eigen for C++ FEigen is a header-only library, so there is no linking to worry about—just #include what-
ever components you need. The autograder will use Eigen version 3.3.7. The command line arguments
above demonstrate how we will call you code. When compiling your code we will include, the argument
-I./linalg_lib in order to include the 1inalg_lib/Eigen subdirectory, which contains all the head-
ers.

We have included the correct versions of EJML/ND4J/Eigen in the 1inalg_lib.zip posted on the

Piazza Resources page for your convenience. It contains the same 1inalg_lib/ directory that we will

include in the current working directory when running your tests. Do not include EJIML, ND4J, or Eigen in

your homework submission; the autograder will ensure that they are in place.

“https://ejml.org
’https://deeplearning4ij.org/docs/latest/nd4j-overview
‘http://eigen.tuxfamily.org/

2 of 24

https://ejml.org
https://deeplearning4j.org/docs/latest/nd4j-overview
http://eigen.tuxfamily.org/

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

1 Written Questions [51 Points]

1.1 Neural Networks, Logistic Regression, Regularization Revisited

Imagine you work for a pharmaceutical company that is trying to predict whether certain patients will
respond well to a new drug. Specifically, these patients have high blood pressure in their lungs, a condition
known as pulmonary hypertension. Doctors recommend that the best predictors of a treatment effect is the
patient’s heart function (measured by cardiac output) and the blood pressure in their lungs (pulmonary blood
pressure). You plot the data and visualize the following:

Patient Response to Drug Treatment

8.00
7.50
700 6.95
6.50 6.49 6.33
6.00 6.00
5.71
5.50 539 ® 5.50
 5.00 5.00
=
E e 4.60 e 4.64
=
Ou 4.00 e "Average Responders"
o
s "Good Responders
=
© 300 ® 3.00 "Poor Responders"
® 2.60
® 230

2.00

1.00

0.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
Pulmonary Blood Pressure

1. (2 points) Draw on the graph above the decision boundaries of a trained neural network that minimizes
the training error when classifying Good Responders vs all others (Poor or Average). Assume the neural
network has two hidden units and one hidden layer. What is the smallest training error you can achieve?

Fill in the blank (write answer as a fraction):

3of24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

2. (2 points) Using your decision boundaries above, assuming a logistic activation function, which point
has the highest probability of being a Good Responder? Provide the point number as shown on the
graph (poitnts are labeled by their y value).

Fill in the blank:

3. (1 point) True or False: Increasing the number of hidden units of a neural network will always guaran-
tee a lower training error.

O True
(O False

4. (1 point) Convolutional neural networks often consist of convolutional layers, max-pooling layers, and
fully-connected layers. Select all the layer types below that have parameters (i.e. weights) which can
be learned by gradient descent / backpropagation. Select all that apply:

[J convolutional layer
[J max-pooling layer
U] fully-connected layer

5. (2 points) Consider the black-and-white 5 pixel by 5 pixel image shown below. Black pixels are repre-
sented by the value 0 and white pixels by 1.

1{1]0]0]0
1/111]0]0
Oj111]1]0
0011|111
010]0]1]1

Next consider the 3 by 3 convolution with weights shown below.

-11071
-110]1
-110]1

Suppose we apply the above convolution (as one would in a CNN convolutional layer) to the above
image to produce a new output image. Assume that we do not permit any padding to be used and the
stride of the convolution is 1. What is the value of the pixel in the upper-left corner of the output image?

(Important Note: Convolution is sometimes defined differently in machine learning than in other fields,
such as signal processing. So be sure to follow the method of convolution shown in the lectures on
CNNs.) Fill in the blank:

4 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

6.

10.

11.

(2 points) For the same output image produced in the previous question, what is the value of the pixel
in the upper-right corner of the output image?

Fill in the blank:

. (1 point) True or False: Long Short Term Memory (LSTM) networks partially address the vanishing

gradient problem by incorporating input, output, and forget gates.
O True
(O False

(1 point) True or False: In a recurrent neural network (RNN), the weight vector passed to a hidden unit
at the same hidden layer level from a prior unit will have different values.

(O True
(O False

. (1 point) True or False: Recurrent neural networks (RNNs) can accept sequence data as input, but can

only output a single classification decision for that input sequence.
O True
(O False
(2 points) Regularization.
Which of the following are true about regularization? Select all that apply:
[J One of the goals of regularization is combating overfitting.
] A model with regularization fits the training data better than a model without regularization

[J The L-0 norm (number of non-zero parameters) is rarely used in practice in part because it is
non-differentiable.

L] One way to understand regularization is that it attempts to follow Occam’s razor and make
the learning algorithm prefer ”simpler” solutions.

(2 points) Regularization in Linear Regression.

When performing linear regression, which of the following options will decrease mean-squared training
error? Select all that apply:

[J Adding higher-order functions of the features as separate features

5of24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

0] Increasing the regularization weight
U] For the same weight on the regularizer, using an L1 regularizer instead of an L2

[J For the same weight on the regularizer, using an L1 regularizer instead of an LO

J None of the above

6 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

1.2 Non-Deterministic Value Iteration

In this question we will explore value iteration with a non-deterministic transition function. Suppose the
agent is in a grid world. In any state, there is the following non-deterministic transition function: with
probability 80% the agent transitions to the intended state. With probability 10% the agent slips left of the
intended direction. With probability 10% the agent slips right of the intended direction. If the agent hits the
edge of the board, it remains in the same state.

For example, If the agent were in state B and choose action down, there is an 80% chance of moving to state
E, a 10% chance of moving to state C, and a 10% chance of moving to state A.

If at any point, the agent transitions into a state labeled P, it is given a reward of -100 and terminates.
Similarly, if it transitions to a state G, it is given a reward of +1 and terminates. The agent is never initialized
in state P or G. All other rewards are 0 and v = 1.

0| 0| »>|
—o| | ™| T
aviRevIN@] lavi
uQ Q|

Table 1: Depiction of Grid World

Notice that in this problem, the agent’s immediate reward R, is a function of its current state s, its action a,
and its next state s (which could be different than the intended next state). Therefore, during value iteration,
we need to account for the agent’s expected reward given a state-action pair, and use a slightly different
formula than the one we saw in lecture: Vs € S

vo(s) =0

vp+1(s) = max Z p(s'|s,a) [R(s,a,s") +Vi(s)]
s'eS

1. (1 point) How many possible deterministic policies are there in this environment, including both opti-
mal and non-optimal policies?

2. (1 point) After initializing the board to all zeros, in state B, which of the following actions are optimal.

Select all that apply:

DUp

D Down
D Left
[Right

3. (1 point) What is the value of state B in the next round (round 1) of synchronous value iteration? Round
your answer to three decimal places.

7 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

i

4. (1 point) What is the value of state C in round 1 of synchronous value iteration? Round your answer to
three decimal places.

i

5. (1 point) What is the value of state C in round 3 of synchronous value iteration? Round your answer to
three decimal places.

i

6. (1 point) What is the final value of state A once value iteration converges.

i

7. (2 points) What is the optimal action for each state.

P P |P

o QI QT

P/ P|P

Table 2: Place the corresponding action in each blank cell

8of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

1.3 Q-Learning Multiple Choice

1. (1 point) True or False: Given the value function V*(s), we can derive the optimal action-value func-
tion Q*(s, a)

Select one choice:

D True
D False

2. (1 point) True or False: Q-Learning cannot learn from interacting with the environment because it
updates its estimates based on its own previously learned estimates

Select one choice:

D True
D False

3. (2 points) Which of the following is true about Q-Learning?
Select all that apply:

L] Q-Learning creates an explicit model of the environment and state-transition function to learn
state-value estimates

[] Q-Learning must wait for an episode to end before it can update its estimates.
[] Q-Learning can update its estimates after the agent takes a single action

[] Q-Learning can learn without being given an explicit reward function or state-transition func-
tion.

[] None of the above.
4. (2 points) Which of the following is true about the convergence properties of Q-Learning?
Select all that apply:

[] Q-Learning will converge to different estimates of the action-value function Q(s,a) for e-
greedy policies with different non-zero e values.

[] Q-Learning necessarily converges to the optimal action-value function Q*(s, a) for all policies

[] Q-Learning converges to the optimal action-value function Q*(s, a) under the assumption that
all state-action pairs are visited infinitely often by the policy.

[] Q-Learning guarantees convergence only for deterministic environments.

D All of the above.

9 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

5. (2 points) Which of the following is the correct expression for the action-value function () upon taking
action ay in state s; in terms of the discount factor -, Reward function R(s, a), State transition function
T(s'|s, a) and the value function V' (s) ?

Select one choice:

L) Q(strar) = R(se,ar) + v+ [X,,,, T(seelse, ar) = V(i)
[] Q(st,ar) = R(st,ar) + v * [ﬁ > 5101 Q(St41, ar)],where | S| is the total number of states
[] Q(st,ar) = R(sg,ap) + 7y * [‘%‘ > sies V(8t41)], where | S| is the total number of states

[J The given quantities and are not enough to express Q

10 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

1.4 Function Approximation

In this question we will motivate function approximation for solving Markov Decision Processes by looking
at Breakout, a game on the Atari 2600. The Atari 2600 is a gaming system released in the 1980s, but
nevertheless is a popular target for reinforcement learning papers and benchmarks. The Atari 2600 has a
resolution of 160 x 192 pixels. In the case of Breakout, we try to move the paddle to hit the ball in order to
break as many tiles above as possible. We have the following actions:

* Move the paddle left
* Move the paddle right

* Do nothing

== = N =-T-TT

(a) Atari Breakout (b) Black and white Breakout

Figure 1: Atari Breakout. 1a is what Breakout looks like. We have the paddle in the bottom of the screen
aiming to hit the ball in order to break the tiles at the top of the screen. 1b is our transformation of Atari
Breakout into black and white pixels for the purpose of some of the following problems.

1. (1 point) Suppose we are dealing with the black and white version of Breakout” as in Figure 1b. Fur-
thermore, suppose we are representing the state of the game as just a vector of pixel values without
considering if a certain pixel is always black or white. Since we are dealing with the black and white
version of the game, these pixel values can either be 0 or 1.

What is the size of the state space?

2. (1 point) In the same setting as the previous part, suppose we wish to apply Q-learning to this problem.
What is the size of the Q-value table we will need?

’Play a Google-Doodle version here

11 of 24

http://goo.gl/hb5xa

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

3. (1 point) Now assume we are dealing with the colored version of Breakout as in Figure 1a. Now each
pixel is a tuple of real valued numbers between 0 and 1. For example, black is represented as (0,0, 0)
and white is (1,1, 1).

What is the size of the state space and Q-value table we will need?

By now you should see that we will need a huge table in order to apply Q-learning (and similarly value
iteration and policy iteration) to Breakout given this state representation. This table would not even
fit in the memory of any reasonable computer! Now this choice of state representation is particularly
naive. If we choose a better state representation, we could drastically reduce the table size needed.

On the other hand, perhaps we don’t want to spend our days feature engineering a state representation
for Breakout. Instead we can apply function approximation to our reinforcement algorithms! The whole
idea of function approximation is that states nearby to the state of interest should have similar values.
That is, we should be able to generalize the value of a state to nearby and unseen states.

Let us define ¢, (s, a) as the true action value function of the current policy 7. Assume ¢ (s, a) is given
to us by some oracle. Also define ¢(s, a; w) as the action value predicted by the function approximator
parameterized by w. Here w is a matrix of size dim(.S) x |.A|, where dim(.S) denotes the dimension of
the state space. Clearly we want to have ¢(s, a; w) be close to ¢-(s, a) for all (s, a) pairs we see. This
is just our standard regression setting. That is, our objective function is just the Mean Squared Error:

J(w) = SN Z (gx(s,a) — q(s, a;w))? (1)

s€S,ac A
Because we want to update for each example stochastically®, we get the following update rule:

W w —a(q(s,a;w) — gr(s,a)) Vwq(s,a; w) 2)

However, more often then not* we will not have access to the oracle that gives us our target ¢, (s, a).
So how do we get the target to regress ¢(s, a; w) on? One way is to bootstrap” an estimate of the action
value under a greedy policy using the function approximator itself. That is to say

qr(s,a) ~ 1+ ymaxq(s',a';w) 3)
CLI

Where r is the reward observed from taking action a at state s, -y is the discount factor and s’ is the
state resulting from taking action a at state s. This target is often called the Temporal Difference (TD)
target, and gives rise to the following update for the parameters of our function approximator in lieu of
a tabular update:

3This isn’t really stochastic, you’ll be asked in a bit why.
* Always in real life.
SMetaphorically, the agent is pulling itself up by its own bootstraps.

12 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

W~ W — a(q(s, a;w) — (7’ + v max q(s',d'; w)))qu(s, a; w) ()]

TD Target

/

TD Error

4. (2 points) Let us consider the setting where we can represent our state by some vector s, action a €
{0,1,2} and we choose a linear approximator. That is:

q(s,a;w) = s'wy, &)

Again, assume we are in the black and white setting of Breakout as in Figure 1b. Show that tabular
Q-learning is just a special case of Q-learning with a linear function approximator by describing a
construction of s. (Hint: Engineer features such that 5 encodes a table lookup)

Answer

\.

5. (3 points) Stochastic Gradient Descent works because we can assume that the samples we receive are
independent and identically distributed. Is that the case here? If not, why and what are some ways you
think you could combat this issue?

Answer

13 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

1.5 Empirical Questions

The following parts should be completed after you work through the programming portion of this assignment
(Section 2).

1. (4 points) Run Q-learning on the mountain car environment using both tile and raw features.

For the raw features: run for 2000 episodes with max iterations of 200, e set to 0.05, v set to 0.999, and
a learning rate of 0.001.

For the tile features: run for 400 episodes with max iterations of 200, € set to 0.05, ~y set to 0.99, and a
learning rate of 0.00005.

For each set of features, plot the return (sum of all rewards in an episode) per episode on a line graph.
On the same graph, also plot the rolling mean over a 25 episode window. Comment on the difference
between the plots.

Plot of Raw

14 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

Plot of Tile

\.

Comment

15 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

Value Function -10 Value Function

(@) (b)
Figure 2: Estimated optimal value function visualizations for both types of features
2. (2 points) For both raw and tile features, we have run Q-learning with some good® parameters and
created visualizations of the value functions after many episodes. For each plot in Figure 2, write down

which features (raw or tile) were likely used in Q-learning with function approximation. Explain your
reasoning. In addition, interpret each of these plots in the context of the mountain car environment.

Answer
\

3. (2 points) We see that Figure 2b seems to look like a plane. Can the value function depicted in this plot
ever be nonlinear? If so, describe a potential shape. If not explain why. (Hint: How do we calculate the
value of a state given the Q-values?)

Answer

®For some sense of good.

16 of 24

Homework 6: Neural Networks and Reinforcement Learning

Policy

0.06

Velocity
o
o
o

—0.02 4

—0.04

—0.06

-1.2 -10 -08 -0.6 -04 -02 00 02 04 06

Position

(a)

o

Action

Velocity

10-301 / 10-601

Policy

0.06

0.04 A

0.02 A

o
o
S

—0.02 4

—0.04

—0.06

-1.2 -10 -08 -0.6 -04 -02 00 02 04 06

Position

(b)

Figure 3: Estimated optimal policy visualizations for both types of features

4. (2 points) In a similar fashion to the previous question we have created visualizations of the potential
policies learned. For each plot in Figure 3 write down which features (raw or tile) were likely used in Q-
learning with function approximation. Explain your reasoning. In addition, interpret each of these plots
in the context of the mountain car environment. Specifically, why are the edges linear v.s. non-linear?
Why do they learn these patches at these specific locations?

Answer

17 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

1.6 Collaboration Questions

After you have completed all other components of this assignment, report your answers to these parts
regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? Is so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? Is so, include full details.

3. Did you find or come across code that implements any part of this assignment ? If so, include full
details.

Answer

18 of 24

https://www.cs.cmu.edu/~10601/#policies

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

2 Programming [68 Points]

Your goal in this assignment is to implement Q-learning with linear function approximation to solve the
mountain car environment. You will implement all of the functions needed to initialize, train, evaluate,
and obtain the optimal policies and action values with Q-learning. In this assignment we will provide the
environment for you.

The program you write will be automatically graded using the Gradescope system. You may write your
program in Python, Java, or C++. However, you should use the same language for all parts below.

2.1 Specification of Mountain Car

In this assignment, you will be given code that fully defines the Mountain Car environment. In Mountain
Car you control a car that starts at the bottom of a valley. Your goal is to reach the flag at the top right, as
seen in Figure 4. However, your car is under-powered and can not climb up the hill by itself. Instead you
must learn to leverage gravity and momentum to make your way to the flag. It would also be good to get to
this flag as fast as possible.

Figure 4: What the Mountain Car environment looks like. The car starts at some point in the valley. The
goal is to get to the top right flag.

The state of the environment is represented by two variables, position and velocity.
position can be between [—1.2,0.6] (inclusive) and velocity can be between [—0.07,0.07] (inclu-
sive). These are just measurements along the z-axis.

The actions that you may take at any state are {0, 1,2}, where each number corresponds to an action: (0)
pushing the car left, (1) doing nothing, and (2) pushing the car right.

2.2 Q-learning With Linear Approximations

The Q-learning algorithm is a model-free reinforcement learning algorithm, where we assume we don’t have
access to the model of the environment the agent is interacting with. We also don’t build a complete model
of the environment during the learning process. A learning agent interacts with the environment solely based
on calls to step and reset methods of the environment. Then the Q-learning algorithm updates the g-values
based on the values returned by these methods. Analogously, in the approximation setting the algorithm will
instead update the parameters of g-value approximator.

Let the learning rate be « and discount factor be . Recall that we have the information after one interaction

19 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

with the environment, (s, a, r, s’). The tabular update rule based on this information is:
Qo) = (1= Q)+ a (r+ 7 mx Qs o)
a/

Instead, for the function approximation setting we use the following update rule derived from the Function
Approximation Section’:

W W — (q(s, a;w) — (r +ymaxq(s’, d; w)> Vw(q(s,a; w)
a/

Where:
q(s,a;w) =stw, +b

The epsilon-greedy action selection method selects the optimal action with probability 1 — e and selects
uniformly at random from one of the 3 actions (0, 1, 2) with probability e. The reason that we use an
epsilon-greedy action selection is we would like the agent to do explorations by stochastically selecting
random actions with small probability. For the purpose of testing, we will test two cases: € = 0 and
0 < € < 1. When € = 0 (no exploration), the program becomes deterministic and your output have to match
our reference output accurately. In this case, pick the action represented by the smallest number if there
is a draw in the greedy action selection process. For example, if we’re at state s and Q(s,0) = Q(s, 2),
then take action 0. When 0 < e < 1, your output will need to fall in a certain range within the reference
determined by running exhaustive experiments on the input parameters.

2.3 Feature Engineering

Linear approximations are great in their ease of use and implementations. However, there sometimes is a
downside; they’re linear. This can pose a problem when we think the value function itself is nonlinear with
respect to the state. For example, we may want the value function to be symmetric about 0 velocity. To
combat this issue we could throw a more complex approximator at this problem, like a neural network. But
we want to maintain simplicity in this assignment, so instead we will look at a nonlinear transformation of
the “raw” state.

Velocity Velocity
0.07 0.07 - : ; ;
0.04 0.04 - - - -
b -q-f--F-d--F-}-a--F-1--
0.01 0.01 |—
—0.01 —0.01 p— : d ' '
—0.04 —0.04 p— : ; ; :
_0.07 Y4 I X : : :

)7 0.07
‘1.2 0.84—0.48—-0.12 0.24 0.6 Position ‘1.2 0.84—0.48—-0.12 0.24 0.6 Position

(a) A discretization of the state space of Mountain Car (b) A tiling of the state space of Mountain Car

Figure 5: State representations for the states of Mountain Car

"Note that we have made the bias term explicit here, where before it was implicitly folded into w

20 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

For the Mountain Car environment, we know that position and velocity are both bounded. What we
can do is draw a grid over the possible position-velocity combinations as seen in Figure 5a. We then
enumerate the grid from bottom left to top right, row by row. Then we map all states that fall into a grid
square with the corresponding one-hot encoding of the grid number. For efficiency reasons we will just use
the index that is non-zero. For example the green point would be mapped to {6} and the orange point to
{12}. This is called a discretization of the state space.

The downside to the above approach is that although observing the green point will let us learn parameters
that generalize to other points in the shaded blue region, we will not be able to generalize to the orange
point even though it is nearby. We can instead draw two grids over the state space, each offset slightly from
each other as in Figure 5b. Now we can map the green point to two indices, one for each grid, and get
{6,39} (note the index for orange grid starts from the end of blue index, i.e. 25). Now the green point
has parameters that generalize to points that map to {6} (the blue shaded region) in the first discretization
and parameters that generalize to points that map to {39} (the red shaded region) in the second. We can
generalize this to multiple grids, which is what we do in practice. This is called a tiling or a coarse-coding
of the state space.

2.4 Implementation Details

Here we describe the API to interact with the Mountain Car environment available to you in Python. The
other languages will have an analagous APL.

e _init__(mode, fixed): Initializes the environment to the a mode specified by the value of
mode. This can be a str ing of either “raw” or “tile”.

“raw” mode tells the environment to give you the state representation of raw features encoded in a
sparse format: {0 — position,1 — velocity}.

In “tile” mode you are given indices of the tiles which are active in a sparse format: {77 — 1,7T» —
1,...T, — 1} where T; is the tile index for the ith tiling. All other tile indices are assumed to map to
0. For example the state representation of the example in Figure 5b would become {6 — 1,39 — 1}.

The dimension of the state space of the “raw” mode is 2. The dimension of the state space of the
“tile” mode is 2048. These values can be accessed from the environment through the state_space
property, and similarly for other languages.

fixed is an optional argument for debugging. See Section 1.5 for more details.
* reset (): Reset the environment to starting conditions.

* step (action): Take a step in the environment with the given action. act ion must be either 0, 1
or 2. This will return a tuple of (state, reward, done) which is the next state, the reward observed,
and a boolean indicating if you reached the goal or not, ending the episode. The state will be either
araw’ or tile representation, as defined above, depending on how you initialized Mountain Car. If you
observe done = True then you should reset the environment and end the episode. Failure to do
so will result in undefined behavior.

* [Python Only] render (self): Optionally render the environment. It is computationally intensive
to render graphics, so only render a full episode once every 100 or 1000 episodes. Requires the
installation of pyglet. This will be a no-op in Gradescope.

You should now implement your Q-learning algorithm with linear approximations as
g-learning.{py|java|cpp}. The program will assume access to a given environment file(s) which
contains the Mountain Car environment which we have given you. Initialize the parameters of the linear

21 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

model with all 0 (and don’t forget to include a bias!) and use the epsilon-greedy strategy for action
selection.

Your program should write a output file containing the total rewards (the returns) for every episode after
running Q-learning algorithm. There should be one return per line.

Your program should also write an output file containing the weights of the linear model. The first line
should be the value of the bias. Then the following |S| x |.4] lines should be the values of weights, outputted
in row major order®, assuming your weights are stored in a |S| x |.A| matrix.

The autograder will use the following commands to call your function:

For Python: $ python g_learning.py [args...]

ForJava: $ javac -cp "./lib/ejml-v0.33-1ibs/+:./" g_learning.java;
java -cp "./lib/ejml-v0.33-1libs/*:./" g.learning [args...]

ForC++: $ g++ -g —-std=c++11 -I./1lib g.learning.cpp; ./a.out [args...]

Where above [args...] is a placeholder for command-line arguments: <mode> <weight_out>
<returns_out> <episodes> <max_iterations> <epsilon> <gamma> <learning._rate>.
These arguments are described in detail below:

1. <mode>: mode to run the environment in. Should be either * *raw’’ or *‘tile’’.
2. <weight _out>: path to output the weights of the linear model.

3. <returns_out>: path to output the returns of the agent
4

. <episodes>: the number of episodes your program should train the agent for. One episode is a
sequence of states, actions and rewards, which ends with terminal state or ends when the maximum
episode length has been reached.

5. <max_iterations>: the maximum of the length of an episode. When this is reached, we terminate
the current episode.

6. <epsilon>: the value € for the epsilon-greedy strategy

7. <gamma>: the discount factor ~.

8. <learning_rate>: the learning rate « of the Q-learning algorithm
Example command for python users:

$ python g learning.py raw weight.out returns.out \
4 200 0.05 0.99 0.01

Example output from running the above command (your code won’t match exactly, but should be close).
<weight_out>

-7.6610506220312296
1.3440159024460183
1.344872959883069
1.340055578403996

8https ://en.wikipedia.org/wiki/Row—_and_column-major_order

22 of 24

https://en.wikipedia.org/wiki/Row-_and_column-major_order

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

-0.0007770480987990149
0.0011306483117300896
0.0017559989206646666

<returns_out>

-200.0
-200.
-200.
-200.

o O O

2.5 Debugging Tips

To help with debugging, we have provided the option for fixing the initialization of Mountain Car. To utilize
this option, provide the additional argument £ixed = 1 when initializing Mountain Car. In this setup, the
Mountain Car is initialized with position = 0.8 and velocity = O.

We recommend to first run your program with the most simple parameters and check the outputs against
manually calculated values. Remember to set <epsilon>=0 so the program is run without epsilon-greedy
strategy.

Example command for python users:

$ python g _learning.py raw simple_weight.out simple_returns.out \
110.011

Once your program works, you can change one of the parameters to be slightly more complex, e.g. set
<max_iterations>=2 or <gamma>=0. 9, and check with your manual calculations again.

In addition, we have provided fixed weight.out and fixed_-returns.out in the handout, which
are generated using the following parameters:

* <mode>: ‘‘tile’’

* <episodes>: 25

* <max_iterations>: 200

* <epsilon>:0.0

* <gamma>: 0.99

* <learning.rate>: 0.005
Example command for python users:

$ python g _learning.py tile fixed weight.out fixed_ returns.out \
25 200 0.0 0.99 0.005

Your output should match with the reference up till the last 4 digits.

Before submitting to Gradescope, do not forget to remove the £ixed argument when initializing
Mountain Car.

23 of 24

Homework 6: Neural Networks and Reinforcement Learning 10-301 / 10-601

Some additional tips: If you geta "ValueError: high is out of bounds for int32" this
is due to python version differences. You can either update your python or change the dtype of the randint
function to int64. This can be done by changing line 18 to

seed = rng.randint (2xx32 - 1, dtype=np.int64)
2.6 Gradescope Submission

You should submit your g_learning.{py|java|cpp} to Gradescope. Note: please do not use other
file names. This will cause problems for the autograder to correctly detect and run your code.

Note: For this assignment, you may make upto 30 submissions to Gradescope before the deadline, but only
your last submission will be graded.

24 of 24

	Written Questions [51 Points]
	Neural Networks, Logistic Regression, Regularization Revisited
	Non-Deterministic Value Iteration
	Q-Learning Multiple Choice
	Function Approximation
	Empirical Questions
	Collaboration Questions

	Programming [68 Points]
	Specification of Mountain Car
	Q-learning With Linear Approximations
	Feature Engineering
	Implementation Details
	Debugging Tips
	Gradescope Submission

