
Logistic Regression
+ Feature Engineering

+ Regularization

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 11

Mar. 3, 2021

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders
• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Mon, Feb. 22
– Due: Mon, Mar. 01 at 11:59pm
– IMPORTANT: you may only use 2 grace days on

Homework 3 (last possible moment to submit HW3: Wed, Mar. 03 at 11:59pm)

• Practice for Exam
– Mock Exam 1

• Wed, Mar. 03 at 7:00pm – 9:00pm
• See @261 for participation point details

– Practice Problems 1A (Gradescope)
– Practice Problems 1B (PDF)

• Midterm Exam 1
– Saturday, March 6, at 10:30am - 12:30pm EST

3

https://piazza.com/class/kjvu0xh54r72d1?cid=261

Reminders

4

PROBABILISTIC LEARNING

5

MLE

6

������� �� ���� ����D = {x(i)}N
i=1

���� = �`;K�t
�

N�

i=1

p(t(i)|�)

���� = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood
of the data.

���� = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)

MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability

mass as possible to the things we have
observed…

…at the expense of the things we have not
observed

7

Maximum Likelihood Estimation

8

Learning from Data (Frequentist)

Whiteboard
– Principle of Maximum Likelihood Estimation

(MLE)
– Strawmen:
• Example: Bernoulli
• Example: Gaussian
• Example: Conditional #1

(Bernoulli conditioned on Gaussian)
• Example: Conditional #2

(Gaussians conditioned on Bernoulli)

9

MOTIVATION:
LOGISTIC REGRESSION

11

Example: Image Classification
• ImageNet LSVRC-2010 contest:
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

14

15

16

17

Example: Image Classification

18

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

Example: Image Classification

19

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

This “softmax”
layer is Logistic

Regression!

The rest is just
some fancy

feature extraction
(discussed later in

the course)

LOGISTIC REGRESSION

20

Logistic Regression

21

We are back to
classification.

Despite the name
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h(t) = ����(�T t)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Recall…

Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1):

w

Hyperplane (Definition 2):

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one to
get x’!

1
’

’ ’

1

1

Recall…

Using gradient ascent for linear
classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn

parameters
4. Predict the class with highest probability under

the model

24

Using gradient ascent for linear
classifiers

25

Use a differentiable
function instead:

logistic(u) ≡ 1
1+ e−u

p�(y = 1|t) =
1

1 + 2tT(��T t)

This decision function isn’t
differentiable:

sign(x)

h(t) = ����(�T t)

Using gradient ascent for linear
classifiers

26

Use a differentiable
function instead:

logistic(u) ≡ 1
1+ e−u

p�(y = 1|t) =
1

1 + 2tT(��T t)

This decision function isn’t
differentiable:

sign(x)

h(t) = ����(�T t)

Logistic Regression

27

Learning: finds the parameters that minimize some
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ = �`;K�t

y�{0,1}
p�(y|t)

Model: Logistic function applied to dot product of
parameters with input vector.

p�(y = 1|t) =
1

1 + 2tT(��T t)

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Logistic Regression

Whiteboard
– Logistic Regression Model
– Decision boundary

29

Learning for Logistic Regression

Whiteboard
– Partial derivative for Logistic Regression
– Gradient for Logistic Regression

30

LOGISTIC REGRESSION ON
GAUSSIAN DATA

31

Logistic Regression

32

Logistic Regression

33

Logistic Regression

34

LEARNING LOGISTIC REGRESSION

35

Maximum Conditional
Likelihood Estimation

36

Learning: finds the parameters that minimize some
objective function.

We minimize the negative log conditional likelihood:

Why?
1. We can’t maximize likelihood (as in Naïve Bayes)

because we don’t have a joint model p(x,y)
2. It worked well for Linear Regression (least squares is

MCLE)

�� = argmin
�

J(�)

J(�) = � HQ;
N�

i=1

p�(y(i)|t(i))

Maximum Conditional
Likelihood Estimation

37

Learning: Four approaches to solving

Approach 1: Gradient Descent
(take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Maximum Conditional
Likelihood Estimation

38

Learning: Four approaches to solving

Approach 1: Gradient Descent
(take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Logistic Regression does not
have a closed form solution
for MLE parameters.

SGD for Logistic Regression

39

Question:
Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we…
A. (1) compute the gradient of the log-likelihood for all examples (2) update all

the parameters using the gradient
B. (1) ask Matt for a description of SGD for Logistic Regression, (2) write it down,

(3) report that answer
C. (1) compute the gradient of the log-likelihood for all examples (2) randomly

pick an example (3) update only the parameters for that example
D. (1) randomly pick a parameter, (2) compute the partial derivative of the log-

likelihood with respect to that parameter, (3) update that parameter for all
examples

E. (1) randomly pick an example, (2) compute the gradient of the log-likelihood
for that example, (3) update all the parameters using that gradient

F. (1) randomly pick a parameter and an example, (2) compute the gradient of
the log-likelihood for that example with respect to that parameter, (3) update
that parameter using that gradient

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

Gradient Descent

40

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

Recall…

Stochastic Gradient Descent (SGD)

41

Recall…

We need a per-example objective:

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

��� J(�) =
�N

i=1 J (i)(�)
����� J (i)(�) = � HQ; p�(yi|ti)Ǥ

—

Answer:

Logistic Regression vs. Perceptron

42

Question:
True or False: Just like Perceptron, one
step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the
parameters only if the current example is
incorrectly classified.

Matching Game

Goal: Match the Algorithm to its Update Rule

43

1. SGD for Logistic Regression

2. Least Mean Squares

3. Perceptron

4.

5.

6.

�k � �k +
1

1 + exp �(h�(x(i)) � y(i))

�k � �k + (h�(x(i)) � y(i))

�k � �k + �(h�(x(i)) � y(i))x(i)
k

h�(x) = p(y|x)

h�(x) = �T x

h�(x) = sign(�T x)

A. 1=5, 2=4, 3=6
B. 1=5, 2=6, 3=4
C. 1=6, 2=4, 3=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6
F. 1=6, 2=5, 3=5
G. 1=5, 2=5, 3=5
H. 1=4, 2=5, 3=6

OPTIMIZATION METHOD #4:
MINI-BATCH SGD

44

Mini-Batch SGD

• Gradient Descent:
Compute true gradient exactly from all N
examples

• Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient
of one randomly chosen example

• Mini-Batch SGD:
Approximate true gradient by the average
gradient of K randomly chosen examples

45

Mini-Batch SGD

46

Three variants of first-order optimization:

Summary

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parameters in LR are learned by iterative
optimization (e.g. SGD)

55

Logistic Regression Objectives
You should be able to…
• Apply the principle of maximum likelihood estimation (MLE) to

learn the parameters of a probabilistic model
• Given a discriminative probabilistic model, derive the conditional

log-likelihood, its gradient, and the corresponding Bayes
Classifier

• Explain the practical reasons why we work with the log of the
likelihood

• Implement logistic regression for binary or multiclass
classification

• Prove that the decision boundary of binary logistic regression is
linear

• For linear regression, show that the parameters which minimize
squared error are equivalent to those that maximize conditional
likelihood

56

FEATURE ENGINEERING

57

Handcrafted Features

58

NNP : VBN NNP VBD

PERLOC

Egypt - born Proyas directed

S

NP VP

ADJP VPNP

egypt - born proyas direct

p(y|x) ∝
exp(Θy�f())

born-in

Where do features come from?

59

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005

First word before M1
Second word before M1
Bag-of-words in M1
Head word of M1
Other word in between
First word after M2
Second word after M2
Bag-of-words in M2
Head word of M2
Bigrams in between
Words on dependency path
Country name list
Personal relative triggers
Personal title list
WordNet Tags
Heads of chunks in between
Path of phrase labels
Combination of entity types

Where do features come from?

60

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

CBOW model in Mikolov et al. (2013)

input
(context words)

embeddin
g

missing word

Look-up table Classifier

0.13 .26 … -.52

0.11 .23 … -.45

dog:

cat:similar words,
similar embeddings

unsupervised
learning

Where do features come from?

61

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

string
embeddings

Collobert & Weston,
2008

Socher, 2011

Convolutional Neural Networks
(Collobert and Weston 2008)

The [movie] showed [wars]

pooling

CNN

Recursive Auto Encoder
(Socher 2011)

The [movie] showed [wars]

RAE

Where do features come from?

62

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

tree
embeddings

Socher et al.,
2013

Hermann & Blunsom,
2013

string
embeddings

Collobert & Weston,
2008

Socher, 2011

The [movie] showed [wars]

WNP,VP

WDT,NN WV,NN

S

NP VP

Where do features come from?

63

word
embeddings

tree
embeddings

hand-crafted
features

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston,
2008

Socher, 2011

Socher et al.,
2013

Hermann & Blunsom,
2013

Hermann et al.
2014

word embedding
features

Turian et al.
2010

Koo et al.
2008

Refine embedding

features with

semantic/syntactic info

Where do features come from?

64

word
embeddings

tree
embeddings

word embedding
featureshand-crafted

features

best of both
worlds?

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston,
2008

Socher, 2011

Socher et al.,
2013

Turian et al.
2010

Koo et al.
2008

Hermann et al.
2014

Hermann & Blunsom,
2013

Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

65
The movie I watched depicted hope
deter. noun noun nounverb verb

Per-word Features:

Feature Engineering for NLP

66
The movie I watched depicted hope
deter. noun noun nounverb verb

is-capital(wi)
endswith(wi,“e”)
endswith(wi,“d”)
endswith(wi,“ed”)
wi == “aardvark”
wi == “hope”

…

1
1
0
0
0
0
…

0
1
0
0
0
0
…

1
0
0
0
0
0
…

0
0
1
1
0
0
…

0
0
1
1
0
0
…

0
1
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)

Context Features:

Feature Engineering for NLP

67
The movie I watched depicted hope
deter. noun noun nounverb verb

…
wi == “watched”
wi+1 == “watched”
wi-1 == “watched”
wi+2 == “watched”
wi-2 == “watched”

…

…
0
0
0
0
0
…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)

Context Features:

Feature Engineering for NLP

68
The movie I watched depicted hope
deter. noun noun nounverb verb

…
wi == “I”
wi+1 == “I”
wi-1 == “I”
wi+2 == “I”
wi-2 == “I”

…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

…
0
0
0
0
0
…

x(1) x(2) x(3) x(4) x(5) x(6)

Feature Engineering for NLP

69
The movie I watched depicted hope
deter. noun noun nounverb verb

and learning methods give small incremental gains in POS tagging performance,
bringing it close to parity with the best published POS tagging numbers in 2010.
These numbers are on the now fairly standard splits of the Wall Street Journal
portion of the Penn Treebank for POS tagging, following [6].3 The details of the
corpus appear in Table 2 and comparative results appear in Table 3.

Table 2. WSJ corpus for POS tagging experiments.

Set Sections Sentences Tokens Unknown
Training 0-18 38,219 912,344 0
Development 19-21 5,527 131,768 4,467
Test 22-24 5,462 129,654 3,649

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token Unk.
Feats Acc. Acc. Acc.

3gramMemm See text 248,798 52.07% 96.92% 88.99%
naacl 2003 See text and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication′ +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +〈t0, w−2〉, 〈t0, w2〉 730,178 56.23% 97.20% 89.03%
5wShapes +〈t0, s−1〉, 〈t0, s0〉, 〈t0, s+1〉 731,661 56.52% 97.25% 89.81%
5wShapesDS + distributional similarity 737,955 56.79% 97.28% 90.46%

3gramMemm shows the performance of a straightforward, fast, discrimina-
tive sequence model tagger. It uses the templates 〈t0, w−1〉, 〈t0, w0〉, 〈t0, w+1〉,
〈t0, t−1〉, 〈t0, t−2, t−1〉 and the unknown word features from [1]. The higher
performance naacl 2003 tagger numbers come from use of a bidirectional
cyclic dependency network tagger, which adds the feature templates 〈t0, t+1〉,
〈t0, t+1, t+2〉, 〈t0, t−1, t+1〉, 〈t0, t−1, w0〉, 〈t0, t+1, w0〉, 〈t0, w−1, w0〉, 〈t0, w0, w+1〉
The next line shows results from an attempt to replicate those numbers in 2010.
The results are similar but a fraction better.4 The line after that shows that
the numbers are pushed up a little by lowering the support threshold for in-
cluding rare word features to 5. Thereafter, performance is improved a little by
adding features. 5w adds the words two to the left and right as features, and
5wShapes also adds word shape features that we have described for named en-

3 In this paper, when I refer to “the Penn Treebank”, I am actually referring to just
the WSJ portion of the treebank, and am using the LDC99T42 Treebank release 3
version.

4 I think the improvements are due to a few bug fixes by Michel Galley. Thanks!

Table from Manning (2011)

Feature Engineering for CV
Edge detection (Canny)

74
Figures from http://opencv.org

Corner Detection (Harris)

Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

75
Figure from Lowe (1999) and Lowe (2004)

NON-LINEAR FEATURES

77

Nonlinear Features
• aka. “nonlinear basis functions”
• So far, input was always
• Key Idea: let input be some function of x

– original input:
– new input:
– define

• Examples: (M = 1)

78

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
x
Examples:
- Perceptron
- Linear regression
- Logistic regression

Example: Linear Regression

79x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y x

2.0 1.2

1.3 1.7

0.1 2.7

1.1 1.9

Example: Linear Regression

80x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y x

2.0 1.2

1.3 1.7

0.1 2.7

1.1 1.9

Example: Linear Regression

81x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y x x2

2.0 1.2 (1.2)2

1.3 1.7 (1.7)2

0.1 2.7 (2.7)2

1.1 1.9 (1.9)2

Example: Linear Regression

82x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y x x2 x3

2.0 1.2 (1.2)2 (1.2)3

1.3 1.7 (1.7)2 (1.7)3

0.1 2.7 (2.7)2 (2.7)3

1.1 1.9 (1.9)2 (1.9)3

Example: Linear Regression

83x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y x x2 … x5

2.0 1.2 (1.2)2 … (1.2)5

1.3 1.7 (1.7)2 … (1.7)5

0.1 2.7 (2.7)2 … (2.7)5

1.1 1.9 (1.9)2 … (1.9)5

Example: Linear Regression

84x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y x x2 … x8

2.0 1.2 (1.2)2 … (1.2)8

1.3 1.7 (1.7)2 … (1.7)8

0.1 2.7 (2.7)2 … (2.7)8

1.1 1.9 (1.9)2 … (1.9)8

Example: Linear Regression

85x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

y x x2 … x9

2.0 1.2 (1.2)2 … (1.2)9

1.3 1.7 (1.7)2 … (1.7)9

0.1 2.7 (2.7)2 … (2.7)9

1.1 1.9 (1.9)2 … (1.9)9

Over-fitting

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen

Polynomial Coefficients

Slide courtesy of William Cohen

Example: Linear Regression

88x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

… … … … …

10 1.1 1.9 … (1.9)9

• With just N = 10
points we overfit!

• But with N = 100
points, the
overfitting
(mostly)
disappears

• Takeaway: more
data helps
prevent
overfitting

Example: Linear Regression

89x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

• With just N = 10
points we overfit!

• But with N = 100
points, the
overfitting
(mostly)
disappears

• Takeaway: more
data helps
prevent
overfitting

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

3 0.1 2.7 … (2.7)9

4 1.1 1.9 … (1.9)9

… … … … …

… … … … …

… … … … …

98 … … … …

99 … … … …

100 0.9 1.5 … (1.5)9

REGULARIZATION

90

Overfitting
Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)

91

Motivation: Regularization
Example: Stock Prices
• Suppose we wish to predict

Google’s stock price at time t+1
• What features should we use?

(putting all computational concerns
aside)
– Stock prices of all other stocks at

times t, t-1, t-2, …, t - k
– Mentions of Google with positive /

negative sentiment words in all
newspapers and social media outlets

• Do we believe that all of these
features are going to be useful?

92

Motivation: Regularization

• Occam’s Razor: prefer the simplest
hypothesis

• What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features

(shrinkage)

93

Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff
between fitting the data and keeping the model
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm)

94

Regularization

96

Question:
Suppose we are minimizing J’(θ) where

As λ increases, the minimum of J’(θ)
will…

A. …move towards the midpoint
between J’(θ) and r(θ)

B. …move towards the minimum of J(θ)
C. …move towards the minimum of r(θ)
D. …move towards a theta vector of

positive infinities
E. …move towards a theta vector of

negative infinities
F. …stay the same

Regularization Exercise
In-class Exercise
1. Plot train error vs. regularization weight (cartoon)
2. Plot test error vs . regularization weight (cartoon)

98

er
ro

r

regularization weight

Regularization

99

Question:
Suppose we are minimizing J’(θ)
where

As we increase λ from 0, the the
validation error will…

A. …increase

B. …decrease

C. …first increase, then decrease

D. …first decrease, then increase

E. …stay the same

Regularization

100

Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is

usually denoted by !" -- that is, the parameter for which
we fixed #" = 1

• Regularizers always avoid penalizing this bias / intercept
parameter

• Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data
• It’s common to whiten each feature by subtracting its

mean and dividing by its variance
• For regularization, this helps all the features be penalized

in the same units
(e.g. convert both centimeters and kilometers to z-scores)

Example: Logistic Regression
• For this example, we

construct nonlinear features
(i.e. feature engineering)

• Specifically, we add
polynomials up to order 9 of
the two original features x1
and x2

• Thus our classifier is linear in
the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized in
low-dimensions (i.e. the
original two dimensions)

105

Training
Data

Test
Data

Example: Logistic Regression

106

lambda

er
ro

r

Example: Logistic Regression

107

Example: Logistic Regression

108

Example: Logistic Regression

109

Example: Logistic Regression

110

Example: Logistic Regression

111

Example: Logistic Regression

112

Example: Logistic Regression

113

Example: Logistic Regression

114

Example: Logistic Regression

115

Example: Logistic Regression

116

Example: Logistic Regression

117

Example: Logistic Regression

118

Example: Logistic Regression

119

Example: Logistic Regression

120

lambda

er
ro

r

Regularization as MAP

• L1 and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation
of the parameters

• To be discussed later in the course…

121

Takeaways

1. Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

2. Nonlinear features are require no changes
to the model (i.e. just preprocessing)

3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are

equivalent for appropriately chosen priors

123

Feature Engineering / Regularization
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly

separable dataset in higher dimensions
• Describe feature engineering in common application

areas

124

