

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Logistic Regression + Feature Engineering + Regularization

Matt Gormley Lecture 11 Mar. 3, 2021

Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
 - Out: Mon, Feb. 22
 - Due: Mon, Mar. 01 at 11:59pm
 - IMPORTANT: you may only use 2 grace days on Homework 3 (last possible moment to submit HW3: Wed, Mar. 03 at 11:59pm)
- Practice for Exam
 - Mock Exam 1
 - Wed, Mar. 03 at 7:00pm 9:00pm
 - See <u>@261</u> for participation point details
 - Practice Problems 1A (Gradescope)
 - Practice Problems 1B (PDF)
- Midterm Exam 1
 - Saturday, March 6, at 10:30am 12:30pm EST

Register today at: stat.cmu.edu/wids

Attendees can share their resume with our industry sponsors. Thanks to the generous support of our sponsors, WIDS Pittsburgh @CMU is free for both students and professionals.

Wednesday,	Technical Talks
March 10	Data Science in Finance
	Co-hosted by MSCF
	Data Science at General Motors: A Fireside Chat
Thursday,	Technical Talks
March 11	Data and International Security
	Co-hosted by CMU Women in International Security
	Data Science at Duolingo: A Fireside Chat
Friday,	Career Corner
March 12	Come learn about data science opportunities with Principal Financial,
	ThermoFisher Scientific, Reynolds, and Citi!
	Social Networking Event

Co-hosted by CMU Women in Statistics, CMU Africa, and more!

Carnegie Mellon University Statistics & Data Science

Carnegie Mellon University Dietrich College of Humanities and Social Sciences

PROBABILISTIC LEARNING

MLE

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$

Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the likelihood of the data. $\boldsymbol{\theta}^{\text{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{N} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$

MLE

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...

... at the expense of the things we have not observed

Maximum Likelihood Estimation

Learning from Data (Frequentist)

Whiteboard

- Principle of Maximum Likelihood Estimation (MLE)
- Strawmen:
 - Example: Bernoulli
 - Example: Gaussian
 - Example: Conditional #1 (Bernoulli conditioned on Gaussian)
 - Example: Conditional #2 (Gaussians conditioned on Bernoulli)

MOTIVATION: LOGISTIC REGRESSION

Example: Image Classification

- ImageNet LSVRC-2010 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - **Multiclass** classification problem
- Examples from http://image-net.org/

IM GENET	SEANCH Home Explore About Download
	Not logged in. Login I Signup
Bird Warm-blooded egg-laying vertebrates characterized by feathers an	d forelimbs modified as wings 2126 92.85% Wordnet Da
 marine animal, marine creature, sea animal, sea creature (1) 	Treemap Visualization Images of the Synset Downloads
- bioed (0)	
predator, predatory animal (1)	
i- larva (49)	
- acrodont (0)	
- feeder (0)	
- stunt (0)	
~ chordate (3087)	
 tunicate, urochordate, urochord (6) 	
- cephalochordate (1)	
+ vertebrate, craniate (3077)	
- mammal, mammalian (1169)	
- bird (871)	
 dickeybird, dickey-bird, dickybird, dicky-bird (0) 	
⊢ cock (1)	
- hen (0)	
- nester (0)	
r- nght brd (1)	AT A SMM
- bird or passage (0)	
- protoavis (0)	
 archaeopteryx, archeopteryx, Archaeopteryx innographi Sinomia (0) 	
- Jean masonis (0)	
archaenmis (0)	
architectrite (o)	
- carinate, carinate bird, fiving bird (0)	
 passerine, passeriform bird (279) 	
- nonpasserine bird (0)	
- bird of prey, raptor, raptorial bird (80)	
- gallinaceous bird, gallinacean (114)	

IM GENET	4,197,122 images, 21841 synse	rta indexed	SEARCH	Home Explo About Down	re Noed	
				Not logge	d in. Login I Signup	
German iris, Iris kochii Iris of northern Italy having deep	blue-purple flowers; similar t	to but smaller than Iris g	ermanica	469 pictures	49.6% Popularity Percentile	
- halophyte (0)		veener Visualization	Images of the Support	Downloads		
- succulent (39)		reenap risoanzación	images of the synset	DOMINOBUS		
- cultivated plant (0)				25.8		
- weed (54)				<u>- 1</u>	100	
- evergreen, evergreen plant (0)		C 🧀 🖊 🖓 MARANA		100 C	- Alton	
- deciduous plant (0)		1 . B. 1964	1202 34	No. 1993		
- vine (272)		CONTRACTOR OF A	THE REAL PROPERTY OF	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Contraction of the local division of the loc	
- creeper (0)					0.5	
 woody plant, ligneous plant (1868) 			ALCON .	H		
 geophyte (0) 		- A			12 3	
 desert plant, xerophyte, xerophytic plan 	nt, xerophile, xerophik				1 - or 2	
 mesophyte, mesophytic plant (0) 	budesebudia altera (11)	IN 11 100		No. of Concession, Name		
 aquatic plant, water plant, hydrophyte, tuberous plant (0) 	nyoropnytic plant (11	Salar Link		100		
bulbous plant (179)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		100		
+ iridaceous plant (27)						
+ iris, flag, fleur-de-lis, sword lily (1	9)		100.041			
+ bearded iris (4)		A HEAT I MINING MAN	DATE STOL			
 Florentine iris, orris, Iris ger 	rmanica forentina, Iris		Sec. Sec.	1.0	-111	
- German iris, Iris germanica	(0)				ALC: NOT ALC	
- German iris, Iris kochii (0)			Constant Sec.		Ex X	
- Dalmatian iris, Iris pallida (0	D) 🖉 🚰	A DECK				
← beardless iris (4)						
- bulbous ins (0)	1	2 B 10 B 1				
- dwarr ins, ins cristata (U)	iris stinking alation				1000	
Parsian iris, kis parsias (0)	nin, serverig gesenyn,			- The state	10	
- velow iris, velow flag, velow	water flag, Iris pseuda	aller Block 15	Sector Sector	190	A.C.A.	
- dwarf iris, vernal iris, Iris verna	(0)			A sec.	10.000	
- blue flag, Iris versicolor (0)	2			1.54		

IM GENET 14,197,122 images, 218	SEANCH 841 synsets indexed	Home Explore About Download
		Not logged in. Login I Signup
Court, courtyard An area wholly or partly surrounded by walls or building	ings; "the house was built around an inner court"	165 92.61%
O Numbers in brackets: (the number of synsets in the subtree).	Treemap Visualization Images of the Synset	Downloads
ImageNet 2011 Fall Release (32326) plant, flora, plant life (4486) geological formation, formation (175) natural object (1112) sport, athletics (176) artifact, artefact (10504) instrumentality, instrumentation (5494) structure, construction (1405) altar (1) arcade, colonnade (1) arcade, colonnade (1) arcade, (344)		
- aisle (0) - auditorium (1) - baggage claim (0) - box (1)		
- breakfast area, breakfast nook (0) - bullpen (0) - chancel, sanctuary, bema (0) - choir (0)		
- court, courtyard (6) - atrium (0) - bailey (0)		

TEST TRANSPORT

-

cloister (0) food court (0) forecourt (0)

- narvis (0)

- -

Example: Image Classification

CNN for Image Classification (Krizhevsky, Sutskever & Hinton, 2011) 17.5% error on ImageNet LSVRC-2010 contest

Input

image

(pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way

softmax

Example: Image Classification

CNN for Image Classification (Krizhevsky, Sutskever & Hinton, 2011) 17.5% error on ImageNet LSVRC-2010 contest

LOGISTIC REGRESSION

Data: Inputs are continuous vectors of length M. Outputs are discrete.

 $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$ where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

We are back to classification.

Despite the name logistic **regression.**

Linear Models for Classification

Looking ahead:

- We'll see a number of commonly used Linear Classifiers
- These include:
 - Perceptron
 - Logistic Regression
 - Naïve Bayes (under certain conditions)
 - Support Vector Machines

Key idea: Try to learn this hyperplane directly

Directly modeling the hyperplane would use a decision function:

 $h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$

 $y \in \{-1, +1\}$

for:

Background: Hyperplanes

Notation Trick: fold the bias b and the weights w into a single vector **θ** by prepending a constant to x and increasing dimensionality by one to get x'! Hyperplane (Definition 1): $\mathcal{H} = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} = b\}$ Hyperplane (Definition 2): $\mathcal{H} = \{\mathbf{x}' : \boldsymbol{\theta}^T \mathbf{x}' = 0$ $\mathbf{and} \ x_1' = 1\}$ $\boldsymbol{\theta} = [b, w_1, \dots, w_M]^T$

Half-spaces: $\mathcal{H}^{+} = \{\mathbf{x} : \boldsymbol{\theta}^{T}\mathbf{x} > 0 \text{ and } x_{1} = 1\}$ $\mathcal{H}^{-} = \{\mathbf{x} : \boldsymbol{\theta}^{T}\mathbf{x} < 0 \text{ and } x_{1} = 1\}$

Using gradient ascent for linear classifiers

Key idea behind today's lecture:

- 1. Define a linear classifier (logistic regression)
- 2. Define an objective function (likelihood)
- 3. Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

Using gradient ascent for linear classifiers

This decision function isn't differentiable:

 $h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$

Use a differentiable function instead: $p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$ 0.5

$$-4 -2 = 0 -2 -4$$

logistic(u) = $\frac{1}{1 + e^{-u}}$

Using gradient ascent for linear classifiers

This decision function isn't differentiable:

 $h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$

Use a differentiable function instead: $p_{\theta}(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$

Data: Inputs are continuous vectors of length M. Outputs are discrete.

 $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$ where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters with input vector. $p_{\theta}(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$

Learning: finds the parameters that minimize some objective function. $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

Prediction: Output is the most probable class. $\hat{y} = \operatorname*{argmax}_{y \in \{0,1\}} p_{\theta}(y|\mathbf{x})$

Whiteboard

- Logistic Regression Model
- Decision boundary

Learning for Logistic Regression

Whiteboard

- Partial derivative for Logistic Regression
- Gradient for Logistic Regression

LOGISTIC REGRESSION ON GAUSSIAN DATA

LEARNING LOGISTIC REGRESSION

Maximum **Conditional** Likelihood Estimation

Learning: finds the parameters that minimize some objective function.

$$\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

We minimize the *negative* log conditional likelihood:

$$J(\boldsymbol{\theta}) = -\log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}(y^{(i)} | \mathbf{x}^{(i)})$$

Why?

- 1. We can't maximize likelihood (as in Naïve Bayes) because we don't have a joint model p(x,y)
- 2. It worked well for Linear Regression (least squares is MCLE)

Maximum **Conditional** Likelihood Estimation

Learning: Four approaches to solving $\theta^* = \underset{\boldsymbol{\rho}}{\operatorname{argmin}} J(\boldsymbol{\theta})$

Approach 1: Gradient Descent (take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)

Approach 3: Newton's Method (use second derivatives to better follow curvature)

Approach 4: Closed Form??? (set derivatives equal to zero and solve for parameters)

Maximum **Conditional** Likelihood Estimation

Learning: Four approaches to solving $\theta^* = \underset{\boldsymbol{\rho}}{\operatorname{argmin}} J(\boldsymbol{\theta})$

Approach 1: Gradient Descent (take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)

Approach 3: Newton's Method (use second derivatives to better follow curvature)

Approach 4. Closed Form???

(set derivatives equal to zero and solve for parameters)

Logistic Regression does not have a closed form solution for MLE parameters.

SGD for Logistic Regression

Question:

Which of the following is a correct description of SGD for Logistic Regression?

Answer:

At each step (i.e. iteration) of SGD for Logistic Regression we...

- A. (1) compute the gradient of the log-likelihood for all examples (2) update all the parameters using the gradient
- B. (1) ask Matt for a description of SGD for Logistic Regression, (2) write it down, (3) report that answer
- C. (1) compute the gradient of the log-likelihood for all examples (2) randomly pick an example (3) update only the parameters for that example
- D. (1) randomly pick a parameter, (2) compute the partial derivative of the loglikelihood with respect to that parameter, (3) update that parameter for all examples
- E. (1) randomly pick an example, (2) compute the gradient of the log-likelihood for that example, (3) update all the parameters using that gradient
- F. (1) randomly pick a parameter and an example, (2) compute the gradient of the log-likelihood for that example with respect to that parameter, (3) update that parameter using that gradient

Gradient Descent

Algorithm 1 Gradient Descent

1: procedure
$$GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$$

- 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
- 3: while not converged do 4: $\theta \leftarrow \theta - \gamma \nabla_{\theta} J(\theta)$

5: return θ

In order to apply GD to Logistic Regression all we need is the **gradient** of the objective $\nabla_{\theta} J(\theta) =$ function (i.e. vector of partial derivatives).

$$\begin{bmatrix} \frac{d}{d\theta_1} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J(\boldsymbol{\theta}) \end{bmatrix}$$

Stochastic Gradient Descent (SGD)

Algorithm 1 Stochastic Gradient Descent (SGD)

1: procedure SGD(
$$\mathcal{D}, \theta^{(0)}$$
)
2: $\theta \leftarrow \theta^{(0)}$
3: while not converged **do**

for $i \in \text{shuffle}(\{1, 2, \dots, N\})$ do $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$ 4:

return θ 6:

5:

We can also apply SGD to solve the MCLE problem for Logistic Regression.

We need a per-example objective:

Let
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

where $J^{(i)}(\boldsymbol{\theta}) = -\log p_{\boldsymbol{\theta}}(y^{i}|\mathbf{x}^{i})$.
Logistic Regression vs. Perceptron

Question:

True or False: Just like Perceptron, one step (i.e. iteration) of SGD for Logistic Regression will result in a change to the parameters only if the current example is incorrectly classified.

Matching Game

Goal: Match the Algorithm to its Update Rule

- 1. SGD for Logistic Regression $h_{\boldsymbol{\theta}}(\mathbf{x}) = p(y|x)$
- 2. Least Mean Squares $h_{oldsymbol{ heta}}(\mathbf{x}) = oldsymbol{ heta}^T \mathbf{x}$
- 3. Perceptron $h_{\boldsymbol{\theta}}(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$

4.
$$\theta_k \leftarrow \theta_k + (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})$$

5. $\theta_k \leftarrow \theta_k + \frac{1}{1 + \exp \lambda(h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})}$
6. $\theta_k \leftarrow \theta_k + \lambda(h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})x_k^{(i)}$

E. 1=6, 2=6, 3=6 F. 1=6, 2=5, 3=5 G. 1=5, 2=5, 3=5 H. 1=4, 2=5, 3=6

OPTIMIZATION METHOD #4: MINI-BATCH SGD

Mini-Batch SGD

• Gradient Descent:

Compute true gradient exactly from all N examples

• Stochastic Gradient Descent (SGD): Approximate true gradient by the gradient of one randomly chosen example

• Mini-Batch SGD:

Approximate true gradient by the average gradient of K randomly chosen examples

Mini-Batch SGD

while not converged:
$$\boldsymbol{ heta} \leftarrow \boldsymbol{ heta} - \lambda \mathbf{g}$$

Three variants of first-order optimization:

Gradient Descent:
$$\mathbf{g} = \nabla J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \nabla J^{(i)}(\boldsymbol{\theta})$$

SGD: $\mathbf{g} = \nabla J^{(i)}(\boldsymbol{\theta})$ where i sampled uniformly
Mini-batch SGD: $\mathbf{g} = \frac{1}{S} \sum_{s=1}^{S} \nabla J^{(i_s)}(\boldsymbol{\theta})$ where i_s sampled uniformly $\forall s$

Summary

- Discriminative classifiers directly model the conditional, p(y|x)
- Logistic regression is a simple linear classifier, that retains a probabilistic semantics
- 3. Parameters in LR are learned by **iterative optimization** (e.g. SGD)

Logistic Regression Objectives

You should be able to...

- Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of a probabilistic model
- Given a discriminative probabilistic model, derive the conditional log-likelihood, its gradient, and the corresponding Bayes Classifier
- Explain the practical reasons why we work with the **log** of the likelihood
- Implement logistic regression for binary or multiclass classification
- Prove that the decision boundary of binary logistic regression is linear
- For linear regression, show that the parameters which minimize squared error are equivalent to those that maximize conditional likelihood

FEATURE ENGINEERING

Handcrafted Features

Feature Engineering

Feature Engineering

Feature Engineering

Feature Learning

61

Feature Engineering

Feature Engineering

Feature Engineering

Suppose you build a logistic regression model to predict a part-of-speech (POS) tag for each word in a sentence.

What features should you use?

Per-word Features:

```
is-capital(w<sub>i</sub>)
endswith(w<sub>i</sub>, "e")
endswith(w<sub>i</sub>, "d")
endswith(w<sub>i</sub>, "ed")
w<sub>i</sub> == "aardvark"
w<sub>i</sub> == "hope"
```

...

Context Features:

...

1

0

0

()

()

•••

Г		1
	•••	
	0	
	0	
	0	
	0	
ſ	1	
		1

 $X^{(6)}$

Context Features:

Table 3. Tagging accuracies with different feature templates and other changes on the WSJ 19-21 development set.

Model	Feature Templates	#	Sent.	Token	Unk.
		Feats	Acc.	Acc.	Acc.
3gramMemm	See text	248,798	52.07%	96.92%	88.99%
NAACL 2003	See text and $[1]$	$460,\!552$	55.31%	97.15%	88.61%
Replication	See text and $[1]$	$460,\!551$	55.62%	97.18%	88.92%
Replication'	+rareFeatureThresh $= 5$	$482,\!364$	55.67%	97.19%	88.96%
5W	$+\langle t_0, w_{-2} \rangle, \langle t_0, w_2 \rangle$	$730,\!178$	56.23%	97.20%	89.03%
5wShapes	$+\langle t_0, s_{-1} \rangle, \langle t_0, s_0 \rangle, \langle t_0, s_{+1} \rangle$	$731,\!661$	56.52%	97.25%	89.81%
5wShapesDS	+ distributional similarity	737,955	56.79%	97.28%	90.46%

Edge detection (Canny)

Corner Detection (Harris)

Scale Invariant Feature Transform (SIFT)

Figure 3: Model images of planar objects are shown in the op row. Recognition results below show model outlines and mage keys used for matching.

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is down-sampled by a factor of 2, and the process repeated.

NON-LINEAR FEATURES

Nonlinear Features

- aka. "nonlinear basis functions" ۲
- So far, input was always $\mathbf{x} = [x_1, \dots, x_M]$ ۲
- Key Idea: let input be some function of x ullet
 - original input: $\mathbf{x} \in \mathbb{R}^{M}$ where M' > M (usually)

- new input:
$$\mathbf{x}' \in \mathbb{R}^M$$

- define $\mathbf{x}' = b(\mathbf{x}) = [b_1(\mathbf{x}), b_2(\mathbf{x}), \dots, b_{M'}(\mathbf{x})]$

where $b_i : \mathbb{R}^M \to \mathbb{R}$ is any function

Examples: (M = 1)• polynomial

radial basis function

$$b_j(x) = x^j \quad \forall j \in \{1, \dots, J\}$$
$$b_j(x) = \exp\left(\frac{-(x - \mu_j)^2}{2\sigma_j^2}\right)$$
$$b_j(x) = \frac{1}{1 + \exp(-\omega_j x)}$$
$$b_j(x) = \log(x)$$

For a linear model: still a linear function of b(x) even though a nonlinear function of Χ

Examples:

- Perceptron
- Linear regression
- Logistic regression

log

sigmoid

Goal: Learn $y = w^T f(x) + b$ where f(.) is a polynomial basis function

true "unknown" target function is linear with negative slope and gaussian noise

Goal: Learn $y = w^T f(x) + b$ where f(.) is a polynomial basis function Linear Regression (poly=1) 2.0 X 2.0 1.2 1.5 1.3 1.7 0.1 2.7 y 1.0 1.9 1.1 0.5 true "unknown" target function is 0.0 linear with negative slope and gaussian 2.5 2.0 1.5 noise

Х

Goal: Learn $y = w^T f(x) + b$ where f(.) is a polynomial basis function Linear Regression (poly=2) 2.0 **X**² 1.2 (1.2)² 2.0 1.5 1.7 (1.7)² 1.3 2.7 (2.7)² 0.1 y 1.0 1.9 (1.9)² 1.1 0.5 true "unknown" target function is 0.0 linear with negative slope and gaussian 2.5 2.0 1.5 noise

Х

Goal: Learn $y = w^T f(x) + b$ where f(.) is a polynomial basis function

y

у	х	X ²	X ³
2.0	1.2	(1.2)2	(1.2)3
1.3	1.7	(1.7) ²	(1 . 7) ³
0.1	2.7	(2.7) ²	(2 . 7) ³
1.1	1.9	(1.9) ²	(1 . 9) ³

true "unknown" target function is linear with negative slope and gaussian noise

Goal: Learn $y = w^T f(x) + b$ where f(.) is a polynomial basis function

у	х	X ²	•••	x ⁵	
2.0	1.2	(1.2)2		(1.2)5	
1.3	1.7	(1.7)2		(1.7)5	
0.1	2.7	(2.7) ²		(2.7)5	y
1.1	1.9	(1.9) ²		(1.9)5	2

true "unknown" target function is linear with negative slope and gaussian noise

Goal: Learn $y = w^T f(x) + b$ where f(.) is a polynomial basis function Linear Regression (poly=8) 2.0 **X**⁸ **X**² ••• 1.2 $(1.2)^2$... $(1.2)^8$ 2.0 1.5 -1.7 $(1.7)^2$... $(1.7)^8$ 1.3 2.7 $(2.7)^2$... $(2.7)^8$ y 0.1 1.0 $1.9 (1.9)^2 \dots (1.9)^8$ 1.1 0.5 true "unknown" target function is 0.0 linear with negative slope -0.5and gaussian 1.5 2.0 2.5 3.0 noise Х

Goal: Learn $y = w^T f(x) + b$ where f(.) is a polynomial basis function Linear Regression (poly=9) 2.0 **X**² **X**⁹ ••• 1.2 $(1.2)^2$... $(1.2)^9$ 2.0 1.5 - $1.7 (1.7)^2 \dots (1.7)^9$ 1.3 2.7 $(2.7)^2$... $(2.7)^9$ y 0.1 1.0 - $1.9 (1.9)^2 \dots (1.9)^9$ 1.1 0.5 true "unknown" target function is 0.0 linear with negative slope -0.5 and gaussian 2.0 1.5 2.5 3.0 noise

Х

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Polynomial Coefficients

	M = 0	M = 1	M=3	M = 9
θ_0	0.19	0.82	0.31	0.35
$ heta_1$		-1.27	7.99	232.37
$ heta_2$			-25.43	-5321.83
$ heta_3$			17.37	48568.31
$ heta_4$				-231639.30
$ heta_5$				640042.26
$ heta_6$				-1061800.52
$ heta_7$				1042400.18
$ heta_8$				-557682.99
θ_9				125201.43

Goal: Learn $y = w^T f(x) + b$ points we overfit! where f(.) is a polynomial But with N = 100basis function points, the Linear Regression (poly=9) overfitting 2.5 (mostly) **X**⁹ X ••• disappears 2.0 1.2 ... (1.2)9 2.0 1 Takeaway: more data helps ... (1.7)9 1.7 1.3 2 1,5 prevent ... (2.7)⁹ V 2.7 3 0.1 overfitting 1.0 ... (1.9)9 1.9 4 1.1 0.5 • • • 0.0 -... 98 -0.5... • • • • • • ... 99 ... • • • 1.5 2.0 2.5 1.0 3.0 ... (1.5)9 100 0.9 1.5

Х

With just N = 10

•

REGULARIZATION
Overfitting

Definition: The problem of **overfitting** is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- KNN (e.g. when k is small)
- Perceptron (e.g. when sample isn't representative)
- Linear Regression (e.g. with nonlinear features)
- Logistic Regression (e.g. with many rare features)

Motivation: Regularization

Example: Stock Prices

- Suppose we wish to predict Google's stock price at time t+1
- What features should we use? (putting all computational concerns aside)
 - Stock prices of all other stocks at times t, t-1, t-2, ..., t - k
 - Mentions of Google with positive / negative sentiment words in all newspapers and social media outlets
- Do we believe that all of these features are going to be useful?

Motivation: Regularization

- Occam's Razor: prefer the simplest hypothesis
- What does it mean for a hypothesis (or model) to be simple?
 - 1. small number of features (model selection)
 - small number of "important" features (shrinkage)

Regularization

- **Given** objective function: $J(\theta)$
- **Goal** is to find: $\hat{\theta} = \underset{\theta}{\operatorname{argmin}} J(\theta) + \lambda r(\theta)$
- Key idea: Define regularizer r(θ) s.t. we tradeoff between fitting the data and keeping the model simple
- Choose form of $r(\theta)$:

- Example: q-norm (usually p-norm) $r(\theta) = ||\theta||_q = \left[\sum_{m=1}^M ||\theta_m||^q\right]^{(\frac{1}{q})}$

q	$r(\boldsymbol{\theta})$	yields parame- ters that are	name	optimization notes
0	$ \boldsymbol{\theta} _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values	Lo reg.	no good computa- tional solutions
$\frac{1}{2}$	$\begin{array}{l} \boldsymbol{\theta} _1 = \sum \theta_m \\ (\boldsymbol{\theta} _2)^2 = \sum \theta_m^2 \end{array}$	zero values small values	L1 reg. L2 reg.	subdifferentiable differentiable

Regularization

Question:

Suppose we are minimizing $J'(\theta)$ where

 $J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$

As λ increases, the minimum of J'(θ) will...

- A. ... move towards the midpoint between J'(θ) and r(θ)
- B. ... move towards the minimum of $J(\theta)$
- C. ... move towards the minimum of $r(\theta)$
- D. ... move towards a theta vector of positive infinities
- E. ... move towards a theta vector of negative infinities
- F. ... stay the same

Regularization Exercise

In-class Exercise

- 1. Plot train error vs. regularization weight (cartoon)
- 2. Plot test error vs. regularization weight (cartoon)

Regularization

Question:

Suppose we are minimizing J'(θ) where $J'(\theta) = J(\theta) + \lambda r(\theta)$

As we increase λ from 0, the the validation error will...

- A. ... increase
- B. ... decrease
- C. ... first increase, then decrease
- D. ... first decrease, then increase
- E. ... stay the same

Regularization

Don't Regularize the Bias (Intercept) Parameter!

- In our models so far, the bias / intercept parameter is usually denoted by θ_0 -- that is, the parameter for which we fixed $x_0 = 1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Whitening Data

- It's common to whiten each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

- For this example, we construct nonlinear features (i.e. feature engineering)
- Specifically, we add polynomials up to order 9 of the two original features x₁ and x₂
- Thus our classifier is linear in the high-dimensional feature space, but the decision boundary is nonlinear when visualized in low-dimensions (i.e. the original two dimensions)

Classification with Logistic Regression (lambda=1e-05)

Classification with Logistic Regression (lambda=0.0001)

Classification with Logistic Regression (lambda=0.001)

Classification with Logistic Regression (lambda=0.01)

Classification with Logistic Regression (lambda=0.1)

Classification with Logistic Regression (lambda=1)

Classification with Logistic Regression (lambda=10)

Classification with Logistic Regression (lambda=100)

Classification with Logistic Regression (lambda=1000)

Classification with Logistic Regression (lambda=10000)

Classification with Logistic Regression (lambda=100000)

Classification with Logistic Regression (lambda=1e+06) 3 -▼ 2 -1 -0 --1 -▼ -2 -V -3 -1 -2 $^{-1}$ 0 1 2 3 -3 4

Classification with Logistic Regression (lambda=1e+07)

Regularization as MAP

- L1 and L2 regularization can be interpreted as maximum a-posteriori (MAP) estimation of the parameters
- To be discussed later in the course...

Takeaways

- Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
- Nonlinear features are require no changes to the model (i.e. just preprocessing)
- 3. Regularization helps to avoid overfitting
- **4. Regularization** and **MAP estimation** are equivalent for appropriately chosen priors

Feature Engineering / Regularization Objectives

You should be able to...

- Engineer appropriate features for a new task
- Use feature selection techniques to identify and remove irrelevant features
- Identify when a model is overfitting
- Add a regularizer to an existing objective in order to combat overfitting
- Explain why we should **not** regularize the bias term
- Convert linearly inseparable dataset to a linearly separable dataset in higher dimensions
- Describe feature engineering in common application areas