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Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Mon, Feb. 22
— Due: Mon, Mar. 01 at 11:59pm

 Practice for Exam

— Mock Exam 1

* Wed, Mar. 03 at 7:00pm - 9:00pm

* See (@261 for participation point details
— Practice Problems 1A (Gradescope)

— Practice Problems 1B (PDF)

* Midterm Exam 1
— Saturday, March 6, at 10:30am - 12:30pm EST



https://piazza.com/class/kjvu0xh54r72d1?cid=261
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PROBABILISTIC LEARNING



MLE
Suppose we have data D = {z(W} ¥

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
™" = argmax Hp ()|9)
0

Maximum Likelihood Estimate (MLE)




MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability

mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Maximum Likelihood Estimation
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Learning from Data (Frequentist)

Whiteboard

— Principle of Maximum Likelihood Estimation
(MLE)
— Strawmen:

* Example: Bernoulli
* Example: Gaussian

* Example: Conditional #1
(Bernoulli conditioned on Gaussian)

* Example: Conditional #2
(Gaussians conditioned on Bernoulli)



MOTIVATION:
LOGISTIC REGRESSION



Example: Image Classification
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IMSGENET
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Example: Image Classification




Example: Image Classification

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input * Five convolutional layers 1000-way
image (w/max-pooling)
(pixels) e Three fully connected layers softmax

7S,

The rest s just This “softmax’’ i
some fancy 192 . . . D048 Joas \dense
| feature extraction | { layeris Log'St'C A
o (discussed laterin f—=—)| Regression! | / \
@ the course) 3| R
224 S/t}’i/d/e’: Max . 128 ]Max pooling 2048 2048
Uof 4 pooling pooling

3 48



LOGISTIC REGRESSION



Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {xW,yN wherex e RM andy € {0,1}

We are back to
classification.

Despite the name
logistic regression.



Linear Models for Classificatim

Key idea: Try to learn

this hyperplane directly
HOBIIME Einzaet = yDirectly modeling the
* We’ll see a number of =~
commonly used Linear |~ hyp.erplane W(.)u'd e e
Classifiers l -~ ldecision function:
* These include: = -
— Perceptron X h(X) — Sign(g X)

— Logistic Regression
— Naive Bayes (under
certain conditions) , for:

— Support Vector
Machines Y € {_1, _I_]-}

r pr—



Background: Hyperplanes%

Hyperplane (Definition 1):

H={x:w'x=>b
Hyperplane (Definition 2):
H={x:0"x=0
and z! = 1}
0= bwy,...,wyl

T

Half-spaces:

Ht ={x:0"x>0andz, =1}
H™ ={x:0"x<0andz, =1}



Using gradient ascent for linear

classifiers
Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)

3. Optimize it with gradient descent to learn
parameters

4. Predict the class with highest probability under
the model



Using gradient ascent for linear
classifiers




Using gradient ascent for linear
classifiers




Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {xW,yN wherex e RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6"x)
Learning: finds the parameters that minimize some

objective function. @* — argmin .J(0)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
y€{0,1}



Logistic Regression

Whiteboard

— Logistic Regression Model
— Decision boundary



Learning for Logistic Regression

Whiteboard

— Partial derivative for Logistic Regression
— Gradient for Logistic Regression



LOGISTIC REGRESSION ON
GAUSSIAN DATA



Logistic Regression
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Logistic Regression

Logistic Regression Distribution

33



Logistic Regression

Classification with Logistic Regression

34



LEARNING LOGISTIC REGRESSION



Maximum Conditional
Likelihood Estimation

Learning: finds the parameters that minimize some
objective function.

0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(6) = —log | [ pe(y"|x'"))
i=1
Why?
1.  We can’t maximize likelihood (as in Naive Bayes)

because we don’t have a joint model p(x,y)

It worked well for Linear Regression (least squares is
MCLE)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin .J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

P . 77
(set derivatives equal to zero and solve




SGD for Logistic Regression

Question:
Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we...

A.

B.

C.

(1) compute the gradient of the log-likelihood for all examples (2) update all
the parameters using the gradient

1) ask Matt for a description of SGD for Logistic Regression, (2) write it down,
3) report that answer

(1) compute the gradient of the log-likelihood for all examples (2) randomly
pick an example (3) update only the parameters for that example

(1) randomly pick a parameter, (2) compute the partial derivative of the log-
likelihood with respect to that parameter, (3) update that parameter for all
examples

$1) randomly pick an example, (2) compute the gradient of the log-likelihood
or that example, (3) update all the parameters using that gradient

(1) randomly pick a parameter and an example, (2) compute the gradient of
the log-likelihood for that example with respect to that parameter, (3) update
that parameter using that gradient



Gradient Descent
Algorithm 1 Gradient Descent

procedure GD(D, 9(0))

1:

2 6 — 09

3: while not converged do

4 00— YVoJ(0O)

5 return 0

- d -
In order to apply GD to Logistic do, J(B)
Regression all we need is the dLJ(g)
2

gradient of the objective VeJ(0) =
function (i.e. vector of partial

derivatives). d J(H)




Stochastic Gradient Descent (Sm

Algorithm 1 Stochastic Gradient Descent (SG D)

i procedure SGD(D, 8?) NN

. 0 — 02 \\X 5\?‘\\5\\:\;{:3{i;\

32 while not converged do SR AN
4: fori € shuffle({1,2,...,N})do | = ~ )\

5: 0 —60 —YVeJW(O) I
6 return 6

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = 30,0, JD(6)
where J(9(0) = — log pe (y*|x?).



Logistic Regression vs. Perceptron

Question:

True or False: Just like Perceptron, one

step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the N 4
parameters only if the current example is

incorrectly classified. +

+
T %
+

Answer: 4+ +




Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression 4. 0, « 0, + (h@(X(i)) _ y(i))
he(x) = p(y|z)

2. Least Mean Squares 5. 0. B + 1
ho(x) = 6"x F T T exp Ao (x@) — y®)

3. Perceptron 6.

()Y _ ()Y, (D)
he(x) = sign(HTX) O < Ok + A(ho (X)) — 4™y,

A. 1=5, 2=4, 3=6 E. 1=6, 2=6, 3=6
B. 1=5, 2=6, 3=4 F.1=6, 2=5, 3=5
C.1=6, 2=4, 3=4 G. 1=5, 2=5, 3=5

D. 1=5, 2=6, 3=6 H. 1=4, 2=5, 3=6

43




OPTIMIZATION METHOD #4:
MINI-BATCH SGD



Mini-Batch SGD

* Gradient Descent:
Compute true gradient exactly from all N
examples

 Stochastic Gradient Descent (SGD):

Approximate true gradient by the gradient
of one randomly chosen example

* Mini-Batch SGD:
Approximate true gradient by the average
gradient of K randomly chosen examples



Mini-Batch SGD

while not converged: 8 <— 0 — \g

Three variants of first- order optlmlzatlon°

(x
Gradient Descent: g = V.J(6) = Z v.J
SGD: g = V.JV(0) where i sampled uniformly

H
&
Mini-batch SGD: g = 5 Z vJi) (@) where i, sampled uniformly Vs

46



Summary

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parameters in LR are learned by iterative
optimization (e.g. SGD)




Logistic Regression Objectives

You should be able to...

Apply the principle of maximum likelihood estimation (MLE) to
learn the parameters of a probabilistic model

Given a discriminative probabilistic model, derive the conditional
log-likelihood, its gradient, and the corresponding Bayes
Classifier

Explain the practical reasons why we work with the log of the
likelihood

Implement logistic regression for binary or multiclass
classification

Prove that the decision boundary of binary logistic regression is
linear

For linear regression, show that the parameters which minimize
squared error are equivalent to those that maximize conditional
likelihood



FEATURE ENGINEERING



Handcrafted Features

p(y|x) o
exp(O,*f




Feature Engineering

Where do features come from?

A

hand-crafted
features

Sun et al., 2011

O

3

O

Zhou et al,,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning

59



Feature Engineering

Where do features come from?

A

hand-crafted
features

O

Sun et al., 2011

O

3

O

Look-up table Classifier
input embeddin —

(context words) g > missing word

unsupervised

learning

similar words, cat: | o.11 | .23 .45
similar embeddings

dog:| 013 | .26 -.52

CBOW model in Mikolov et al. (2013)

Zhou et al,,
2005 Word /
@) embeddings
O Mikolov et al.,
2013

Feature Learning

60



Feature Engineering

Where do features come from?

0 pooling b—— /I;I\
Ve ~
o ] —( — — i — —
| eI 6NN 1
S | S — ) — s ) s ) ) —
The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A4
Zhou et al,, .
2005 word strmg
) embeddings
O embeddings _____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning



Feature Engineering

Where do features come from?

A

WDT,NN /7 N\
/ \

r ot 1t

The [movie] showed [wars]

2005 word
@) embeddings ____,
O Mikolov et al.,
2013

/
/

tree
O embeddings
Socher et al
O 2013
A Hermann & Blunsom,
/ 2013

string

embeddings
Socher, 2011

O Collobert & Weston,

2008

Feature Learning

62



Feature Engineering

Where do features come from?

A '?e’}be
: Sep,, 703, Sy,
word embedding ’773,7 Wy, “eq,,.
e, S,
hand-crafted features \/SJ’/) "Vl%
features o~ ----- >O {'3(“(-
3 Turian et al. O ,C,bf
O O 2010 Hermann et al. =
Sun et al., 2011 Koo et8al. 2014
O ,'9‘200 tree
i O embeddings
! Socher et al.,
8 i O s
i - rermann & Blunsom,
: / 2013
O : /
I U
Zhou et al., i M tri
2005 ! word ,'I S rlng
) i~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning

63



Feature Engineering

Where do features come from?

A

word embedding best of both
hand-crafted features 5
worlds®

features o~ ----- > O_ -
3 Turian et aIOO => O
O O 2019 Hermann et al. A

Sun et al., 2011 Koo et al. 2014

O ?2008 tree
i O embeddings
! Socher et al
8 i O o
i A Hermann & Blunsom,
| / 2013
O ! /
: /
Zhou et al., i M tri
2005 ' word / StTg
i~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning

64



Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Feature Engineering for NLP

Per-word Features:

x() x) x3) x(4) x(5) x(6)
is-capital(w;) 1 1
endswith(w;, “e") 1 1 1
endswith(w;,“d"”) 1 1
endswith(w;,“ed”) 1 1
w; == *“aardvark”
w; == “hope” 1

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x() x) x3) x(4) x(5) x(6)
w; == “watched” 1
Wi, == “watched” 1
w;_; == *“watched” 1
Wi, == “watched” 1
w;_, == “watched” 1

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x() x(3) x(4) x(5) x(6)
wy == “I” 1
Wiy == 47 1
Wiy == “I” 1
Wiy == “I7 1
Wi, == “I" 1

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Table from Manning (2011)

Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token  Unk.

Feats Acc. Acc. Acc.
3GRAMMEMM See text 248,798 52.07% 96.92% 88.99%
NAACL 2003  See text and [1] 460,552 55.31% 97.15% 88.61%
Replication  See text and [1] 460,551 55.62% 97.18% 88.92%
Replication’  +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +(to, w_2), (to, w2) 730,178 56.23% 97.20% 89.03%

SWSHAPES +<t0,8_1>,<to,80>,<t0,8+1> 731,661 56.52% 97.25% 89.81%
SWSHAPESDS + distributional similarity 737,955 56.79% 97.28% 90.46%

[deter.] [ noun ] [ noun ] | verb I

The movie | watched depicted hope




Feature Engineering for CV

Edge detection (Canny)

Corner Detection (Harris)

Figures from http://opencv.org
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Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

i<
3
Vi
i<

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)
Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
Figure 3: Model images of planar objects are shown in the produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
oprow. Recognition results below show model outlines and to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
mage keys used for matching. down-sampled by a factor of 2, and the process repeated.

Figure from Lowe (1999) and Lowe (2004)
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NON-LINEAR FEATURES



Nonlinear Features

aka. “nonlinear basis functions’”’

So far, input was always X = [Z1, ..., Zp|

Key Idea: let input be some function of x

. . . M
— original input: X € R ~ where M’ > M (usually)
x' € RM

— new input:

— define X' = b(x) = [b1(x), b2(x), - . ., bar (%]
where b; : RM — Ris any function

Examples: (M = 1)
polynomial

radial basis function
sigmoid

log

bi(x) = 2’

—(z — p;)*

bJ(x) = €XPp ( 252

j
1
bi(x)

T 1+ exp(—w;)
bj(z) = log(x)

Vie{l,...,J}

|

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
X

Examples:

- Perceptron

- Linear regression

- Logistic regression



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

EAES

2.0

1.3

0.1

1.1

1.2

1.7

2.7

1.9

2.5 -

2.0 - > °

1.5 -

1.0 -

0.5 -

true “unknown”
target function is

linear with
negative slope
and gaussian

noise

0.0 -

_05 T I I I I~
1.0 1.5 2.0 2.5 3.0



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial

basis function - Linear Regression (poly=1)
2.0 -
K

2.0 12
1.5 -

13 1.7

0.1 2.7

Y 10

11 1.9

0.5 -

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

0.0 -




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function - Linear Regression (poly=2)

2.0 -
EIENES

2.0 1.2 (1.2)?

1.5 -
1.3 1.7 (1.7)?
01 27 (2.7)7
(27) Y 10
11 1.9 (1.9)
0.5 -
true “unknown”
target function is
0.0 -

linear with
negative slope
and gaussian
noise




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=3)

1.2 (1.2)? (1.2)3
1.3 17 (1.7)* (1.7
01 27 (277 (2.7) y

1.1 1.9 (1.9)2(1.9)3

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

15 2.0 2.5



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)

1.2 (122 ... (1.2)p
13 17 (1.7)* ... (.7)
o1 27 (2.7 ... (2.7 y

1.1 1.9 (.92 ... (1.9

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

83



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

2.0 -

.ﬂﬂ-ﬂ
1.2 (1.2 ... (1.2)8 15

1.3 17 (72 ... (1.7)8

01 27 (2.7)* ... (2.7)8y 1.0 -

1.1 1.9 (1.92 ... (1.9)8

0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
-0.5 -

and gaussian
noise

1.5

Linear Regression (poly=8)

2.0

2.5

3.0
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Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial

basis function | Linear Regression (poly=9)
oooEEn
1.2 (1.2 ... (1.2) 15
1.3 1.7 (1.7)* ... (1.7)9

01 27 (2.7)* ... (2.7)9y 1.0 -

1.1 1.9 (1.92 ... (1.9)

0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
-0.5 -

and gaussian

0 1.5 2.0 2.5
noise




Frms

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen

Over-fitting

—©— Training
—O— Test

05¢

ERMS = \/2E(W*>/N



Polynomial Coefficients

M=0 M=1 M=3 M=9
0o 0.19 0.82 0.31 0.35
01 -1.27 7.99 232.37
0o -25.43 -5321.83
0 17.37 48568.31
0, -231639.30
05 640042.26
06 -1061800.52
0. 1042400.18
Og -557682.99
0, 125201.43

Slide courtesy of William Cohen



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

2.0 - |
e
1 20 12 .. (1.2)° 15
2 1.3 17 ... (17)p
y 10-
10 11 19 .. (1.9)
0.5 -
0.0 -
~0.5 -

1.5

Linear Regression (poly=9)

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting
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Goal: Learny=w'f(x) +b
where f(.) is a polynomial

Example: Linear Regression

basis function

e
1 20 12 .. (1.2)°
. (1.7)9
. (2.7 y

. (1.9)

29

100

1.3
0.1

1.1

0.9

1.7

2.7

1.9

1.5

. (15)

2.5 -

2.0 -

1.5 -

0.5 -

0.0 -

-0.5 -

1.0

Linear Regression (poly=9)

1.5

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0
89



REGULARIZATION



Overfitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

Example: Stock Prices

* Suppose we wish to predict
Google’s stock price at time t+1

* What features should we use? P 500 (19502016
(putting all computational concerns -

aside) | e

— Stock prices of all other stocks at - A’\ A

times t, t-1, t-2, ..., t- k e

— Mentions of Google with positive | - )

negative sentiment words in all - .

newspapers and social media outlets - ——

SV IS I I T I VIV I IO IO TN AF

Do we believe that all of these
features are going to be useful?



Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis

* What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)

2. small number of “important” features
(shrinkage)



Regularization

Given objective function: J(6)
Goal is to find: @ = argmin J(0) + A\r(0)
0

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple

Choose form of r(0): y o)
— Example: g-norm (usually p-norm) () = li6ll, = [Z IIHmII‘-’]

m=1

qg r(0) yields parame- name  optimization notes
ters that are...
0 ||8|lo=>1(6,, #0) zerovalues Loreg. no good computa-

tional solutions
L |10y = ) |0m] zero values L1ireg. subdifferentiable
2 (||6]]2)* = 362, small values L2reg. differentiable

94



Regularization

Question:

Suppose we are minimizing J’(0) where

J'(8) = J(8) + \r(6)

As A increases, the minimum of J’(0)

will...
A.

...move towards the midpoint
between J’(0) and r(6)

... move towards the minimum of J(0)
...move towards the minimum of r(0)
...move towards a theta vector of
positive infinities

...move towards a theta vector of
negative infinities

... stay the same

7

N




Regularization Exercise




Regularization

Question:

Suppose we are minimizing J’(0)

where
J'(0) = J(0) + \r(0)

As we increase A from o, the the
validation error will...

A.

m o N W

...iNncrease

...decrease
... first increase, then decrease

... first decrease, then increase
... stay the same

\%

7z
\
0]

r(@) = |

<

N

DN BN

v



Regularization

Don’t Regularize the Bias (Intercept) Parameter!

* In our models so far, the bias / intercept parameter is
usually denoted by 6, -- that is, the parameter for which
we fixed x; = 1

* Regularizers always avoid penalizing this bias | intercept
parameter

* Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data

* It’s common to whiten each feature by subtracting its
mean and dividing by its variance

* Forregularization, this helps all the features be penalized
in the same units
(e.g. convert both centimeters and kilometers to z-scores)




Training
Data

Test
Data

Example: Logistic Regression

3-

2 -

1-

-
M o
Vo, v s " o
oy
v .:’.V
B ;-.'»".
v Wy
\J TRE N

:%
By

v
Y

,.v v'.' ]
20 P
. .
v MR i v{: i S
R LAY A A0S A
v v vvv"v *y 0PV
v
% 73"v ’,.v v vV

For this example, we
construct nonlinear features
(i.e. feature engineering)

Specifically, we add
polynomials up to order 9 of
the two original features x,
and x,

Thus our classifier is linear in
the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized in
low-dimensions (i.e. the
original two dimensions)



error

Example: Logistic Regression

0.45 -
0.40 -
0.35 -
0.30 -
0.25 -
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0.15 -

—— train
- test
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Example: Logistic Regression

- Classijfication with Logistic Regression (lambda=1e-05)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.0001)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.001)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)

111



Example: Logistic Regression

Classification with Logistic Regression (lambda=1)

112



Example: Logistic Regression

Classification with Logistic Regression (lambda=10)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=10000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=100000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+06)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+07)
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error

Example: Logistic Regression

0.45 -
0.40 -
0.35 -
0.30 -
0.25 -
0.20 -

0.15 -

—— train
- test

1077

1074

1071

lambda

102

10°

108
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Regularization as MAP

* L1and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation

of the parameters
e To be discussed later in the course...



1.

Takeaways

Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

Nonlinear features are require no changes
to the model (i.e. just preprocessing)

. Regularization helps to avoid overfitting
. Regularization and MAP estimation are

equivalent for appropriately chosen priors



Feature Engineering / Regularization

Objectives
You should be able to...
* Engineer appropriate features for a new task

* Use feature selection techniques to identify and
remove irrelevant features

* |dentify when a model is overfitting

* Add aregularizer to an existing objective in order to
combat overfitting

* Explain why we should not regularize the bias term

* Convert linearly inseparable dataset to a linearly
separable dataset in higher dimensions

* Describe feature engineering in common application
areas



