Machine Learning 10-601/301

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

March 10, 2021

This section:

- Representation learning
- Convolutional neural nets
- Recurrent neural nets

Reading:

- Goodfellow: Chapter 6
- optional: Mitchell: Chapter 4

Loss function $J(\theta)$ to be minimized: negative log likelihood of training data D

$$
J(\theta) = \sum_{\langle x,y \rangle \in D} -\log P_{\theta}(Y = y | X = x; \ \theta)
$$

where we define

$$
X_1^3 = P(Y = 1 | X^1; \theta), \quad \theta = \{ \mathbf{W}^3, \mathbf{b}^3, \mathbf{W}^2, \mathbf{b}^2 \}
$$

gradient

$$
\nabla_{\theta} J(\theta) = \langle \frac{\partial J(\theta)}{\partial W_1^3}, \frac{\partial J(\theta)}{\partial W_2^3}, \frac{\partial J(\theta)}{\partial b^3}, \dots, \frac{\partial J(\theta)}{\partial b_1^2} \rangle
$$

note by chain rule

$$
\frac{\partial J(\theta)}{\partial \theta_i} = \frac{\partial J(\theta)}{\partial X_1^3} \cdot \frac{\partial X_1^3}{\partial \theta_i}
$$

Feed Forward

Back propagation

 $\partial J(\theta)$ update each parameter according to $\theta_i \leftarrow \theta_i - \eta^2$

update each parameter according to $\theta_i \leftarrow \theta_i - \eta \frac{\partial J(\theta)}{\partial \theta_i}$

Sigmoid function

tanh function

What you should know: Artificial Neural Networks

- Highly non-linear regression/classification
- Vector Tensor-valued inputs and outputs
- Potentially billions of parameters to estimate
- Hidden layers learn intermediate representations

aka backpropagation

- Directed acyclic graph, trained by gradient descent
- Chain rule over this DAG allows computing all derivatives
- Can use any differentiable loss function – we used neg. log likelihood in order to learn outputs P(Y|X)
- Gradient descent, local minima problems
- Overfitting and how to deal with it

Learning hidden representations

Learning Hidden Layer Representations

Network with sigmoid units only:

A target function:

Can this be learned??

Learning Hidden Layer Representations

 ${\bf A}$ network:

Training

Training

Gradient descent steps \rightarrow

Neural Nets for Face Recognition

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights

Typical input images

 $\text{http://www.cs.cmu.edu/~tom/faces.html}$

Word embeddings

Learning Distributed Representations for Words

- also called "word embeddings"
- word2vec is one commonly used embedding
- based on "skip gram" model

Key idea: given word sequence $w_1 w_2 ... w_T$ train network to predict surrounding words. for each word w_t predict w_{t-2} , w_{t-1} , w_{t+1} , w_{t+2}

e.g., "the <u>dog</u> jumped over the fence in order to get to.." "the cat jumped off the widow ledge in order to ..."

Word2Vec Word Embeddings

"one hot" word encoding: all zeros except 1 position. ~50k dimensional basic skip gram model:

train to maximize:

$$
\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \neq 0} \log p(w_{t+j}|w_t)
$$

where
 $p(w_O|w_I) = \frac{\exp(v_{w_O}' \top v_{w_I})}{\sum_{w=1}^{W} \exp(v_w' \top v_{w_I})}$

Modifications to training…

- + hierarchical softmax
- + negative sampling
- + subsample frequent w's

[Mikolav et al., 2013]

100 Dimensional Skip-gram embeddings, projected to two dimensions by PCA

Skip-gram Word Embeddings

analogy: w1 is to w2, as w3 is to ?w algorithm: $?w = w2-w1+w3$

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Convolutional Neural Nets

Computer Vision

Imagenet Visual Recognition Challenge

A Convolutional Neural Net for Handwritten Digit recognition: LeNet5

$$
S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m, j+n)K(m, n)
$$

[from Goodfellow et al.]

**p = padding
s = stride**

s = stride

$$
S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m, j+n)K(m,n)
$$

Convolution example

Input activations Trained weights Output activations

Convolution as parameter sharing

Trained weights Output activations

Convolution as parameter sharing

Trained weights Output activations

Convolution with padding

Multichannel Convolution

[from Zhang et al., Dive into Deep Learning"]

[from Goodfellow et al.]

A Convolutional Neural Net for Handwritten Digit recognition: LeNet5

Softmax Layer: Predict Probability Distribution over discrete-valued variables

• Logistic Regression: when Y has two possible values

$$
P(Y = 1 | X = \langle X_1, \dots, X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
$$

$$
P(Y = 0 | X = \langle X_1, \dots, X_n \rangle) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
$$

• Softmax: when *Y* has *R* values $\{y_1 \dots y_R\}$, then learn *R* sets of weights to predict *R* output probabilities

$$
P(Y = y_k | X) = \frac{exp(w_{k0} + \sum_i w_{ki} X_i)}{\sum_{j=1}^{R} exp(w_{j0} + \sum_i w_{ji} X_i)}
$$

A Convolutional Neural Net for Handwritten Digit recognition: LeNet

- Shrinking size of feature maps
- Multiple channels
- LeNet-5 Demos: [http://yann.lecun.com/exdb/lenet/index.htm](http://yann.lecun.com/exdb/lenet/index.html)l
	- Vary scale
	- Vary stroke width
	- **Squeeze**
	- Noisy-2, Noisy-4

Figure 9.19: Many machine learning algorithms learn features that detect edges or specific colors of edges when applied to natural images. These feature detectors are reminiscent of the Gabor functions known to be present in primary visual cortex. (Left) Weights learned by an unsupervised learning algorithm (spike and slab sparse coding) applied to small image patches. $(Right)$ Convolution kernels learned by the first layer of a fully supervised convolutional maxout network. Neighboring pairs of filters drive the same maxout unit.

[from Goodfellow et al.]

Recurrent Neural Nets for Sequential Data

Sequences

● Words, Letters

50 years ago, the fathers of artificial intelligence convinced everybody that logic was the key to intelligence. Somehow we had to get computers to do logical reasoning. The alternative approach, which they thought was crazy, was to forget logic and try and understand how networks of brain cells learn things. Curiously, two people who rejected the logic based approach to AI were Turing and Von Neumann. If either of them had lived I think things would have turned out differently... now neural networks are everywhere and the crazy approach is winning.

- Speech
- Images, Videos

[©]Warren Photographic

● Programs while $(*d++ = *s++)$;

• Sequential Decision Making (RL)

Recurrent Networks

• Key idea: recurrent network uses (part of) its state at t as input for t+1

$$
\mathbf{o_t} = \phi_2(\mathbf{V}\mathbf{h_t} + \mathbf{b_o})
$$
\n
$$
\mathbf{h_t} = \phi_1(\mathbf{U}\mathbf{x} + \mathbf{W}\mathbf{h_{t-1}} + \mathbf{b_h})
$$
\nNonlinearity

\nHidden State at previous time

step

[Goodfellow et al., 2016]

Recurrent Networks

• Key idea: recurrent network uses (part of) its state at t as input for t+1

$$
\mathbf{o_t} = \phi_2(\mathbf{V}\mathbf{h_t} + \mathbf{b_o})
$$
\n
$$
\mathbf{h_t} = \phi_1(\mathbf{U}\mathbf{x} + \mathbf{W}\mathbf{h_{t-1}} + \mathbf{b_h})
$$
\nNonlinearity

\nHidden State at previous time

step

[Goodfellow et al., 2016]

Recurrent Networks

• Key idea: recurrent network uses (part of) its state at t as input for t+1

$$
\mathbf{o_t} = \phi_2(\mathbf{V}\mathbf{h_t} + \mathbf{b_o})
$$

$$
\mathbf{h_t} = \phi_1(\mathbf{U}\mathbf{x} + \mathbf{W}\mathbf{h_{t-1}} + \mathbf{b_h})
$$

Another example of parameter sharing, like CNNs

[Goodfellow et al., 2016]

Training Recurrent Networks

Key principle for training:

- 1. Treat as if unfolded in time, resulting in directed acyclic graph
- 2. Note shared parameters in unfolded net \rightarrow sum the gradients

* problem: vanishing and/or exploding gradients

Language model: Two Key Ingredients

Hinton, G., Salakhutdinov, R. "Reducing the Dimensionality of Data with Neural Networks." *Science (2006)*

Mikolov, T., et al. "Recurrent neural network based language model." *Interspeech (2010)*

Language Models

What do we Optimize?

 $\theta^* = \arg \max_{\theta} E_{w \sim data} \log P_{\theta}(w_1, \ldots, w_T)$

Chain Rule

$$
P(w_1, w_2, \dots, w_{T-1}, w_T) = \prod_{t=1}^T P(w_t | w_{t-1}, w_{t-2}, \dots, w_1)
$$

Recurrent Neural Network Language Models

Learning Sequences - Piotr Mirowski

• Forward Pass

Recurrent Neural Network Language Models

Learning Sequences - Piotr Mirowski

• Backward Pass

$$
\begin{array}{rcl}\n\mathbf{i}_t &=& \sigma \left(W_{xi} \mathbf{x}_t + W_{hi} \mathbf{h}_{t-1} + W_{ci} \mathbf{c}_{t-1} + \mathbf{b}_i \right), \\
\mathbf{f}_t &=& \sigma \left(W_{xf} \mathbf{x}_t + W_{hf} \mathbf{h}_{t-1} + W_{cf} \mathbf{c}_{t-1} + \mathbf{b}_f \right), \\
\mathbf{c}_t &=& \mathbf{f}_t \mathbf{c}_{t-1} + \mathbf{i}_t \tanh \left(W_{xc} \mathbf{x}_t + W_{hc} \mathbf{h}_{t-1} + \mathbf{b}_c \right),\n\end{array}
$$

- $\mathbf{f}_t = \sigma(W_{xf}\mathbf{x}_t + W_{hf}\mathbf{h}_{t-1} + W_{cf}\mathbf{c}_{t-1} + \mathbf{b}_f),$
- $=$ $\mathbf{f}_t \mathbf{c}_{t-1} + \mathbf{i}_t \tanh(W_{xc} \mathbf{x}_t + W_{hc} \mathbf{h}_{t-1} + \mathbf{b}_c),$ \mathbf{c}_t
- $\mathbf{o}_t = \sigma(W_{xo} \mathbf{x}_t + W_{ho} \mathbf{h}_{t-1} + W_{co} \mathbf{c}_t + \mathbf{b}_o),$
- \mathbf{h}_t $=$ $\mathbf{o}_t \tanh(\mathbf{c}_t)$.

Sequence to Sequence Learning

• RNN Encoder-Decoders for Machine Translation (Sutskever et al. 2014; Cho et al. 2014; Kalchbrenner et al. 2013, Srivastava et.al., 2015) Input Sequence

$$
P(y_1, \ldots, y_{T'} | x_1, \ldots, x_T) = \prod_{t=1}^{T'} p(y_t | v, y_1, \ldots, y_{t-1})
$$

Sequence to Sequence Models

• Natural language processing is concerned with tasks involving language data

Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks

What you should know:

- Representation learning
	- Hidden layers re-represent inputs in form allowing out predictions
	- Autoencoders
	- Task-specific encoding (e.g., depend on Y in f: $X\rightarrow Y$)
	- Sometimes reused widely (e.g., word2vec)
- Convolutional neural networks
	- Convolution provides translation invariance
	- Network stages with reducing spatial resolution, Mult. channels,
- Recurrent neural networks
	- Learn to represent history in time series
	- Backpropagation as unfolding in time
- Neural architectures
	- Shared parameters across multiple computations
	- Layers with different structures/functions
	- Probabilistic classification \rightarrow output Softmax layer