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Convolutional Neural Nets



A Convolutional Neural Net for Handwritten
Digit recognition: LeNet5™ itecun, etal, 1998)

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16 @5x5

INPUT 6@28x28
rr CS: layer F6 layer OUTPUT

32x32 S2: f. maps
120

r

FuII conﬂectlon Gausswn
Subsampllng Full connectlon

Convolutions Subsampling Convolutions

* In the 1998 LeNet5 paper output layer was a Gaussian RBF layer, though today we would use Softmax to obtain probabilities as outputs
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Convolution Kernel K _~~ parameters
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S(i,j) = (I * K)(i,5) = Y Y I(i+m,j+n)K(m,n)

[from Goodfellow et al.]



Convolution : yields invariance to input translation
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Convolution as parameter sharing
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Convolution as parameter sharing
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9.J(6)

How do we calculate gradient components ?
0K (m,n)
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How do we calculate gradient components 0Ja(0) for training example d?
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0K (m,n) 6 = {K(0,0), K(0,1), K(1,0)... K(M — 1,N — 1)}
Kernel K Result §
1 2 5 9
* 1 0 17 | 21

Trained parameters  Output activations

S(i,j) = (I xK)(i,§) = Y Y I(i+m,j+n)K(m,n)
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Maxpool
Layer

> out = max(a,b,e,f)

What is derivative of

out with respect to
inputs?

e.g., if a=2,b=3,e=2,f=4

[from Goodfellow et al.]



Subsampling .
Layer
In LeNet g || *

7 out = sigmoid(w, + w,(a+b+e+f))

What is derivative of

out with respect to
inputs?

[from Goodfellow et al.]



A Convolutional Neural Net for Handwritten
Digit recognition: LeNet5*

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28
r cs layer F6 layer  QUTPUT

r

6@14x14
Full comLecnon ’ Gaussuan
Convolutions Subsampling Convoluuons Subsamplmg Full connection




LeNetb5 details

C3:f. maps 16@10x10

C1: feature maps S4: 1. maps 16@5x5
INPUT x28
32x32 6028

[LeCun et al., 1998]

Full connection ‘ Gaussian
Convolutions Subsampling Convolutions Subsampling Full connection

C1 is a convolution layer using 6 distinct 5x5 kernels, stride 1, creating 6 distinct
channels of 28x28 feature maps, each based on one kernel. Total trainable parameters:

156

S2 is a subsampling layer, creating 6 channels, one each from the corresponding
channel of C1. Values are based on a 2x2 input kernel, stride 2 (so no overlap) and the
value output to the S2 map is  out = sigmoid(wy+w(X;+X,+X3+X,)), Where x;’s are the
four inputs to the 2x2 kernel. Total trainable parameters:

C3 is a convolutional layer, using 16 kernels to produce 16 feature maps. Each kernel
is connected to several 5x5 neighborhoods at identical locations in a subset of the 6
channels of S2 as shown below. Total trainable parameters: 1,516

01 2 3 45 6 7 8 9 10111213 1415

0 X X X X X X X X X X

. . 1| X X X X X X X XX X

S4 subsamples C3, just like S2 samples C1 2 /X X X X X X X X XX
3 X X X X X X X X X X

| X X X X X X X X X X

5 X X X X X X X X X X

I'ABLE 1
EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3



LeNet5 detalls

C3:f. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5
32x32 6@28x28

[LeCun et al., 1998]

Full connection ‘ Gaussian
Convolutions Subsampling Convolutions Subsampling Full connection

C1 is a convolution layer using 6 distinct 5x5 kernels, stride 1, creating 6 distinct
channels of 28x28 feature maps, each based on one kernel. Total trainable parameters:

156

S2 is a subsampling layer, creating 6 channels, one each from the corresponding
channel of C1. Values are based on a 2x2 input kernel, stride 2 (so no overlap) and the
value output to the S2 map is  out = sigmoid(wy+w(X;+X,+X3+X,)), Where x;’s are the
four inputs to the 2x2 kernel. Total trainable parameters:

: : : Poll Question 2:
C3 is a convolutional layer, using 16 kernels to produ How many total trainable 1el

is connected to several 5x5 neighborhoods. at identical parameters are in layer
channels of S2 as shown below. Total trainable paranr 327

-—
—
-

A A A A A

S4 subsamples C3, just like S2 samples C1 Answer:

v |

IABLE |
EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3



LeNetb5 details

C3:f. maps 16@10x10

C1: feature maps S4: 1. maps 16@5x5
INPUT x28
32x32 6028

[LeCun et al., 1998]

Full connection ‘ Gaussian
Convolutions Subsampling Convolutions Subsampling Full connection

C1 is a convolution layer using 6 distinct 5x5 kernels, stride 1, creating 6 distinct
channels of 28x28 feature maps, each based on one kernel. Total trainable parameters:

156

S2 is a subsampling layer, creating 6 channels, one each from the corresponding
channel of C1. Values are based on a 2x2 input kernel, stride 2 (so no overlap) and the
value output to the S2 map is  out = sigmoid(wy+w(X;+X,+X3+X,)), Where x;’s are the
four inputs to the 2x2 kernel. Total trainable parameters: 12

C3 is a convolutional layer, using 16 kernels to produce 16 feature maps. Each kernel
is connected to several 5x5 neighborhoods at identical locations in a subset of the 6
channels of S2 as shown below. Total trainable parameters: 1,516

01 2 3 45 6 7 8 9 10111213 1415

0 X X X X X X X X X X

. . 1| X X X X X X X XX X

S4 subsamples C3, just like S2 samples C1 2 /X X X X X X X X XX
3 X X X X X X X X X X

| X X X X X X X X X X

5 X X X X X X X X X X

I'ABLE 1
EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3



LeNet5 (1998): C3: 1. maps 16@10¢10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
S2: f. maps C5 layer FG layer OUTPUT

32x32
6@14x14

| Full conAecuon Gaussnan
Convolutions Subsampling Convolutions Subsampllng Full connectlon
More typical 2021 Convolutional Net:
C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
32x32 DRSNS S2: f. maps CS: layer ouTRUT
6@14x14 r F5 layer

s Max. pool | Softmax
Max-pool Comvomons fully connected

Sigmoid, Linear or ReLUs

Convolutions



Softmax Layer: Predict Probability Distribution
over discrete-valued labels

e Logistic Regression: when Y has two possible values
B 1
1+ exp(wy + >, w X;)

exp(wy + ). w; X;)
PlY =0|X = (X;,...X,)) = ”
( | X1, ) 1 + exp(wo + >, wi X;)

e Softmax: when Y has R values {y; ... yg}, then learn R sets of
weights to predict R output probabilities

P(Y = 11X = (X1,... X,))

eTPlWio + ’UJZX&
P(Y = y|X) = Rp< to + 2. Wi’

D j=1exp(wjo + 3 w;i X;)

Note neural network now has R outputs instead of just 1



A Convolutional Neural Net for Handwritten
Digit recognition: LeNet

C3: f. maps 16@10x10

32x32 602828 S2: f. maps r

CS layer F6 layer OUTPUT

CONN

Full conA ction Gaussnan
Convolutions Subsampling Convolunons Subsamplmg ull connectnon

6@ 14x14

Shrinking size of feature maps
Multiple channels

LeNet-5 Demos:

Vary scale

Vary stroke width
Squeeze
Noisy-2, Noisy-4


http://yann.lecun.com/exdb/lenet/index.html

Figure 9.19: Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are reminiscent of
the Gabor functions known to be present in primary visual cortex. (Left)Weights learned
by an unsupervised learning algorithm (spike and slab sparse coding) applied to small
image patches. (Right)Convolution kernels learned by the first layer of a fully supervised
convolutional maxout network. Neighboring pairs of filters drive the same maxout unit.

[from Goodfellow et al.]



Convolutional networks for time series
- Invariance across time

& }-\

s - .
Time n | — —

-

I J | J | J | J

Time Series of Convolutional Layer Global Max-Pooling  Fully Connected Layer
length n and width k ’

[from Margarita Granat]



Static, A, AA \ Convolution layer

/‘j\\ N\ feature maps

max pooling

feature maps other fully

connected
hidden layers

bands

N Share same weights

Fig. 3. An illustration of the regular CNN that uses so-called full weight
sharing. Here, a 1-D convolution is applied along frequency bands.

[Abdel-Hamid, et al., Convolutional Neural Networks for Speech Recognition, IEEE, 2014]



Convolutional Neural Nets

« Convolution across space, time

« Parameter sharing

« Translation invariance

« Scaling

« Multiple channels of “feature maps”
 Architecture with multiple types of layers
» Popular for perception problems



Recurrent Neural Nets
for Sequential Data



Sequences

50 years ago, the fathers of artificial intelligence convinced
everybody that logic was the key to intelligence. Somehow we
had to get computers to do logical reasoning. The alternative
approach, which they thought was crazy, was to forget logic and
Wo I’dS, Letters try and understand how networks of brain cells learn things.
Curiously, two people who rejected the logic based approach to
Al were Turing and Von Neumann. If either of them had lived I
think things would have turned out differently... now neural
networks are everywhere and the crazy approach is winning.

Speech

Images, Videos bka‘
A A \ €

Programs while (kd++ = %s++);

- e ) B E xpanraion - Evaluation El Mackup

151 1 ] - (3

Sequential Decision Making (RL) T e 197 g
TT TR ) W ~(B1) 48 TS PME:

(33%) e e



Recurrent Networks

« Key idea: recurrent network uses (part of) its state at t as input for t+1

Ot — (,.J)Q(Vht + bO)
ht = O (UX + Wht_l + bh)

/ \

Nonlinearity Hidden State at

previous time
step [Goodfellow et al., 2016]



Recurrent Networks

» Key idea: recurrent network uses (part of) its state at t as input for t+1

oy = ¢2(Vhy + by)

he = ¢,(Ux + Why_y + by,)

/ \

Nonlinearity Hidden State at

previous time
step [Goodfellow et al., 2016]



Recurrent Networks

» Key idea: recurrent network uses (part of) its state at t as input for t+1

ot = ¢2(Vhe + by)
ht = C)l (UX -1- Wht_]_ + bh)

Another example of parameter sharing, like CNNs

[Goodfellow et al., 2016]



Training Recurrent Networks

Key principle for training:
1. Treat as if unfolded in time, resulting in directed acyclic graph
2. Note shared parameters in unfolded net - sum the gradients

[Goodfellow et al., 2016]



Example: RNN to predict next character in string

 Train on entire works of
Shakespeare

« 5,448,482 characters, 84
unique

* Python code online with
today’s slides

4
Unthrifty loveliness why dost thou spend,
Upon thy self thy beauty's legacy?
Nature's bequest gives nothing but doth lend,
And being frank she lends to those are free:
Then beauteous niggard why dost thou abuse,
The bounteous largess given thee to give?
Profitless usurer why dost thou use
So great a sum of sums yet canst not live?
For having traffic with thy self alone,
Thou of thy self thy sweet self dost deceive,
Then how when nature calls thee to be gone,
What acceptable audit canst thou leave?
Thy unused beauty must be tombed with thee,
Which used lives th' executor to be.

LAFEU. Nay, I'll fit you,
And not be all day neither.

LAFEU. Nay, come your ways.
KING. This haste hath wings indeed.
LAFEU. Nay, come your ways;

HELENA. Ay, my good lord.
Gerard de Narbon was my father,

KING. I knew him.

KING. Thus he his special nothing ever prologues.

Re-enter LAFEU with HELENA

This is his Majesty; say your mind to him.

A traitor you do look like; but such traitors

His Majesty seldom fears. I am Cressid's uncle,

That dare leave two together. Fare you well.
KING. Now, fair one, does your business follow us?

In what he did profess, well found.

Exit LAFEU

Exit




Example: RNN to predict next character in string

| C e

. 84 unique characters
N ¢ in this dataset

* X : input character, encode 1-hot, 84 dimensions
* h; : hidden layer, 100 dimension
* 0. predicted next character, softmax, 84 dimensions

exp(O¥(c))
> ity exp(0O0(i))

Pr{next char is c|zy, xy—q,...| =

h(t) = tanh(Whhh(t_l) -+ thx(t) + bh)
o' = Wyoh® + b,



Example: RNN to predict next character in string




Training loss

110 4

100 A

90 -

80 A

loss

60 -

50 -

40 -

70 A

— smooth loss

T T—

0 500 1000 1500 2000 2500
time in thousands of iterations




Generated strings at different stages of training

O iterations:

sLooaM nh,
s'eonI toun be rhl vt,

’
oar kilos mn mhit Ieth, b dhel wor, 1iit tholav ,omis m,eacTet toberof aal,
ethouug th d nh vun ,|j
ot,enoctslomu lies
aohescPn n:ovnithorhore tre o1

2000 iterations:

-—— . - —— —_—--— -—tea - - - - P . e - ——— - -

s soing' Royen'sokeh whalcidy inswiahses iirt'pe, oethy wiyd ighil ghimingtaling in that done
Thend re han 1inwe,
Tum:
Sholrtsne ne in wiod, wat heig I walnd jathae iangy,

Sonew,
w nede m

200000 iterations:

For me me heve hear, she a them, meat to pall
Onmer feear.

TIRON Gent off I did ofs fand sime tood a ctuthing cantore kny mord uo brouce,
Tell moned.

TITNIUS. By thir a lilk the Quilie,



Example: Language Models to Predict next word

context target
the cat sat on the mat
W5 Wya Wr3 W2  We1 Wy
the cat sat on the rug
the cat sat on the  hat
the cat sat on the dog
the cat sat on the the
the cat sat on the  sat
the cat sat on the robot
the cat sat on the printer

P('wt|wt—1a Wt—2, .. -'wt—5)

0.15

0.12
0.09
0.01
0
0
?

?

Slide Credit: Piotr Mirowski



Chain Rule

0" = arg max log Py(wy, ..., wr)

T
P(w1,’w2, ‘o awT—l,wT) — Hp(wtlwt—lawt—Za . -,wl)
t=1

the P(wl)

the cat P(wa|wn)

the cat sat P(’wB w2,w1)

the cat sat on P(w4 w3,’w23w1)

the cat sat on the P('w5 Wy, W3, W2, wl)

the cat sat on the mat P(’UJG w5,w4,w3,w2,w1)

Slide Credit: Piotr Mirowski



Recurrent Neural Network Language Models

on the mat

< AN RN AlNN Al
v Vv wims v v

the cat sat on the

Learning Sequences — Piotr Mirowski

 Forward Pass

Slide Credit: Piotr Mirowski



Recurrent Neural Network Language Models

cat on the mat

(& 0 @ @ @

A 2T 2T 2 a2
YT R TR TR

' .

ho hs

the cat sat on the

Learning Sequences — Piotr Mirowski

e Backward Pass

* problem: vanishing and/or exploding gradients

Slide Credit: Piotr Mirowski



Recurrent Neural Network Language Models

cat sat on the mat

(@)
/ 11

@ @ © @
' h 4
D;—’[ e g{gh .

the on the

e Learned hidden representations of context useful for:
e part of speech labeling
e sentiment analysis
e information extraction

 Predict label for each word, instead of predicting next word
Slide Credit: Piotr Mirowski



Example: Opinion Mining

Label opinion segments by labeling each word.
0 = outside
b = beginning of segment

| = inside segment h summarizes
earlier words

Label:

Ep-
)

hu

| |
A A

RN RN B n RN AN R
h ( h ( h hv h ( lh ( It

Trump [has come a long way] from

[Irsoy & Cardie, 2014]



. g . | & Cardie, 2014
Deep Bidirectional Recurrent Network ===

'\?

o [} a @

~ - - -~
(3) /

h

—(1) — (1) —(1) — (i)

h,—j(W h‘ V4V o ha+b )

h(Z) —(i) —(i)~(i) (i)

h,—j(W h““+V hia+b )

—(L) «(L)

y,=gUlh: ;h: ]+c)

Two additional ideas:
« Multiple layers to compute y from x
* Aleft-to-right RNN, plus right-to-left RNN

Example:

» Y label values {begin, inside, outside} for each word, to label
contiguous text segments indicating opinions. [Irsoy & Cardie, 2014]



Deep Bidirectional Recurrent Network: Opinion Mining

Mr. Stoiber [has come a long way] from his refusal to ...
i i O O O O

Y: o) o) b i i
O = outside
b = begin
| = inside

Correct: Mr. Stoiber [has come a long way] from his refusal to [sacrifice himself] for the CDU in an election that
[once looked impossible to win] , through his statement that he would [under no circumstances]
run against the wishes...

DEEPRNN Mr. Stoiber [has come a long way from] his [refusal to sacrifice himself] for the CDU in an election that
[once looked impossible to win] , through his statement that he would [under no circumstances

run against] the wishes...
SHALLOW Mr. Stoiber has come A LONG WAY FROM his refusal to sacrifice himself for the CDU in an election that

[once looked impossible] to win , through his statement that he would under NO CIRCUMSTANCES

run against the wishes...

Figure 3: DEEPRNN Output vs. SHALLOWRNN Output. In each set of examples, the gold-standard annotations
are shown in the first line. Tokens assigned a label of Inside with no preceding Begin tag are shown in ALL CAPS.

[Irsoy & Cardie, 2014]



Deep Bidirectional Recurrent Network

’\?

o o o) o

o A 'AA s
(3) /

h

— (i) — (1) — (1) — (i)

h,—j(W h‘ VYV ha+b )

(2) —(7) —(1) (1) —(1)
h

h,—j(W h“"+V hia+b )

—(L) «(L)

y,=gUlh: ;h: ]+c)

Two additional ideas:
« Multiple layers to compute y from x
* Aleft-to-right RNN, plus right-to-left RNN

Example:

» Y label values {begin, inside, outside} for each word, to label
contiguous text segments indicating opinions. [Irsoy & Cardie, 2014]



L hort T
T 1STMs

» 1




0 (Waixs + Whilhy_1 + Weici—1 + by)

» 1



0 (Waixs + Whilhy_1 + Weici—1 + by)
0 (Wepxs + Whrhy 1 + Wepei—1 + by),

» 1



» 1

0 (Waixs + Whilhy_1 + Weici—1 + by)
0} (Wwfxt + thht—l + chct—l + bf) )
fici—1 + i tanh (Wyexy + Wichi—1 + be)



» 1

X3 Element-wise /

multiply

0 (Waixs + Whilhy_1 + Weici—1 + by)

0 (Wepxs + Whrhy 1 + Wepei—1 + by),
fici—1 + i tanh (Weexy + Wiche—q1 + be),
0 (WeoXs + Whohe_1 + Weoc: + by)

o; tanh(c;).



Bi-directional Recurrent Neural Networks

« Key idea: processing of word at position t can depend on
following words too, not just preceding words

OO e
ok
55

[Goodfellow et al., 2016]



Deep Bidirectional LSTM Network

[“Hybrid Speech Recognition with Deep Bidirectional LSTM,”
Graves et al., 2013]



Optional material -

Gated Recurrent Units (GRUSs) won't be on exam

Element-wise

multiply
\ hi1—| GRU > hy
o denotes the Hadamard product. hy = 0. T

Zt = Ug(Wzmt + U.he—1 + bz)
Tt = o'g(Wrxt + Urhi—1 + br)
hi =z o hi1 + (1 — 2¢) 0o on (Whay + Up (7 © h—1) + ba)

Variables

Lt

e ;. input vector
« hy: output vector fewer parameters than LSTM
found equally effective in
some experiments involving

‘ * speech recognition
« W, U and b: parameter matrices and vector « music analysis

e 2;: update gate vector
* ;. reset gate vector

Activation functions

see [Chung et al., 2014]

* 04: The original is a sigmoid function.

» 0}, : The original is a hyperbolic tangent.



Sequence to Sequence Learning

Learned Output Sequence

Representation

Encoder

I ¥ N I L * RNN Encoder-Decoders

' : for Machine Translation
(Sutskever et al. 2014;
Cho et al. 2014;
Kalchbrenner et al. 2013,
Srivastava et.al., 2015)

Decoder

Input Sequence



Seq2Seq

Target sequence

X Y Z Q

QQQQQ
) )




63
Sequence to Sequence Models

e Natural language processing is concerned with tasks involving
language data

one to one one to many many to one many to many many to many

Andrej Karpathy. The Unreasonable
Effectiveness of Recurrent Neural Networks



Programming Frameworks for Deep Nets

« Pytorch (Facebook)

« TensorFlow (Google)

 TFLearn (runs on top of TensorFlow, but simpler to use)
« Theano (University of Montreal)

« CNTK (Microsoft)

« Keras (can run on top of Theano, CNTK, TensorFlow)

Many support use of Graphics Processing Units (GPU’s)

Major factor in dissemination of Deep Network technology



# Specify that all features have real-value data
feature_columns = [tf.feature_column.numeric_column("“x", shape=[4])]

# Build 3 layer DNN with 1@, 26, 10 units respectively.

classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
hidden_units=[18, 28, 18],
n_classes=3,
model_dir="/tmp/iris_model")

# Define the training inputs

train_input_fn = tf.estimator.inputs.numpy_input_fn(

x={"x": np.array(training_set.data)},

y=np.array(training_set.target), TensorFlow

num_epochs=None,
shuffle=True) example

# Train model.
classifier.train(input_fn=train_input_fn, steps=2660)

# Define the test inputs

test_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(test_set.data)},
y=np.array(test_set.target),
num_epochs=1,
shuffle=False)

# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=test_input_fn)["accuracy"]

print(“\nTest Accuracy: {@:f}\n".format(accuracy_score))



Modern Deep Networks: 2021 vs 1987

vastly more online data
GPU’s, TPU's
Heterogenous units
— Relu, sigmoid, tanh, linear
iIncluding memory units
— LSTM, GRU, ...

wild new architectures
— 100 layers deep, bidirectional LSTMs, Convolutional nets widespread ...

new ideas for gradient descent
— dropout, batch normalization, weight initialization, ...

unification with probabilistic models
— train to output probabilities

frameworks like TensorFlow



What you should know:

Representation learning
— Hidden layers re-represent inputs in form to predict outputs
— Autoencoders
— Sometimes reused widely (e.g., word2vec word embeddings)
Convolutional neural networks
— Convolution provides translation invariance

— Network stages with reducing spatial resolution, Mult. channels,...

Recurrent neural networks

— Learn to represent history in time series
— Backpropagation as unfolding in time

— LSTM memory units

Neural architectures

— Shared parameters across multiple computations
— Layers with different structures/functions
— Probabilistic classification - output Softmax layer



