
Machine Learning 10-601/301
Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University

March 115, 2021

This section:
• Convolutional neural nets
• Recurrent neural nets
• LSTMs
• Sequence to sequence

models

Reading:
• optional: Mitchell: Chapter 4
• Note Mitchell book now

downloadable

Convolutional Neural Nets

A Convolutional Neural Net for Handwritten
Digit recognition: LeNet5*

* In the 1998 LeNet5 paper output layer was a Gaussian RBF layer, though today we would use Softmax to obtain probabilities as outputs

[LeCun, et al., 1998]

[from Goodfellow et al.]

Convolution
Layer

Input I
Kernel K

Result S

Learned
parameters

0 1 2

3 4 5

6 7 8

5 9

17

1 2

1 0
=*

Output activations

Convolution : yields invariance to input translation
Input I

Kernel K Result S

Trained parameters

0 1 2

3 4 5

6 7 8

5 9

17 21

1 2

1 0
=*

Output activations

Convolution as parameter sharing
Input I

Kernel K Result S

Result S:

Trained parameters

0 1 2

3 4 5

6 7 8

5 9

17 21

1 2

1 0
=*

Trained parameters Output activations

Convolution as parameter sharing
Input I

Kernel K Result S

Result S:

0 1 2

3 4 5

6 7 8

5 9

17 21

1 2

1 0
=*

Output activations

How do we calculate gradient components ?
Input I

Kernel K Result S

Result S:

Trained parameters

0 1 2

3 4 5

6 7 8

5 9

17 21

1 2

1 0
=*

Output activations

How do we calculate gradient components for training example d?

Input I
Kernel K Result S

Result S:

Trained parameters

[from Goodfellow et al.]

Maxpool
Layer

out = max(a,b,e,f)

What is derivative of
out with respect to
inputs?

e.g., if a=2,b=3,e=2,f=4

[from Goodfellow et al.]

Subsampling
Layer

In LeNet

out = sigmoid(w0 + w1(a+b+e+f))

What is derivative of
out with respect to
inputs?

A Convolutional Neural Net for Handwritten
Digit recognition: LeNet5*

LeNet5 details

• [LeCun et al., 1998]

• C1 is a convolution layer using 6 distinct 5x5 kernels, stride 1, creating 6 distinct
channels of 28x28 feature maps, each based on one kernel. Total trainable parameters:

• S2 is a subsampling layer, creating 6 channels, one each from the corresponding
channel of C1. Values are based on a 2x2 input kernel, stride 2 (so no overlap) and the
value output to the S2 map is out = sigmoid(w0+w1(x1+x2+x3+x4)), where xi’s are the
four inputs to the 2x2 kernel. Total trainable parameters:

• C3 is a convolutional layer, using 16 kernels to produce 16 feature maps. Each kernel
is connected to several 5x5 neighborhoods at identical locations in a subset of the 6
channels of S2 as shown below. Total trainable parameters: 1,516

• S4 subsamples C3, just like S2 samples C1

156

LeNet5 details

• [LeCun et al., 1998]

• C1 is a convolution layer using 6 distinct 5x5 kernels, stride 1, creating 6 distinct
channels of 28x28 feature maps, each based on one kernel. Total trainable parameters:

• S2 is a subsampling layer, creating 6 channels, one each from the corresponding
channel of C1. Values are based on a 2x2 input kernel, stride 2 (so no overlap) and the
value output to the S2 map is out = sigmoid(w0+w1(x1+x2+x3+x4)), where xi’s are the
four inputs to the 2x2 kernel. Total trainable parameters:

• C3 is a convolutional layer, using 16 kernels to produce 16 feature maps. Each kernel
is connected to several 5x5 neighborhoods at identical locations in a subset of the 6
channels of S2 as shown below. Total trainable parameters: 1,516

• S4 subsamples C3, just like S2 samples C1

156

Poll Question 2:
How many total trainable
parameters are in layer
S2?

Answer:

LeNet5 details

• [LeCun et al., 1998]

• C1 is a convolution layer using 6 distinct 5x5 kernels, stride 1, creating 6 distinct
channels of 28x28 feature maps, each based on one kernel. Total trainable parameters:

• S2 is a subsampling layer, creating 6 channels, one each from the corresponding
channel of C1. Values are based on a 2x2 input kernel, stride 2 (so no overlap) and the
value output to the S2 map is out = sigmoid(w0+w1(x1+x2+x3+x4)), where xi’s are the
four inputs to the 2x2 kernel. Total trainable parameters:

• C3 is a convolutional layer, using 16 kernels to produce 16 feature maps. Each kernel
is connected to several 5x5 neighborhoods at identical locations in a subset of the 6
channels of S2 as shown below. Total trainable parameters: 1,516

• S4 subsamples C3, just like S2 samples C1

156

12

Max-pool fully connected
Sigmoid, Linear or ReLUs

SoftmaxMax-pool

More typical 2021 Convolutional Net:

LeNet5 (1998):

Softmax Layer: Predict Probability Distribution
over discrete-valued labels
• Logistic Regression: when Y has two possible values

• Softmax: when Y has R values {y1 ... yR}, then learn R sets of
weights to predict R output probabilities

Note neural network now has R outputs instead of just 1

A Convolutional Neural Net for Handwritten
Digit recognition: LeNet

• Shrinking size of feature maps
• Multiple channels
• LeNet-5 Demos:

http://yann.lecun.com/exdb/lenet/index.html
• Vary scale
• Vary stroke width
• Squeeze
• Noisy-2, Noisy-4

http://yann.lecun.com/exdb/lenet/index.html

[from Goodfellow et al.]

Convolutional networks for time series
à invariance across time

[from Margarita Granat]

[Abdel-Hamid, et al., Convolutional Neural Networks for Speech Recognition, IEEE, 2014]

Convolutional Neural Nets

• Convolution across space, time
• Parameter sharing
• Translation invariance
• Scaling
• Multiple channels of “feature maps”
• Architecture with multiple types of layers
• Popular for perception problems

Recurrent Neural Nets
for Sequential Data

Sequences

● Words, Letters

● Speech

● Images, Videos

● Programs

● Sequential Decision Making (RL)

Recurrent Networks
• Key idea: recurrent network uses (part of) its state at t as input for t+1

[Goodfellow et al., 2016]

Nonlinearity Hidden State at
previous time
step

Recurrent Networks
• Key idea: recurrent network uses (part of) its state at t as input for t+1

[Goodfellow et al., 2016]

Nonlinearity Hidden State at
previous time
step

Recurrent Networks

• Key idea: recurrent network uses (part of) its state at t as input for t+1

[Goodfellow et al., 2016]

Another example of parameter sharing, like CNNs

Training Recurrent Networks

Key principle for training:
1. Treat as if unfolded in time, resulting in directed acyclic graph
2. Note shared parameters in unfolded net à sum the gradients

[Goodfellow et al., 2016]

• Train on entire works of
Shakespeare

• 5,448,482 characters, 84
unique

• Python code online with
today’s slides

Example: RNN to predict next character in string

Example: RNN to predict next character in string

• xt : input character, encode 1-hot, 84 dimensions
• ht : hidden layer, 100 dimension
• ot : predicted next character, softmax, 84 dimensions

84 unique characters
in this dataset

Example: RNN to predict next character in string

N

eci

i c

Training loss

Generated strings at different stages of training

0 iterations:

2000 iterations:

200000 iterations:

Example: Language Models to Predict next word

Slide Credit: Piotr Mirowski

Chain Rule

Slide Credit: Piotr Mirowski

Slide Credit: Piotr Mirowski

• Forward Pass

Slide Credit: Piotr Mirowski

• Backward Pass

* problem: vanishing and/or exploding gradients

Slide Credit: Piotr Mirowski

• Learned hidden representations of context useful for:
• part of speech labeling
• sentiment analysis
• information extraction

• Predict label for each word, instead of predicting next word

Example: Opinion Mining

[Irsoy & Cardie, 2014]

Trump [has come a long way] from

Label opinion segments by labeling each word.
o = outside
b = beginning of segment
i = inside segment

Label: o b i i i i o

h summarizes
earlier words

Deep Bidirectional Recurrent Network
[Irsoy & Cardie, 2014]

Two additional ideas:
• Multiple layers to compute y from x
• A left-to-right RNN, plus right-to-left RNN

Example:
• Y label values {begin, inside, outside} for each word, to label

contiguous text segments indicating opinions. [Irsoy & Cardie, 2014]

Deep Bidirectional Recurrent Network: Opinion Mining

[Irsoy & Cardie, 2014]

Correct:

Mr. Stoiber [has come a long way] from his refusal to …

Y: o o b i i i i o o o o
o = outside
b = begin
i = inside

Deep Bidirectional Recurrent Network

Two additional ideas:

• Multiple layers to compute y from x

• A left-to-right RNN, plus right-to-left RNN

Example:

• Y label values {begin, inside, outside} for each word, to label

contiguous text segments indicating opinions. [Irsoy & Cardie, 2014]

LSTMs

x1 x2 x3

h1 h2 h3

Long Short Term
Memory

LSTMs

x1 x2 x3

h1 h2 h3

LSTMs

x1 x2 x3

h1 h2 h3

LSTMs

x1 x2 x3

h1 h2 h3

LSTMs

x1 x2 x3

h1 h2 h3

Element-wise
multiply

Bi-directional Recurrent Neural Networks

• Key idea: processing of word at position t can depend on
following words too, not just preceding words

[Goodfellow et al., 2016]

Deep Bidirectional LSTM Network

[“Hybrid Speech Recognition with Deep Bidirectional LSTM,”
Graves et al., 2013]

Gated Recurrent Units (GRUs)

GRU

fewer parameters than LSTM
found equally effective in
some experiments involving
• speech recognition
• music analysis

see [Chung et al., 2014]

Element-wise
multiply

Optional material –
won’t be on exam

Decoder

Sequence to Sequence Learning

• RNN Encoder-Decoders

for Machine Translation

(Sutskever et al. 2014;

Cho et al. 2014;

Kalchbrenner et al. 2013,

Srivastava et.al., 2015)
Input Sequence

Encoder

Learned
Representation

Output Sequence

Seq2Seq

A B C

v

D __ X Y Z

X Y Z Q

Input sequence

Target sequence

Sequence to Sequence Models
• Natural language processing is concerned with tasks involving
language data

63

Andrej Karpathy. The Unreasonable
Effectiveness of Recurrent Neural Networks

Programming Frameworks for Deep Nets

• Pytorch (Facebook)
• TensorFlow (Google)
• TFLearn (runs on top of TensorFlow, but simpler to use)
• Theano (University of Montreal)
• CNTK (Microsoft)
• Keras (can run on top of Theano, CNTK, TensorFlow)

Many support use of Graphics Processing Units (GPU’s)

Major factor in dissemination of Deep Network technology

TensorFlow
example

Modern Deep Networks: 2021 vs 1987

• vastly more online data

• GPU’s, TPU’s

• Heterogenous units

– Relu, sigmoid, tanh, linear

• including memory units

– LSTM, GRU, …

• wild new architectures

– 100 layers deep, bidirectional LSTMs, Convolutional nets widespread ...

• new ideas for gradient descent

– dropout, batch normalization, weight initialization, ...

• unification with probabilistic models

– train to output probabilities

• frameworks like TensorFlow

What you should know:

• Representation learning
– Hidden layers re-represent inputs in form to predict outputs
– Autoencoders
– Sometimes reused widely (e.g., word2vec word embeddings)

• Convolutional neural networks
– Convolution provides translation invariance
– Network stages with reducing spatial resolution, Mult. channels,…

• Recurrent neural networks
– Learn to represent history in time series
– Backpropagation as unfolding in time
– LSTM memory units

• Neural architectures
– Shared parameters across multiple computations
– Layers with different structures/functions
– Probabilistic classification à output Softmax layer

