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This section:
• Convolutional neural nets
• Recurrent neural nets
• LSTMs
• Sequence to sequence 

models

Reading:
• optional: Mitchell: Chapter 4
• Note Mitchell book now 

downloadable



Convolutional Neural Nets



A Convolutional Neural Net for Handwritten 
Digit recognition: LeNet5*

* In the 1998 LeNet5 paper output layer was a Gaussian RBF layer, though today we would use Softmax to obtain probabilities as outputs

[LeCun, et al., 1998]



[from Goodfellow et al.]
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[from Goodfellow et al.]

Maxpool
Layer

out = max(a,b,e,f)

What is derivative of 
out with respect to 
inputs?

e.g., if a=2,b=3,e=2,f=4



[from Goodfellow et al.]

Subsampling
Layer

In LeNet

out = sigmoid(w0 + w1(a+b+e+f))

What is derivative of 
out with respect to 
inputs?



A Convolutional Neural Net for Handwritten 
Digit recognition: LeNet5*



LeNet5 details

• [LeCun et al., 1998] 

• C1 is a convolution layer using 6 distinct 5x5 kernels, stride 1, creating 6 distinct 
channels of 28x28 feature maps, each based on one kernel.   Total trainable parameters:

• S2 is a subsampling layer, creating 6 channels, one each from the corresponding 
channel of C1.  Values are based on a 2x2 input kernel, stride 2 (so no overlap) and the 
value output to the S2 map is     out = sigmoid(w0+w1(x1+x2+x3+x4)),  where xi’s are the 
four inputs to the 2x2 kernel.  Total trainable parameters: 

• C3 is a convolutional layer, using 16 kernels to produce 16 feature maps.  Each kernel 
is connected to several 5x5 neighborhoods at identical locations in a subset of the 6 
channels of S2 as shown below.   Total trainable parameters: 1,516

• S4 subsamples C3, just like S2 samples C1

156
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Poll Question 2:
How many total trainable 
parameters are in layer 
S2?

Answer: 
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Max-pool fully connected 
Sigmoid, Linear or ReLUs

SoftmaxMax-pool

More typical 2021 Convolutional Net:

LeNet5 (1998):



Softmax Layer: Predict Probability Distribution 
over discrete-valued labels
• Logistic Regression: when Y has two possible values

• Softmax: when Y has R values {y1 ... yR}, then learn R sets of 
weights to predict R output probabilities

Note neural network now has R outputs instead of just 1



A Convolutional Neural Net for Handwritten 
Digit recognition: LeNet

• Shrinking size of feature maps
• Multiple channels
• LeNet-5 Demos: 

http://yann.lecun.com/exdb/lenet/index.html
• Vary scale
• Vary stroke width
• Squeeze
• Noisy-2, Noisy-4

http://yann.lecun.com/exdb/lenet/index.html


[from Goodfellow et al.]



Convolutional networks for time series
à invariance across time

[from Margarita Granat]



[Abdel-Hamid, et al., Convolutional Neural Networks for Speech Recognition, IEEE, 2014]



Convolutional Neural Nets

• Convolution across space, time
• Parameter sharing
• Translation invariance
• Scaling
• Multiple channels of “feature maps”
• Architecture with multiple types of layers
• Popular for perception problems



Recurrent Neural Nets
for Sequential Data



Sequences

● Words, Letters

● Speech

● Images, Videos

● Programs

● Sequential Decision Making (RL)



Recurrent Networks
• Key idea: recurrent network uses (part of) its state at t as input for t+1

[Goodfellow et al., 2016]

Nonlinearity Hidden State  at 
previous time 
step
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Recurrent Networks

• Key idea: recurrent network uses (part of) its state at t as input for t+1

[Goodfellow et al., 2016]

Another example of parameter sharing, like CNNs



Training Recurrent Networks

Key principle for training: 
1. Treat as if unfolded in time, resulting in directed acyclic graph
2. Note shared parameters in unfolded net à sum the gradients

[Goodfellow et al., 2016]



• Train on entire works of 
Shakespeare

• 5,448,482 characters, 84 
unique

• Python code online with 
today’s slides

Example: RNN to predict next character in string



Example: RNN to predict next character in string

• xt : input character, encode 1-hot, 84 dimensions
• ht : hidden layer, 100 dimension
• ot : predicted next character, softmax,  84 dimensions

84 unique characters 
in this dataset



Example: RNN to predict next character in string

N

eci

i c



Training loss



Generated strings at different stages of training

0 iterations:

2000 iterations:

200000 iterations:



Example: Language Models to Predict next word

Slide Credit: Piotr Mirowski



Chain Rule

Slide Credit: Piotr Mirowski



Slide Credit: Piotr Mirowski

• Forward Pass



Slide Credit: Piotr Mirowski

• Backward Pass

* problem: vanishing and/or exploding gradients



Slide Credit: Piotr Mirowski

• Learned hidden representations of context useful for:
• part of speech labeling
• sentiment analysis
• information extraction

• Predict label for each word, instead of predicting next word



Example: Opinion Mining

[Irsoy & Cardie, 2014]

Trump    [has       come       a         long        way] from 

Label opinion segments by labeling each word.
o = outside
b = beginning of segment
i = inside segment

Label:      o            b            i i i i o     

h summarizes 
earlier words



Deep Bidirectional Recurrent Network
[Irsoy & Cardie, 2014]

Two additional ideas:
• Multiple layers to compute y from x
• A left-to-right RNN, plus right-to-left RNN

Example:
• Y label values {begin, inside, outside} for each word, to label 

contiguous text segments indicating opinions. [Irsoy & Cardie, 2014]



Deep Bidirectional Recurrent Network: Opinion Mining

[Irsoy & Cardie, 2014]

Correct:

Mr. Stoiber [has come a long way] from his refusal to …

Y:               o       o        b       i i i i o     o       o      o
o = outside
b = begin
i = inside



Deep Bidirectional Recurrent Network

Two additional ideas:

• Multiple layers to compute y from x

• A left-to-right RNN, plus right-to-left RNN

Example:

• Y label values {begin, inside, outside} for each word, to label 

contiguous text segments indicating opinions. [Irsoy & Cardie, 2014]



LSTMs

x1 x2 x3

h1 h2 h3

Long Short Term 
Memory 



LSTMs
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LSTMs
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LSTMs

x1 x2 x3

h1 h2 h3

Element-wise 
multiply



Bi-directional Recurrent Neural Networks

• Key idea: processing of word at position t can depend on 
following words too, not just preceding words

[Goodfellow et al., 2016]



Deep Bidirectional LSTM Network

[“Hybrid Speech Recognition with Deep Bidirectional LSTM,” 
Graves et al., 2013]



Gated Recurrent Units (GRUs)

GRU

fewer parameters than LSTM
found equally effective in 
some experiments involving
• speech recognition
• music analysis

see [Chung et al., 2014]

Element-wise 
multiply

Optional material –
won’t be on exam



Decoder

Sequence to Sequence Learning

• RNN Encoder-Decoders 

for Machine Translation 

(Sutskever et al. 2014; 

Cho et al. 2014; 

Kalchbrenner et al. 2013, 

Srivastava et.al., 2015)
Input Sequence

Encoder

Learned
Representation

Output Sequence



Seq2Seq

A B C

v

D __ X Y Z

X Y Z Q

Input sequence

Target sequence



Sequence to Sequence Models
• Natural language processing is concerned with tasks involving 
language data 

63

Andrej Karpathy. The Unreasonable 
Effectiveness of Recurrent Neural Networks 



Programming Frameworks for Deep Nets

• Pytorch (Facebook)
• TensorFlow  (Google)
• TFLearn (runs on top of TensorFlow, but simpler to use)
• Theano (University of Montreal)
• CNTK  (Microsoft)
• Keras (can run on top of Theano, CNTK, TensorFlow)

Many support use of Graphics Processing Units (GPU’s)

Major factor in dissemination of Deep Network technology



TensorFlow
example



Modern Deep Networks: 2021 vs 1987

• vastly more online data

• GPU’s,  TPU’s

• Heterogenous units

– Relu, sigmoid, tanh, linear

• including memory units

– LSTM, GRU, …

• wild new architectures

– 100 layers deep, bidirectional LSTMs, Convolutional nets widespread ...

• new ideas for gradient descent

– dropout, batch normalization, weight initialization, ...

• unification with probabilistic models 

– train to output probabilities

• frameworks like TensorFlow



What you should know:

• Representation learning
– Hidden layers re-represent inputs in form to predict outputs
– Autoencoders
– Sometimes reused widely (e.g., word2vec word embeddings)

• Convolutional neural networks
– Convolution provides translation invariance
– Network stages with reducing spatial resolution, Mult. channels,…

• Recurrent neural networks
– Learn to represent history in time series
– Backpropagation as unfolding in time
– LSTM memory units

• Neural architectures
– Shared parameters across multiple computations
– Layers with different structures/functions
– Probabilistic classification à output Softmax layer


