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This section:
• LSTMs
• Sequence to sequence 

models
• Transformer models
• Attention

Readings: optional but 
recommended

• “Dive into Deep Learning” 
chapters 6.6, 8-8.4, 10.3-10.7

• This book is a free download 
on the web, and contains 
running code



Recurrent Neural Nets
for Sequential Data



Recurrent Networks
• Key idea: recurrent network uses (part of) its state at t as input for t+1

[Goodfellow et al., 2016]

Nonlinearity Hidden State  at 
previous time 
step



Slide Credit: Piotr Mirowski

• Forward Pass



Slide Credit: Piotr Mirowski

• Backward Pass

* problem: vanishing and/or exploding gradients



Slide Credit: Piotr Mirowski

• Learned hidden representations of context can be useful for:
• part of speech labeling
• sentiment analysis
• information extraction
•…

• Predict label for each word, instead of predicting next word



Example: Opinion Mining

[Irsoy & Cardie, 2014]

Trump    [has       come       a         long        way] from 

Label opinion segments by labeling each word.
o = outside
b = beginning of segment
i = inside segment

Label:      o            b            i i i i o     

h summarizes 
earlier words



Deep Bidirectional Recurrent Network
[Irsoy & Cardie, 2014]

Two additional ideas:
• Multiple layers to compute y from x
• A left-to-right RNN, plus right-to-left RNN

Example:
• Y label values {begin, inside, outside} for each word, to label 

contiguous text segments indicating opinions. [Irsoy & Cardie, 2014]



LSTMs
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Bi-directional Recurrent Neural Networks

• Key idea: processing of word at position t can depend on 
following words too, not just preceding words

[Goodfellow et al., 2016]



Deep Bidirectional LSTM Network

[“Hybrid Speech Recognition with Deep Bidirectional LSTM,” 
Graves et al., 2013]



Gated Recurrent Units (GRUs)

GRU

fewer parameters than LSTM
found equally effective in 
some experiments involving
• speech recognition
• music analysis

see [Chung et al., 2014]

Element-wise 
multiply

Optional material –
won’t be on exam



Decoder

Sequence to Sequence Learning

• RNN Encoder-Decoders 

for Machine Translation 

(Sutskever et al. 2014; 

Cho et al. 2014; 

Kalchbrenner et al. 2013, 

Srivastava et.al., 2015)
Input Sequence

Encoder

Learned
Representation

Output Sequence



Seq2Seq. Encoder-Decoder Architecture
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Input sequence x1 … xT

Ourput sequence y1 … yT’



Sequence to Sequence Models
• machine translation
• text summarization
• text to computer command
• …

Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks 



Problem:  HS3 has to encode entire sequence…

[Pranay Dugar https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 ]

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263


Problem:  HS3 has to encode entire sequence…

[Pranay Dugar https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 ]

Maybe do this?

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263


Problem:  HS3 has to encode entire sequence…

[Pranay Dugar https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 ]

Attention: encoder outputs a 
weighted avg. of encoder 
states, where weights 
depend on state of decoder.

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263


Transformer Architecture

[Pranay Dugar https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 ]

Transformer architecture uses attention in three ways:

1. By decoder: Attention on encoder states, based on decoder state

2. Inside encoder: Replace RNN by self-attention across input tokens

3. Inside decoder: Replace RNN by self-attention across output tokens

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263


Scaled Dot Product Attention
Given:
• Set of <key, value> pairs <ki,vi>

• ki vector of dim dk
• vi vector of dim dv

• Query q which is vector of dim dk

Return:
• Vector of dim dv which is a weighted sum of the vi
• where weights given by the Softmax of dot products q ki / sqrt(dk)



Multi-Head Attention



Transformer Architecture



[Vaswani et al., 2019]

https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture14-transformers.pdf


[Vaswani et al., 2019]

Result
A(Q,K,V)

https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture14-transformers.pdf
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[Vaswani et al., 2019]
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[Vaswani et al., 2019]

https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture14-transformers.pdf


Yields Significant Improvement in Machine Translation

More details:

See http://nlp.seas.harvard.edu/2018/04/03/attention.html

• Multiple sine waves added as positional encoding of input tokens

• Dropout during training at every layer

• Layer-norm

• ADAM optimizer with learning rate warmup (warmup + exponential
decay in learning rate)

• Auto-regressive decoding with beam search and length biasing

• …



How to Think About Transformers?

General program schema
• “Decoder” outputs a sequence of tokens
• Based on its perceived input, plus what it has already output
• With attention mechanism to focus on relevant subset of its input

and output
• Learned parameters define both attention and operations it performs

Attention: encoder outputs a 
weighted avg. of encoder 
states, where weights 
depend on state of decoder.



BERT: Bidirectional Encoder Representations from Transformers

Goal: Trained model that will produce generally useful encodings of 
arbitrary text

• Uses transformer architecture 
• Bidirectional attention across entire input
• Accept input sequences with multiple sentences

– (e.g., question/answer pairs)
– Special token [CLS] indicates beginning of sequence, output vector 

embedding for this token represents sequence for classification tasks
– Special token [SEP] indicates beginning of new sentence

• Train by 
– masking out 15% of words, and predicting them
– classify whether second sentence actually follows the first sentence

• True in 50% of cases

• 24 layers deep, hidden unit dim = 1024, 12 self-attention heads, 
340M trained parameters



BERT: Bidirectional Encoder Representations from Transformers



BERT: Bidirectional Encoder Representations from Transformers

* “segment embedding” is a learned embedding indicating either 
sentence A or sentence B



BERT: Bidirectional Encoder Representations from Transformers

Goal: Trained model that will produce generally useful encodings of 
words and sentences

Fine tuning for new tasks:

• Adding an output layer for new tasks (Q/A, textual entailment, 
sentiment analysis, equivalence of two questions, ..) then fine-
tuning by further training, advances state of the art performance 
on many language tasks

• Can “freeze” the 340M trained parameters, and fine-tune by 
training only the new output layer

• Or, fine tune end-to-end, tuning all parameters



COMET

[Bosselut et al., 2019]



COMET

[Bosselut et al., 2019]



COMET

[Bosselut et al., 2019]

Demo: https://mosaickg.apps.allenai.org/comet_atomic



Programming Frameworks for Deep Nets

• Pytorch (Facebook)
• TensorFlow  (Google)
• TFLearn (runs on top of TensorFlow, but simpler to use)
• Theano (University of Montreal)
• CNTK  (Microsoft)
• Keras (can run on top of Theano, CNTK, TensorFlow)
• …

Many support use of Graphics Processing Units (GPU’s)

Major factor in dissemination of Deep Network technology



TensorFlow example



Modern Deep Networks: 2021 vs 1987

• vastly more online data
• GPU’s,  TPU’s
• Heterogenous units

– Relu, sigmoid, tanh, linear

• including units composed from other units
– LSTM, GRU, Attention, …

• many new architectures
– 100 layers deep, bidirectional LSTMs, Convolutional nets, Transformers...

• New ideas for gradient descent
– dropout, batch normalization, Adagrad, layer normalization, ...

• unification with probabilistic models 
– train to output probabilities

• frameworks like TensorFlow
• online text with code: Dive into Deep Learning



What you should know:

• Representation learning
– Hidden layers re-represent inputs in form to predict outputs
– Autoencoders
– Sometimes reused widely (e.g., word2vec word embeddings)

• Convolutional neural networks
– Convolution provides translation invariance
– Network stages with reducing spatial resolution, Mult. channels,…

• Recurrent neural networks
– Learn to represent history in time series
– Backpropagation as unfolding in time
– LSTM memory units

• Neural architectures
– Shared parameters across multiple computations
– Layers with different structures/functions
– RNN’s, Seq2Seq, Transformer, …
– Probabilistic classification à output Softmax layer


