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This section:
e LSTMs

« Sequence to sequence
models

 Transformer models
« Attention

Readings: optional but

recommended

“Dive into Deep Learning”
chapters 6.6, 8-8.4, 10.3-10.7

This book is a free download
on the web, and contains
running code




Recurrent Neural Nets
for Sequential Data



Recurrent Networks

» Key idea: recurrent network uses (part of) its state at t as input for t+1

oy = ¢2(Vhy + by)

he = ¢,(Ux + Why_y + by,)

/ \

Nonlinearity Hidden State at

previous time
step [Goodfellow et al., 2016]



Recurrent Neural Network Language Models
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Learning Sequences — Piotr Mirowski

 Forward Pass

Slide Credit: Piotr Mirowski



Recurrent Neural Network Language Models
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Learning Sequences — Piotr Mirowski

e Backward Pass

* problem: vanishing and/or exploding gradients

Slide Credit: Piotr Mirowski



Recurrent Neural Network Language Models
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e L earned hidden representations of context can be useful for:
e part of speech labeling
e sentiment analysis
e information extraction

 Predict label for each word, instead of predicting next word
Slide Credit: Piotr Mirowski



Example: Opinion Mining

Label opinion segments by labeling each word.
0 = outside
b = beginning of segment

| = inside segment h summarizes
earlier words

Label:
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Trump [has come a long way] from

[Irsoy & Cardie, 2014]
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Deep Bidirectional Recurrent Network ===
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Two additional ideas:
« Multiple layers to compute y from x
* Aleft-to-right RNN, plus right-to-left RNN

Example:

» Y label values {begin, inside, outside} for each word, to label
contiguous text segments indicating opinions. [Irsoy & Cardie, 2014]
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0 (Waixs + Whilhy_1 + Weici—1 + by)
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0 (Waixs + Whilhy_1 + Weici—1 + by)
0 (Wepxs + Whrhy 1 + Wepei—1 + by),
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» 1

X3 Element-wise /

multiply

0 (Warxe + Whehi—1 + Wepei—1 +by),
fici—1 + i tanh (Weexy + Wiehi—1 + be)
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iy = oWaixe + Whibhi—1 + Weici—1 +by),
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ci = fci—q +itanh (Weexe + Wrehi—1 +be),
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ht = O tanh(ct) .



Bi-directional Recurrent Neural Networks

« Key idea: processing of word at position t can depend on
following words too, not just preceding words

OO e
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55

[Goodfellow et al., 2016]



Deep Bidirectional LSTM Network

[“Hybrid Speech Recognition with Deep Bidirectional LSTM,”
Graves et al., 2013]



Optional material -

Gated Recurrent Units (GRUSs) won't be on exam

Element-wise

multiply
\ hi1—| GRU > hy
o denotes the Hadamard product. hy = 0. T

Zt = Ug(Wzmt + U.he—1 + bz)
Tt = o'g(Wrxt + Urhi—1 + br)
hi =z o hi1 + (1 — 2¢) 0o on (Whay + Up (7 © h—1) + ba)

Variables

Lt

e ;. input vector
« hy: output vector fewer parameters than LSTM
found equally effective in
some experiments involving

‘ * speech recognition
« W, U and b: parameter matrices and vector « music analysis

e 2;: update gate vector
* ;. reset gate vector

Activation functions

see [Chung et al., 2014]

* 04: The original is a sigmoid function.

» 0}, : The original is a hyperbolic tangent.



Sequence to Sequence Learning

Learned Output Sequence

Representation

Encoder

I ¥ N I L * RNN Encoder-Decoders

' : for Machine Translation
(Sutskever et al. 2014;
Cho et al. 2014;
Kalchbrenner et al. 2013,
Srivastava et.al., 2015)

Decoder

Input Sequence



Seq2Seq. Encoder-Decoder Architecture
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Sequence to Sequence Models

* machine translation
e text summarization
e text to computer command

one to one one to many many to one many to many many to many
! Pt ! Pt Pt 1
! f Pt 1 Pt 1 Pt 1

Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks



Problem: HS3 has to encode entire sequence...

Encoder
Encoder Encoder Encoder Decoder Decoder Decoder
RNN RNN RNN RNN RNN RNN

Decoder

[Pranay Dugar


https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263
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Problem: HS3 has to encode entire sequence...

Encoder
Encoder Encoder Encoder Decoder Decoder Decoder
RNN RNN RNN RNN RNN RNN

Decoder

Attention: encoder outputs a
weighted avg. of encoder
states, where weights
depend on state of decoder.
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Transformer Architecture
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Transformer architecture uses attention in three ways:
1. By decoder: Attention on encoder states, based on decoder state

2. Inside encoder: Replace RNN by self-attention across input tokens
3. Inside decoder: Replace RNN by self-attention across output tokens

[Pranay Dugar
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Scaled Dot Product Attention

Given:

Scaled Dot-Product Attention

«  Set of <key, value> pairs <k;,v;> !
«  k; vector of dim dy ; Ma'M“"
* v;vector of dimd, A
*  Query q which is vector of dim d, 2 T =
Mask (opt.)
Return: [}
» Vector of dim d, which is a weighted sum of the v; Scale
« where weights given by the Softmax of dot products q k; / sqrt(d,) Ma’w
t
t 1
- K Vv

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure|2). The input consists of
queries and keys of dimension d;, and values of dimension d,,. We compute the dot products of the
query with all keys, divide each by /dy., and apply a softmax function to obtain the weights on the
values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix . The keys and values are also packed together into matrices K and V. We compute
the matrix of outputs as:

QK™

Attention(Q, K, V') = softmax( Vi
k

W (1)



Multi-Head Attention

Scaled Dot-Product Attention Multi-Head Attention

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention” (Figure|2). The input consists of
queries and keys of dimension dj, and values of dimension d,.. We compute the dot products of the
query with all keys, divide each by \/d,., and apply a softmax function to obtain the weights on the
values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V. We compute
the matrix of outputs as:

QKT)V

1
Vs M

Attention(Q, K, V') = softmax(




Transformer Architecture
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Figure 1: The Transformer - model architecture.



The Transformer =
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https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture14-transformers.pdf
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https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture14-transformers.pdf
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Attention is Cheap!

FLOPs
Self-Attention | O(length? - dim) = 4-10°
RNN (LSTM) | O(length - dim?) =16-10°
Convolution | O(length - dim? - kernel_width) = 6-10°

length=1000 dim=1000 kernel_width=3



https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture14-transformers.pdf

Yields Significant Improvement in Machine Translation

More details:
See http://nlp.seas.harvard.edu/2018/04/03/attention.html

Multiple sine waves added as positional encoding of input tokens

« Dropout during training at every layer S o

« Layer-norm =

 ADAM optimizer with learning rate warmup (warmup + exponential
decay in learning rate)

« Auto-regressive decoding with beam search and length biasing




How to Think About Transformers?

Attention: encoder outputs a
weighted avg. of encoder
states, where weights
depend on state of decoder.
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General program schema

“Decoder” outputs a sequence of tokens

Based on its perceived input, plus what it has already output

With attention mechanism to focus on relevant subset of its input
and output

Learned parameters define both attention and operations it performs



BERT: Bidirectional Encoder Representations from Transformers

Goal: Trained model that will produce generally useful encodings of
arbitrary text

« Uses transformer architecture
« Bidirectional attention across entire input

* Accept input sequences with multiple sentences
— (e.g., question/answer pairs)

— Special token [CLS] indicates beginning of sequence, output vector
embedding for this token represents sequence for classification tasks

— Special token [SEP] indicates beginning of new sentence
« Train by

— masking out 15% of words, and predicting them

— classify whether second sentence actually follows the first sentence
* True in 50% of cases

« 24 layers deep, hidden unit dim = 1024, 12 self-attention heads,
340M trained parameters



BERT: Bidirectional Encoder Representations from Transformers
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).



BERT: Bidirectional Encoder Representations from Transformers
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Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

* “segment embedding” is a learned embedding indicating either
sentence A or sentence B



BERT: Bidirectional Encoder Representations from Transformers

Goal: Trained model that will produce generally useful encodings of
words and sentences

Fine tuning for new tasks:

« Adding an output layer for new tasks (Q/A, textual entailment,
sentiment analysis, equivalence of two questions, ..) then fine-
tuning by further training, advances state of the art performance
on many language tasks

« Can “freeze” the 340M trained parameters, and fine-tune by
training only the new output layer

* Or, fine tune end-to-end, tuning all parameters



COMET
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Figure 1: COMET 7 learns from an existing knowledge
base (solid lines) to be able to generate novel nodes and

edges (dashed lines).

[Bosselut et al., 2019]
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Figure 2: Model diagram. (a) In the multi-headed attention module, the key, value, and query all pass through a
head-specific projection before a scaled dot-product attention is computed between them. The outputs of the heads
are concatenated and projected. (b) Inside the transformer block, the outputs of all the previous layer blocks from
earlier time steps are input to the multi-headed attention with the preceding block for the current time step as the
query. (¢) Each token is an input to a first-layer block along with all preceding tokens. Dotted lines indicate outputs
to all future blocks in the next layer and inputs from all preceding blocks in the previous layer.

[Bosselut et al., 2019]



COMET

Seed Concept Relation Generated Plausible
X holds out X’s hand to Y xXAttr helpful v
X meets Y eyes XAttr intense v
X watches Y every ____ XAttr observant v
X eats red meat xEffect  gets fat v
X makes crafts xEffect  gets dirty v
X turns X’s phone xEffect  getsatext

X pours ___over Y's head oEffect gets hurt v
X takes Y'’s head off oEffect  bleeds v
X pisses on Y's bonfire oEffect  gets burned

X spoils somebody rotten xIntent to be mean

X gives Y some pills xIntent  tohelp v
X provides for Y’s needs xIntent  to be helpful v
X explains Y’s reasons xNeed to know Y v
X fulfils X’s needs xNeed to have a plan v
X gives Y everything xNeed to buy something v
X eats pancakes xReact satisfied v
X makes ____ at work xReact proud v
X moves house xReact happy v
X gives birthto the Y oReact happy v
X gives Y’s friend ____ oReact grateful v
X goes ____ with friends oReact happy v
X gets all the supplies xWant to make a list v
X murders Y's wife xWant to hide the body v
X starts shopping xWant to go home v
X develops Y theory oWant to thank X v
X offer Y a position oWant to accept the job v
X takes _____ out for dinner oWant to eat v

Table 5: Generations that were randomly selected
from a subset of novel generations from the ATOMIC
development set. A novel generation is a sro tuple not
found in the training set. Manual evaluation of each tu-
ple indicates whether the tuple is considered plausible
by a human annotator.

Demo: https://mosaickg.apps.allenai.org/comet_atomic

[Bosselut et al., 2019]



Programming Frameworks for Deep Nets

« Pytorch (Facebook)

« TensorFlow (Google)

 TFLearn (runs on top of TensorFlow, but simpler to use)
« Theano (University of Montreal)

« CNTK (Microsoft)

« Keras (can run on top of Theano, CNTK, TensorFlow)

Many support use of Graphics Processing Units (GPU’s)

Major factor in dissemination of Deep Network technology



# Specify that all features have real-value data
feature_columns = [tf.feature_column.numeric_column("“x", shape=[4])]

# Build 3 layer DNN with 10, 20, 16 units respectively.

classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
hidden_units=[1@, 26, 18],
n_classes=3,
model_dir="/tmp/iris_model")

# Define the training inputs

train_input_fn = tf.estimator.inputs.numpy_input_fn(

x={"x": np.array(training_set.data)},

y=np.array(training_set.target), TensorFlow example

num_epochs=None,
shuffle=True)

# Train model.
classifier.train(input_fn=train_input_fn, steps=2000)

# Define the test inputs

test_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(test_set.data)},
y=np.array(test_set.target),
num_epochs=1,
shuffle=False)

# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=test_input_fn)["accuracy"]

print(“\nTest Accuracy: {@:f}\n".format(accuracy_score))



Modern Deep Networks: 2021 vs 1987

vastly more online data
GPU’s, TPU’s
Heterogenous units
— Relu, sigmoid, tanh, linear
including units composed from other units
— LSTM, GRU, Attention, ...
many new architectures
— 100 layers deep, bidirectional LSTMs, Convolutional nets, Transformers...

New ideas for gradient descent
— dropout, batch normalization, Adagrad, layer normalization, ...

unification with probabilistic models
— train to output probabilities

frameworks like TensorFlow
online text with code: Dive into Deep Learning



What you should know:

Representation learning

— Hidden layers re-represent inputs in form to predict outputs

— Autoencoders

— Sometimes reused widely (e.g., word2vec word embeddings)
Convolutional neural networks

— Convolution provides translation invariance

— Network stages with reducing spatial resolution, Mult. channels,...
Recurrent neural networks

— Learn to represent history in time series
— Backpropagation as unfolding in time

— LSTM memory units

Neural architectures

— Shared parameters across multiple computations
— Layers with different structures/functions

— RNN’s, Seqg2Seq, Transformer, ...

— Probabilistic classification - output Softmax layer



