10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reinforcement Learning:
Q-Learning
+
Deep RL

Matt Gormley
Lecture 17
Mar. 29, 2021



Reminders

* Homework 5: Neural Networks
— Out: Thu, Mar. 18
— Due: Mon, Mar. 29 at 11:59pm

* Homework 6: Deep RL

— Out: Mon, Mar. 29
— Due: Wed, Apr. 07 at 11:59pm




Q-LEARNING



Q-Learning

Whiteboard
— Q-Learning Algorithm
* Case 1: Deterministic Environment
e Case 2: Nondeterministic Environment

— e-greedy Strategy



Q-Learning

Remarks

— Q converges to Q* with probability 1.0, assuming...
1. each <s, a> is visited infinitely often
2. 0<Yy<1
3. rewards are bounded |R(s,a)| < B, for all <s,a>
4. initial Q values are finite

— Q-Learning is exploration insensitive Q
= any state visitation strategy will work assuming

— May take many iterations to converge in practice



Reordering Experiences

Lx: Cesiest Meze Eve!

T C. X' 0.9
1" i R S= TASGY)

A= LE. W3

ALY W ’R(M') G(SA)'O q‘l ;Lr"

. S a r s’

" AE D B Q(AD)= o

s C E 00 —D - -.Q (C, E)= 100
I R LT P

¢t S a S

' ¢ € 100 D QACE) = 100

t 8¢ 0 C O(B'E) = 90

+ AE O B QAE) = &



Designing State Spaces

Q: Do we have to retrain our RL agent every
time we change our state space?

A: Yes.But whether your state space changes
° from one setting to another is determined
by your design of the state representation.

Two examples:
— State Space A: <x,y> position on map
e.g. sy = <74,152>
— State Space B: window of pixel colors
centered at current Pac Man location

e.g. St = O 1 O

O|O0|O

1T (1 |1




Q-Learning

Question:

For the R(s,a) values shown on
the arrows below, which are the
corresponding Q*(s,a) values?

Assume discount factor = 0.5.

Answer:

| 14 18
21 | I
/ 0
8 7
18




DEEP RL EXAMPLES



TD Gammon =2 Alpha Go

Learning to beat the masters at board games
THEN NOW

“...the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its
strategy by playing over one ++ !

million practice games 1 H

1
against itself...” eCe i 4PNE ) ‘a8

) ﬂo (Y S

Al [:()_Q dGO

i
et

(Mitchell, 1997)

14



Playing Atari with Deep RL

* Setup: RL
system
observes the
pixels on the
screen

e |treceives
rewards as the
game score

 Actions decide
how to move
the joystick /
buttons

observation 4 3 7N 2 action

O,

Figures from David Silver (Intro RL lecture)



Playing Atari with Deep RL

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

Videos:
— Atari Breakout:

— Space Invaders:

Figures from Mnih et al. (2013)

16


https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=ePv0Fs9cGgU

Playing Atari with Deep RL

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

B. Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 —3 18900 28010 3690
HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075
Table 1: The upper table compares average total reward for various learning methods by running

an e-greedy policy with e = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with e = 0.05.

17
Figures from Mnih et al. (2013)



Deep Q-Learning

Key Idea:

1.
2.

Use a neural network Q(s,a; ) to approximate Q*(s,a)

Learn the parameters 6 via SGD with training
examples < s, a;, I, Seyq >

18



Deep Q-Learning

Whiteboard

— Strawman loss function (i.e. what we cannot
compute)

— Approximating the Q function with a neural
network

— Approximating the Q function with a linear model
— Deep Q-Learning

— function approximators
(<state, action,> = g-value
Vs.
state - all action g-values)



Experience Replay

* Problems with online updates for Deep Q-learning:
— noti.i.d. as SGD would assume
— quickly forget rare experiences that might later be useful to
learn from
 Uniform Experience Replay (Lin, 1992):
— Keep areplay memory D = {e,, e,, ... , ey} of N most recent
experiences e, = <Sy, a;, Iy Stir>
— Alternate two steps:

1.  Repeat T times: randomly sample e; from D and apply a Q-
Learning update to e

2. Agent selects an action using epsilon greedy policy to receive
new experience thatis addedto D

* Prioritized Experience Replay (Schaul et al, 2016)

— similar to Uniform ER, but sample so as to prioritize
experiences with high error



Alpha Go

Game Of GO (*ﬂ) Game 1
Fan Hui (Black), AlphaGo (White)
® 19)(1 9 board AlphaGo wins by 2.5 points
* Players alternately R A
play black/white @@
B0
stones V00 O
. D=l
. Goa.l is to fully 20200 0. 8¢
encircle the largest 19*%*’%@392%@*@@&@1
° iy 267, 99 @ @225 213 209@@ 71 @ e 76
region on the board ) B D
o 208 @tﬁt#@‘t@*ﬁ*@ 257,141;219,1 1?@*15*@ 112/158
i Slmple rUIeS but 59+®+23*t33*10f@%@+173+@*121 263119®+27+®+11 2*13
I ) l *55 '@‘13*103 259+211129 21;@111@1@1@1@1@* 11
game piay @« - 5-00 o

at@ @at at@

Figure from Silver et al. (2016)



Alpha Go

Rollout policy SL policy network RL policy network Value network Policy network Value network
z
Py Py ) P, (@ls) v, (8)

g

>

Q

S

Policy gradient Q

X

eleq

Human expert positions Self-play positions

22
Figure from Silver et al. (2016)



Amateur
dan (d) kyu (k)

Beginner

23

Alpha Go

TxXx

-

X
™

X
Lo

3,500

Buney o3

GnuGo
Fuego
Pachi

Zen

Crazy Stone
Fan Hui

AlphaGo

AlphaGo
distributed

Figure from Silver et al. (2016)



Learning Objectives

Reinforcement Learning: Q-Learning

You should be able to...

1.
2.

3.

Apply Q-Learning to a real-world environment
mplement Q-learning

dentify the conditions under which the Q-

earning algorithm will converge to the true
value function

. Adapt Q-learning to Deep Q-learning by

employing a neural network approximation to
the Q function

. Describe the connection between Deep Q-

Learning and regression



ML Big Picture

Learning Paradigms: Problem Formulation:
What data is available and What is the structure of our output prediction? ch‘
when? What form of prediction? boolean Binary Classification 50
° SUPerVise_d Izalmmg‘ categorical Multiclass Classification *38
. unsupervised learning : 8 cE >
el ea ordinal Ordinal Classification ] g =
*  reinforcement learning real Regression o W Y.Y
°  activelearning ordering Ranking e 5 < O
. imitation learning . . _ S c 8 0
. domain adaptation multiple discrete  Structured Prediction =Ry DC:D
«  online learning multiple continuous (e.g. dynamical systems) o S %C«_S
B e both discrete & (e.g. mixed graphical models) | & = as.8 5
. recommender systems ¢ Qo <12 o
«  feature learning cont. <X Z>wn
0 manifold learning
*  dimensionality reduction Facets of Building ML Big Ideas in ML:
¢ ensemble learning Systems: . . -
. i isi : Which are the ideas driving

distant supervision i i 5] rrae Al
«  hyperparameter optimization 'd systems that are development of the field?

robust, efficient, adaptive, , L
effective? * inductive bias
Theoretical Foundations: 1. Data prep «  generdlization / overfitting
What principles guide learning? 2. Model selection *  bias-variance decomposition
TP 3. Training (optimization/ . enerative vs. discriminative

L probabilistic el

. . : * deep nets, graphical models
O information theoretic 4. Hyperparameter tuningon _ o P’ fg p
O evolutionary search validation data AC learning

. 5. (Blind) Assessment ontest ~ *  distant rewards

O ML as optimization data



Learning Paradigms

Paradigm

Data

Supervised

> Regression

< Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

D={x"y"}, x~p*()andy=c*()
y e R

ye{1,...,K}

y e {+1,-1}

y') is a vector

D={x}, x~p*()

D = {x®,y®O}1 U (xD} 2,

D= {(x(l),y(l)), (x(2),y(2)), (x(3),y(3)),...}
D = {x"}¥ | and can query y'") = ¢*(-) at a cost
D = {(sV,aV)), (52),a(?),...}

D — {(3(1),0(1)”(1)),(3(2),0(2),,‘(2)),...}

26



