Bl SRR

Machine Learning 10-601 10-301

Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University

Today:
» Probabilistic learning
« Joint probabilities
« Estimating parameters
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« MAP
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Required Reading:
« Estimating Probabilities [Mitchell]

Optional Probability Review:

some of these slides are derived from
William Cohen, Andrew Moore, Aarti
Singh, Eric Xing, Carlos Guestrin.

- Thanks!


http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf
https://www.deeplearningbook.org/contents/prob.html

probabilistic function approximation:

instead of F: X =2,
learn P(Y | X)



Definition of Conditional Probability




Definition of Conditional
Probability

P(A* B)
N R —
P(B)
Corollary: The Chain Rule
P(A " B) = P(A|B) P(B)



Bayes Rule

* |let's write 2 expressions for P(A * B)
AAB

B




Bayes Rule

* |let's write 2 expressions for P(A * B)
A"\B

¢>

P(A * B) = P(A|B)P(B) = P(B|A) P

P(BIA) ™ P(A)

implies:  pag) = -5




P(BIA) ™ P(A)

P(A|B) = Bayes’ rule

P(B)

we call P(A) the “prior”

and P(A|B) the “posterior”

Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine
of chances. Philosophical Transactions
of the Royal Society of London, 53:370-
418



P(BIA) ™ P(A) ,
P(AIB) = 5 (B) Bayes rule

we call P(A) the “prior”

Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine

and P(AlB) the “posterior” of chances. Philosophical Transactions
of the Royal Society of London, 53:370-

418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereafter....
necessary to be considered by any that would give a clear account of the
strength of analogical or inductive reasoning...



Other Forms of Bayes Rule

P(BIA) P(A)

PAIB) = — B)

P(B| A)P(A)
P(B| A)P(4)+ P(B|~ A)P(~ A)

P(41B) =

P(B|ANX)P(AAX)

P(AIBAX)= AT,




Applying Bayes Rule

P(B1 A)P(A)

HAB)- P(BIA)P(A)+P(B I~ AP(~ A)

A = you have the flu, B = you just coughed

Assume:

P(A) =0.05
P(B|A) = 0.80
P(B| ~A) =0.2

what is P(flu | cough) = P(A|B)?



The Awesome
Joint Probability Distribution
P(X, X5, ... Xy)

from which we can calculate
P (X4 X,5...X\),
and every other probability we desire
over subsets of X,... Xy



The Joint Distribution

Example: Boolean
variables A, B, C
Recipe for making a joint
distribution of M variables:



The Joint Distribution

Example: Boolean
variables A, B, C
Recipe for making a joint
distribution of M variables:

1. Make a table listing all
combinations of values of
your variables (if there are
M Boolean variables then
the table will have 2M rows).
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The Joint Distribution

Example: Boolean
variables A, B, C
Recipe for making a joint
distribution of M variables:

Prob
0.30
0.05
0.10
0.05
0.05
0.10
0.25
0.10

1. Make a table listing all
combinations of values of
your variables (if there are
M Boolean variables then
the table will have 2M rows).

2. For each combination of
values, say how probable it
IS.

HHHHOOOO>
HHOOHI—-OOw
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The Joint Distribution

Recipe for making a joint Prob

0.30

distribution of M variables: 0.05

0.10

0.05

1. Make a table listing all

combinations of values of 0.05

0.10

your variables (if there are 0.25

|—~|—~|—~|—~OOOO>
l—tl—l-OOl—ll—LOOw

I—lOI—*OI—*OI—lon

M Boolean variables then 0.10

the table will have 2M rows).
2. For each combination of m

values, say how probable it
IS. @%

3. If you subscribe to the B
axioms of probability, those
numbers must sum to 1.

0.30




gender hours_worked weallth

Using the SIS

Joint
Distribution

0253122 |

Once you have the JD
you can ask for the
probability of any logical
expression involving
these variables

rch 00245895 |}

v140.5+ poor 00421768
nch 00116293 )

Male V0405 poor 0331313

rch  0.0971295 1

v140.5+ poor 0.134106 NG
nch 0105333

P(E)y= ) P(row)

rows matching £




gender hours_worked weallth
Female v0:40.5- poor

Using the e

0253122

0.0245895

. vi405+ poor 00421768
JOInt nch 00116293 )
hale  v0:405  poor 0331313 GGG
rich 00971295
J vi405+ poor  0.134106 JENEGNG
ch 0105933
P(Poor Male) = 0.4654 P(E) = Z P(row)

rows matching £




gender hours_worked weallth

: ffemale v0:405-  poor 0253122 N
U S | n g th e rch 00245895 |}
. ( v140.5+ _poor 0.042176&
JOInt nch 00116293 )
flale  v0405  poor 0331313 JEEEG_———
rich 00971295
J vi405+ poor  0.134106 JENEGNG
ch 0105933
P(Poor) = 0.7604 P(E) = Z P(row)

rows matching £




gender hours_worked weallh

US' ng the Female v0:40.5- poor 0253122
. rnch 00245895 |}
J OI nt v140.5+ poor 00421768

. . . nch  0.0116293 )
Distribution |~ =~ @ el

rich  0.0971295 I
v1405+ poor 0.134106 N
nch 0105333 R

Once you have the JD P(E) = ZP(row)
you can ask for the rows matching £
probability of any logical
expression involving
these variables

Poll question 1:

What is P(rich, female)?



gender hours_worked weallth

: ffemale v0:405-  poor 0253122 N
U S | n g th e rch 00245895 |}
. ( v140.5+ _poor 0.042176&
JOInt nch 00116293 )
flale  v0405  poor 0331313 JEEEG_———
rich 00971295
J vi405+ poor  0.134106 JENEGNG
ch 0105933
P(Poor) = 0.7604 P(E) = Z P(row)

rows matching £




gender hours_worked wealth

Inference (Eemale v0:405-  poor 0253122 RN
with the ( e

vi405+  poor

JOlnt rch 00116293 |

ale v0405- 0.331313

rich 00971295

f vid405+ m 0.134106 —

ch 0105933

Z P(row)

P(El A Ez) __ rows matching £} and E,

P(E,) > P(row)

rows matching F,

P(El |E2):

P(Male | Poor) = 0.4654 / 0.7604 = 0.612




Inference
with the
Joint

P(El |E2):

Poll question 2:

gender hours_worked weallh

Female v0:40.5- poor 0253122
nch  0.0245895 |}
v140.5+ poor 00421768
nch 00116293 )
Male V0405 poor 0331313 1
rch  0.0971295 1
v1:405+ poor 0.134106 N
rch 0105933
Z P(row)
P(El N\ Ez) __ rows matching £} and E,
P(E,) > P(row)

rows matching F,

What is P(female | poor, v0:40.5)




gender hours_worked weallth
. Female v040.5-

Learning and =
the Joint e e
Distribution Male  v0:40.5 poor
rich

vid40 5+ poor

rich

0253122 G

0.0245895 |}
00421768 B
0.0116293 )

0331313 I
0.0971295 IR

0.134106

0.105333 N

Suppose we want to learn the function f: <G, H> > W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G =female, H=40.5-) =




gender hours_worked weallth

Female v0:40.5- poor 0253122

Learnlng and rich 00245895 |}
the J0|nt v1:40.5+ poor 0.0421768 i}

! . . ich 00116293
Distribution Male v0405-  poor 0331313 I

rich  0.0971295 1D
v1:405+ poor 0.134106 NN
rch 0105333

Suppose we want to learn the function f: <G, H> > W
Equivalently, P(W | G, H)
Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H=40.5- ) = 0.024 / (0.024 + 0.253)
= 0.087



sounds like the solution to
learning F: X =2,
or P(Y | X).

Are we done?



sounds like the solution to
learning F: X =2,
or P(Y | X).

Main problem: learning P(Y|X)
can require more data than we have

consider learning Joint Dist. with 100 attributes
# of rows in this table?
# of people on earth?



sounds like the solution to
learning F: X =2,
or P(Y | X).

Main problem: learning P(Y|X)
can require more data than we have

consider learning Joint Dist. with 100 attributes
# of rows in this table? 2100 > 1(30

# of people on earth? 1010

fraction of rows with O training examples? 99.99



What to do?

1. Be smart about how we estimate
probabilities from sparse data

— maximum likelihood estimates
— maximum a posteriori estimates

2. Be smart about how to represent joint
distributions

— Bayes networks, graphical models,
conditional independencies



1. Be smart about how we
estimate probabilities



Estimating Probability of Heads

* | show you the above coin X, and ask you to
estimate the probabillity that it will turn up heads

(X=1) or tails (X=0)

* You flip it repeatedly, observing
* it turns up heads a; times

* It turns up tails a, times

~ ~

* Your estimate for = P(X — 1) is ...?



Estimating Probability of Heads

* | show you the above coin X, and ask you to
estimate the probabillity that it will turn up heads

(X=1) or tails (X=0)

* You flip it repeatedly, observing
* it turns up heads a; times

* It turns up tails a, times
3!

1 +

Algorithm 1 (MLE): § = P(X = 1) =



Estimating 6 = P(X=1)

Test A:
100 flips: 51 Heads, 49 Tails

Test B:
3 flips: 2 Heads, 1 Tails



Estimating Probability of Heads (3¢ Y@

When data sparse, might bring in prior assumptions

to bias our estimate

* e.g., represent priors by “hallucinating” /1 heads,
and 7o tails, to complement sparse observed a,, a,

(041 T ’71)
(a1 +71) + (a0 +70)

Alg 2 (MAP): 0 = P(X =1) =




Estimating Probability of Heads (5%

When data sparse, might bring in prior assumptions

to bias our estimate

* e.g., represent priors by “hallucinating” /1 heads,
and 7o tails, to complement sparse observed a,, a,

Alg 2 (MAP): é = ]5()( = 1) = (011 + g,al)l :__ 2;2) -|-'70)

Consider m=1 v =1
versus v1 = 1000 7o = 1000
versus v, = 500 o = 1500



Correct MAP Priors

true 0=0.30, =42, v, =18

04 -y T . T

02} 4

01 A A A "
100 150
Number of coin flips




Low Confidence Priors

High Confidence Priors

<
-

<
-

Correct MAP Priors
true 0=0.30, 7.-|l. 7'.10

4|

L)
Number of con



Low Confidence Priors
H

High Confidence Priors
#

Correct MAP Priors

true 0=0.30, v =42, 7, =18

P S

;
-
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-

a2

43

2

.

©9

“°

Incorrect MAP Priors
true 0=0.30, v =38, v =24

3

o "o
Number of Con Mps
true 0=0.30, v =72, v =48
— Yue
“
4
“
4
- o o P o




Principles for Estimating Probabilities

« Maximum Likelihood Estimate (MLE): choose
0 that maximizes probability of observed data D

o~

0 = arg mgax P(D|0)

 Maximum a Posteriori (MAP) estimate:
choose 6 that is most probable given prior
probability and observed data

8 = arg mgax P(0| D)



Principles for Estimating Probabilities

« Maximum Likelihood Estimate (MLE): choose
0 that maximizes probability of observed data D

o~

0 = arg mgax P(D|0)

 Maximum a Posteriori (MAP) estimate:
choose 6 that is most probable given prior
probability and observed data

6 = arg max P(0| D)

= arg max P(D16)P(0)
Z P(D)

= arg m@ax P(D|0)P(6)




Principles for Estimating Probabillities

Principle 1 (maximum likelihood):
« choose parameters 0 that maximize P(data | )
. resultin our case: HMLE _ M

1 + Qg

Principle 2 (maximum a posteriori probability):
« choose parameters 0 that maximize P(0 | data)
* result in our case:

GMAP _ a1 + #hallucinated_1s
(a7 + #hallucinated_1s) + (o + #hallucinated_Os)




Maximum Likelihood Estimation

given data D, choose 6 that maximizes P(D | 6)

P(X=0) = 1-8
P(D|6) = (Bernoulli)



D

arg max In P(D|6)

m Set derivative to zero:

arg max In [#“(1 — 0)*]

6

d

5 INP(D[6) =0

hint:

Ollle_l
o 0




Summary:

Maximum Likelihood Estimate
for Bernoulli random variable

e Each flip vields boolean value for X

X ~ Bernoul

e Data set D of inc

P(X=1)=0
P(X=0)=1-0
(Bernoulli)

i: P(X)=6X(1-0)0-%

ependent, identically distributed (iid) flips pro-

duces ay ones, ag zeros (Binomial)

P(D|0) = P(ay, aglf) = 671(1 — §)"0

OMLE — argmaxy P(D|0) = —

1+



Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

* choose parameters 6 that maximize
P(data | ©)

Principle 2 (maximum a posteriori prob.):
* choose parameters 6 that maximize
P(6 | data) = P(data | ©) P(©)
P(data)




Beta pat
< o <o - - -
» I~ = » L & -3

Beta prior distribution — P(0)
0on—1(1 — 9)Pr-1

P(0) = ~ Beta(By, Br)
B(Bg.B7)
g, ¥
; i




Summary:
Maximum a Posteriori (MAP) Estimate
for Bernoulli random variable

Likelihood is ~ Binomial P'?Qi;;):fe
[’(D | 0) — 0”11(1 _ 0)”'1' (Bernoulli)

If prior is Beta distribution,
9.3”—1(1 - 9)43-!'—1

P(O) - B(:}H ;31)

~ Beta ( B, Br )

Then posterior is Beta distribution
P(0|D) x P(D|0)P(0) ~ Beta(ay + By, ar + Br)
and MAP estimate is therefore
éMAP _ p + BH —1
(ag + By — 1)+ (ap + Br — 1)




Maximum a Posteriori (MAP) Estimate for random SR
variable with k possible outcomes h

Likelihood is ~ Multinomial(0 = {0,, 0,, ..., 0,}) e
P(D|0) =0{1052...0,"
If prior is Dirichlet distribution,
B1—1 pfo—1 B.—1
o7 0,7 QL.A

B(b1; .-, Br)

Then posterior is Dirichlet distribution
P(0|D) < P(D|0)P(6) ~ Dirichlet(c; + B, ..., + Bk)

P(0) = ~ Dirichlet(531, . . ., Bk)

and MAP estimate is therefore
~MAP a; +5; — 1

d, :
D=1y + B; — 1)




Some terminology

 Likelihood function: P(data | 0)
* Prior: P(0)
* Posterior: P(0 | data)

« Conjugate prior: P(0) is the conjugate prior for
likelihood function P(data | 0) if the parametric
forms of P(0) and P(0 | data) are the same.

— Beta is conjugate prior for Bernoulli, Binomial
— Dirichlet is conjugate prior for Multinomial



You should know

* Probability basics
— random variables, conditional probs, ...

— Bayes rule
— Joint probability distributions
— calculating probabilities from the joint distribution

« Estimating parameters from data

— maximum likelihood estimates
— maximum a posteriori estimates

— distributions — Bernoulli, Binomial, Beta, Dirichlet, ...

— conjugate priors
— regularization is a form of MAP estimation



Extra slides



Independent Events
* Definition: two events A and B are
independent it P(A * B)=P(A) P(B)

* Intuition: knowing A tells us nothing
about the value of B (and vice versa)



Expected values

Given a discrete random variable X, the expected value

/
EX]=) zP(X =uz)

of X, written E[X] is

Example:

TeX
X P(X)
0 0.3
1 0.2
2 0.5

Probability-weighted
average over all
possible values of X



Expected values

Given discrete random variable X, the expected value of
X, written E[X] is

EX]=) zP(X =uz)

We also can talk about the expected value of functions
of X

E[f(X) =) f(z)P(X =)

TeEX



Covariance

Given two discrete r.v.”s X and Y, we define the
covariance of X and Y as

Cov(X,Y)=F|(X — EX))(Y — E(Y))]

e.g., X=GENDER, Y=PLAYS_ FOOTBALL
or X=GENDER, Y=LEFT_HANDED

Remember: EX]=) zP(X =z)
rEX






NAIVE BAYES



Let’s learn classifiers by learning P(Y|X)

Consider Y=Wealth, X=<Gender, HoursWorked>

gender hours_worked weallh
Female v0:40.5- poor 0253122
rich 00245895 |}
vi405+ poor 0.0421768 B
nch  0.0116293 )
Male v0:405- poor 0331313
rch  0.0971295 1D
v1:40.5+ poor 0.134106 GG
ech 0105333
Gender HrsWorked P(rich | GG HW) P(poor | G,HW)
F <40.5 .09 91
F >40.5 21 79
M <40.5 23 A7
M >40.5 .38 .62




How many parameters must we estimate?

F <40.5 .09 91

Suppose X =<X1 e Xn> . F >40.5 21 79
y M <40.5 23 77
where X, and Y are boolean RV s | v 405 a8 6

To estimate P(Y| X4, X,, ... X))

If we have 100 boolean X;'s: P(Y | X4, X5, ... X400)



Bayes Rule

P(X|Y)P(Y)
P(X)

P(Y|X) =

Which is shorthand for:
P(X =z;|Y = y)) P(Y = y;)

(Vi, ) )P(Y = y5|X = ;) = P(X = z;)
- ]

Equivalently:
P(X =z;|Y = y)) P(Y = y;)

Vi, J)P(Y = y;| X = xj) =
(Vz, 7) P( Yil ;) Y P(X = x|Y =y ) P(Y = yi)



Can we reduce params using Bayes Rule?

Suppose X =<X4,... X,> P(X|Y)P(Y)

' P(Y|X) =
where X, and Y are boolean RV’ s Y1X) P(X)

How many parameters to define P(Xy,... X, | Y)?

How many parameters to define P(Y)?



Nalve Bayes
Nalve Bayes assumes

P(X1...Xp|Y) = HP(XZ-\Y)

.e., that X; and X are conditionally
independent given Y, for all iz



Conditional Independence

Definition: X is conditionally independent of Y given Z,
if the probability distribution governing X is
independent of the value of Y, given the value of Z

(Vi,j, k) P(X = ;|Y =y, Z = z) = P(X = x;|Z = zg)

Which we often write
P(X|Y,Z) = P(X|2)

E.g.,
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)




Nalve Bayes uses assumption that the X, are conditionally
independent, given Y. E.g., P(X,|X,,Y) = P(X,|Y)

Given this assumption, then:
P(X1, X2|Y) =



Nalve Bayes uses assumption that the X, are conditionally
independent, given Y. E.g., P(X,|X,,Y) = P(X,|Y)

Given this assumption, then:

P(X1,Xo|Y) = P(X1]|X2,Y)P(X5|Y)
= P(X1|Y)P(X2lY)

in general: P(X;..X,|Y) =[] P(X;|Y)
i



Nalve Bayes uses assumption that the X, are conditionally
independent, given Y. E.g., P(X,|X,,Y) = P(X,|Y)

Given this assumption, then:

P(X1,Xo|Y) = P(X1]|X2,Y)P(X5|Y)
= P(X41]Y)P(X3|Y)

in general: P(X;..X,|Y) =[] P(X;|Y)
i

How many parameters to describe P(X,.. X |Y)? P(Y)?
« Without conditional indep assumption?
« With conditional indep assumption?



Naive Bayes in a Nutshell

Bayes rule:

POY =y X1... Xn) = L& =up)P(Xa - XnlY = yp)

> P(Y = y;)P(X1... XnlY = y;)

Assuming conditional independence among X.’ s:
P(Y = y) I1; P(XG|Y = yg)
> P(Y = y;) I; P(Xi|Y = y;)

P(Y = yp|X1... Xn) =

So, to pick most probable Y for x»ev=<X,, ... X >
Y% « arg rr;u/ax PLY = 1) | | P(X*"lY = y;)
k :
(/



