
Machine Learning 10-601 10-301
Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University

March 31, 2021

Today:
• Probabilistic learning
• Joint probabilities 
• Estimating parameters

• MLE
• MAP

Required Reading:
• Estimating Probabilities [Mitchell]

Optional Probability Review:
• Goodfellow, Ch 3-3.9

some of these slides are derived from 
William Cohen, Andrew Moore, Aarti
Singh, Eric Xing, Carlos Guestrin.   
- Thanks!

http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf
https://www.deeplearningbook.org/contents/prob.html


probabilistic function approximation:

instead of  F: X àY,
learn          P(Y | X)



Definition of Conditional Probability

P(A ^ B) 
P(A|B)  =  -----------

P(B) 

A
B



Definition of Conditional 
Probability

P(A ^ B) 
P(A|B)  =  -----------

P(B) 

Corollary: The Chain Rule
P(A ^ B) = P(A|B) P(B) 



Bayes Rule
• let’s write 2 expressions for P(A ^ B) 

B
A

A ^ B



Bayes Rule
• let’s write 2 expressions for P(A ^ B) 

P(A ^ B) = P(A|B)P(B) = P(B|A) P(B)

implies: 

B
A

A ^ B

P(B|A) * P(A)

P(B)
P(A|B) =



P(B|A) * P(A)

P(B)
P(A|B) =

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions 
of the Royal Society of London, 53:370-
418

Bayes’ rule

we call P(A) the “prior”

and P(A|B) the “posterior”



P(B|A) * P(A)

P(B)
P(A|B) =

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions 
of the Royal Society of London, 53:370-
418

…by no means merely a curious speculation in the doctrine of chances, 
but necessary to be solved in order to a sure foundation for all our 
reasonings concerning past facts, and what is likely to be hereafter…. 
necessary to be considered by any that would give a clear account of the 
strength of analogical or inductive reasoning…

Bayes’ rule

we call P(A) the “prior”

and P(A|B) the “posterior”



Other Forms of Bayes Rule
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P(B|A) P(A)

P(B)
P(A|B) =



Applying Bayes Rule

P(A |B) = P(B | A)P(A)
P(B | A)P(A)+P(B |~ A)P(~ A)

A = you have the flu,   B = you just coughed

Assume:
P(A) = 0.05
P(B|A) = 0.80
P(B| ~A) = 0.2

what is P(flu | cough)  =  P(A|B)?



The Awesome 
Joint Probability Distribution

P(X1, X2, … XN)

from which we can calculate 
P(X1|X2…XN), 

and every other probability we desire 
over subsets of X1…XN



The Joint Distribution

Recipe for making a joint 
distribution of M variables:

Example: Boolean 
variables A, B, C



The Joint Distribution

Recipe for making a joint 
distribution of M variables:

1. Make a table listing all 
combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows).

Example: Boolean 
variables A, B, C

A B C
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



The Joint Distribution

Recipe for making a joint 
distribution of M variables:

1. Make a table listing all 
combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows).

2. For each combination of 
values, say how probable it 
is.

Example: Boolean 
variables A, B, C

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10



The Joint Distribution

Recipe for making a joint 
distribution of M variables:

1. Make a table listing all 
combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows).

2. For each combination of 
values, say how probable it 
is.

3. If you subscribe to the 
axioms of probability, those 
numbers must sum to 1.

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

A

B

C
0.05

0.25

0.10 0.050.05

0.10

0.10
0.30



Using the 
Joint 
Distribution

Once you have the JD 
you can ask for the 
probability of any logical 
expression involving 
these variables

å=
E

PEP
 matching rows

)row()(



Using the 
Joint

P(Poor Male) = 0.4654 å=
E

PEP
 matching rows

)row()(



Using the 
Joint

P(Poor) = 0.7604 å=
E

PEP
 matching rows

)row()(



Using the 
Joint 
Distribution

Once you have the JD 
you can ask for the 
probability of any logical 
expression involving 
these variables

å=
E

PEP
 matching rows

)row()(

Poll question 1: 

What is P(rich, female)?



Using the 
Joint

P(Poor) = 0.7604 å=
E

PEP
 matching rows

)row()(



Inference 
with the 
Joint
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P(Male | Poor) = 0.4654 / 0.7604 = 0.612  



Inference 
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Poll question 2: 

What is P(female | poor,  v0:40.5 )



Learning and 
the Joint 
Distribution

Suppose we want to learn the function f: <G, H> à W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H = 40.5- ) =



Learning and 
the Joint 
Distribution

Suppose we want to learn the function f: <G, H> à W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H = 40.5- ) =  0.024 / (0.024 + 0.253)
=  0.087



sounds like the solution to 
learning F: X àY,

or P(Y | X).

Are we done?



sounds like the solution to 
learning F: X àY,

or P(Y | X).

Main problem: learning P(Y|X) 
can require more data than we have

consider learning Joint Dist. with 100 attributes
# of rows in this table? 
# of people on earth?



sounds like the solution to 
learning F: X àY,

or P(Y | X).

Main problem: learning P(Y|X) 
can require more data than we have

consider learning Joint Dist. with 100 attributes
# of rows in this table? 2100 > 1030

# of people on earth?   1010

fraction of rows with 0 training examples? 99.99



What to do?
1. Be smart about how we estimate 

probabilities from sparse data
– maximum likelihood estimates
– maximum a posteriori estimates

2. Be smart about how to represent joint 
distributions

– Bayes networks, graphical models, 
conditional independencies



1. Be smart about how we   
estimate probabilities 



Estimating Probability of Heads
X=1 X=0

• I show you the above coin X, and ask you to 
estimate the probability that it will turn up heads 
(X=1) or tails (X=0)

• You flip it repeatedly, observing
• it turns up heads α1 times
• it turns up tails α0 times

• Your estimate for                             is …? 



Estimating Probability of Heads
X=1 X=0

• I show you the above coin X, and ask you to 
estimate the probability that it will turn up heads 
(X=1) or tails (X=0)

• You flip it repeatedly, observing
• it turns up heads α1 times
• it turns up tails α0 times

Algorithm 1 (MLE):  



Estimating θ = P(X=1)
Test A: 

100 flips: 51 Heads, 49 Tails 

Test B: 
3 flips:  2 Heads, 1 Tails

X=1 X=0



Estimating Probability of Heads
X=1 X=0

When data sparse, might bring in prior assumptions 
to bias our estimate
• e.g., represent priors by “hallucinating”      heads,     

and      tails, to complement sparse observed α1, α0

Alg 2 (MAP):



Estimating Probability of Heads
X=1 X=0

When data sparse, might bring in prior assumptions 
to bias our estimate
• e.g., represent priors by “hallucinating”      heads,     

and      tails, to complement sparse observed α1, α0

Alg 2 (MAP):Alg 2 (MAP):

Consider                            
versus 
versus    









Principles for Estimating Probabilities
• Maximum Likelihood Estimate (MLE): choose 
q that maximizes probability of observed data

• Maximum a Posteriori (MAP) estimate: 
choose q that is most probable given prior 
probability and observed data



Principles for Estimating Probabilities
• Maximum Likelihood Estimate (MLE): choose 
q that maximizes probability of observed data

• Maximum a Posteriori (MAP) estimate: 
choose q that is most probable given prior 
probability and observed data



Principles for Estimating Probabilities

Principle 1 (maximum likelihood):
• choose parameters θ that maximize P(data | θ)
• result in our case:

Principle 2 (maximum a posteriori probability):
• choose parameters θ that maximize P(θ | data)
• result in our case:



Maximum Likelihood Estimation

Data D: 
X=1 X=0

given data D, choose θ that maximizes P(D | θ)

P(X=1) = θ
P(X=0) = 1-θ

(Bernoulli)



hint:



Summary: 
Maximum Likelihood Estimate
for Bernoulli random variable X=1 X=0

P(X=1) = θ
P(X=0) = 1-θ

(Bernoulli)



Principles for Estimating Probabilities

Principle 1 (maximum likelihood):
• choose parameters θ that maximize 

P(data | θ)

Principle 2 (maximum a posteriori prob.):
• choose parameters θ that maximize

P(θ | data) = P(data | θ) P(θ)
P(data)



Beta prior distribution – P(θ)



and MAP estimate is therefore 

Summary: 
Maximum a Posteriori (MAP) Estimate
for Bernoulli random variable X=1 X=0

P(X=1) = θ
P(X=0) = 1-θ

(Bernoulli)



and MAP estimate is therefore 

Maximum a Posteriori (MAP) Estimate for random 
variable with k possible outcomes



Some terminology
• Likelihood function: P(data | θ)
• Prior: P(θ)
• Posterior: P(θ | data)

• Conjugate prior: P(θ) is the conjugate prior for 
likelihood function P(data | θ) if the parametric 
forms of P(θ) and P(θ | data) are the same.  
– Beta is conjugate prior for Bernoulli, Binomial
– Dirichlet is conjugate prior for Multinomial



You should know

• Probability basics
– random variables, conditional probs, …
– Bayes rule
– Joint probability distributions
– calculating probabilities from the joint distribution

• Estimating parameters from data
– maximum likelihood estimates
– maximum a posteriori estimates
– distributions – Bernoulli, Binomial, Beta, Dirichlet, …
– conjugate priors 
– regularization is a form of MAP estimation



Extra slides



Independent Events
• Definition: two events A and B are 

independent if   P(A ^ B)=P(A) P(B)
• Intuition: knowing A tells us nothing 

about the value of B (and vice versa)



Expected values
Given a discrete random variable X, the expected value 

of X, written E[X] is

Example: X P(X)
0 0.3
1 0.2
2 0.5

Probability-weighted 
average over all 

possible values of X



Expected values
Given discrete random variable X, the expected value of 

X, written E[X] is

We also can talk about the expected value of functions 
of X



Covariance

Given two discrete r.v.’s X and Y, we define the 
covariance of X and Y as

e.g., X=GENDER, Y=PLAYS_FOOTBALL

or     X=GENDER, Y=LEFT_HANDED

Remember:





NAÏVE BAYES



Let’s learn classifiers by learning P(Y|X)
Consider Y=Wealth,  X=<Gender, HoursWorked>

Gender HrsWorked P(rich | G,HW) P(poor | G,HW)

F <40.5 .09 .91
F >40.5 .21 .79
M <40.5 .23 .77
M >40.5 .38 .62



How many parameters must we estimate?

Suppose X =<X1,… Xn> 

where Xi and Y are boolean RV’s

To estimate P(Y| X1, X2, … Xn)

If we have 100 boolean Xi’s:  P(Y | X1, X2, … X100)



Bayes Rule

Which is shorthand for:

Equivalently:



Can we reduce params using Bayes Rule?
Suppose X =<X1,… Xn> 
where Xi and Y are boolean RV’s

How many parameters to define P(X1,… Xn | Y)?

How many parameters to define P(Y)?



Naïve Bayes

Naïve Bayes assumes

i.e., that Xi and Xj are conditionally 
independent given Y, for all i¹j



Conditional Independence
Definition: X is conditionally independent of Y  given Z, 

if the probability distribution governing X is 
independent of the value of Y, given the value of Z

Which we often write 

E.g.,



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g.,

Given this assumption, then:



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g.,

Given this assumption, then:

in general:



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g.,

Given this assumption, then:

in general:

How many parameters to describe P(X1…Xn|Y)?  P(Y)?
• Without conditional indep assumption?
• With conditional indep assumption?



Bayes rule:

Assuming conditional independence among Xi’s:

So, to pick most probable Y for Xnew = < X1, …, Xn >

Naïve Bayes in a Nutshell


