Machine Learning 10-601, 10-301

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

April 7, 2021

Today:

- Finish MAP estimate
- Bayes Classifiers
- Conditional Independence
- Naïve Bayes

Required Reading: Mitchell:

"Naïve Bayes and Logistic **Regression**

http://www.cs.cmu.edu/~tom/ mlbook/NBayesLogReg.pdf

Principles for Estimating Probabilities

• Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data $\mathcal D$

$$
\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} | \theta)
$$

• Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and observed data

$$
\hat{\theta} = \arg \max_{\theta} P(\theta | \mathcal{D})
$$

=
$$
\arg \max_{\theta} \frac{P(\mathcal{D} | \theta)P(\theta)}{P(\mathcal{D})}
$$

=
$$
\arg \max_{\theta} P(\mathcal{D} | \theta)P(\theta)
$$

Maximum Likelihood Estimate

- Each flip yields boolean value for X $X \sim \text{Bernoulli: } P(X) = \theta^X (1-\theta)^{(1-X)}$
- Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros

$$
P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}
$$

$$
\hat{\theta}^{MLE} = \arg \max_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}
$$

Maximum A Posteriori (MAP) Estimate

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros

$$
P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}
$$

• Assume prior $P(\theta) = Beta(\beta_1, \beta_0) = \frac{1}{B(\beta_1, \beta_0)} \theta^{\beta_1 - 1} (1 - \theta)^{\beta_0 - 1}$

 \bullet Then

$$
\hat{\theta}^{MAP} = \arg \max_{\theta} P(D|\theta)P(\theta) = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 - 1)}
$$

(like MLE, but hallucinating $\beta_1 - 1$ additional heads, $\beta_0 - 1$ additional tails)

Beta prior distribution – P(
$$
\theta
$$
)
\n
$$
P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)
$$
\nProbability distribution p(θ) = Beta(θ 1 β_0 =3 β_1 =4)
\nProbability distribution p(θ) = Beta(θ 1 β_0 =54)
\nProbability distribution p(θ) = Beta(θ 1 β_0 =53 β_1 =54)

We say $P(\theta)$ is the conjugate prior for $P(D|\theta)$, if $P(\theta|D)$ has same form as $P(\theta)$

Eg. 1 Coin flip problem

Likelihood is \sim Binomial

$$
P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}
$$

If prior is Beta distribution,

$$
P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)
$$

Then posterior is Beta distribution

$$
P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)
$$

For Binomial, conjugate prior is Beta distribution.

[A. Singh]

We say $P(\theta)$ is the conjugate prior for $P(D|\theta)$, if $P(\theta|D)$ has same form as $P(\theta)$

Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is \sim Multinomial($\theta = {\theta_1, \theta_2, ..., \theta_k}$)

 $P(\mathcal{D} | \theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_k^{\alpha_k}$

If prior is Dirichlet distribution,

$$
P(\theta) = \frac{\theta_1^{\beta_1 - 1} \theta_2^{\beta_2 - 1} \dots \theta_k^{\beta_k - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)
$$

Then posterior is Dirichlet distribution

$$
P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \ldots, \beta_k + \alpha_k)
$$

For Multinomial, conjugate prior is Dirichlet distribution.

[A. Singh]

You should know

- Probability basics
	- random variables, conditional probs, …
	- Bayes rule
	- Joint probability distributions
	- calculating probabilities from the joint distribution
- Estimating parameters from data
	- maximum likelihood estimates
	- maximum a posteriori estimates
	- distributions Bernoulli, Binomial, Beta, Dirichlet, …
	- conjugate priors

Let's learn classifiers by learning P(Y|X)

Consider Y=Wealth, X=<Gender, HoursWorked>

How many parameters must we estimate?

where X_{i} and Y are boolean RV's

To estimate $P(Y| X_1, X_2, \ldots X_n)$

If we have 100 boolean X_i 's: $P(Y | X_1, X_2, ... X_{100})$

Bayes Rule

$$
P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}
$$

Which is shorthand for:

$$
(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}
$$

Equivalently:

$$
(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{\sum_k P(X = x_j | Y = y_k) P(Y = y_k)}
$$

Can we reduce params using Bayes Rule?

Suppose $X = X_1, \ldots, X_n$ $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$ where X_{i} and Y are boolean RV's

How many parameters to define $P(X_1,..., X_n | Y)?$

How many parameters to define P(Y)?

Naïve Bayes

Naïve Bayes assumes

$$
P(X_1 \ldots X_n | Y) = \prod_i P(X_i | Y)
$$

i.e., that X_i and X_j are conditionally independent given Y, for all $i\neq j$

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$
(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)
$$

Which we often write

$$
P(X|Y,Z) = P(X|Z)
$$

E.g.,

 $P(Thunder | Rain, Lightning) = P(Thunder | Lightning)$

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y. E.g., $P(X_1|X_2, Y) = P(X_1|Y)$

Given this assumption, then:

 $P(X_1, X_2|Y) =$

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y. E.g., $P(X_1|X_2, Y) = P(X_1|Y)$

Given this assumption, then:

$$
P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y) \\
= P(X_1|Y)P(X_2|Y)
$$

in general:
$$
P(X_1...X_n|Y) = \prod_i P(X_i|Y)
$$

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y. E.g., $P(X_1|X_2, Y) = P(X_1|Y)$

Given this assumption, then:

$$
P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y) \\
= P(X_1|Y)P(X_2|Y)
$$

in general:
$$
P(X_1...X_n|Y) = \prod_i P(X_i|Y)
$$

How many parameters to describe $P(X_1...X_n|Y)$? $P(Y)$?

- Without conditional indep assumption?
- With conditional indep assumption?

Naïve Bayes in a Nutshell

Bayes rule:

$$
P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k)P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j)P(X_1 ... X_n | Y = y_j)}
$$

- Assuming conditional independence among X_i 's:
- So, to pick most probable Y for $X^{new} = \langle X_1, \ldots, X_n \rangle$ $Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new}|Y = y_k)$

Naïve Bayes Algorithm – discrete X_i

• Train Naïve Bayes (examples) for each^{*} value y_k estimate $\pi_k \equiv P(Y=y_k)$

for each^{*} value x_{ij} of each attribute X_i

$$
\text{estimate } \theta_{ijk} \equiv P(X_i = x_{ij} | Y = y_k)
$$

• Classify (*Xnew*) $Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new}|Y = y_k)$
 $Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}$

probabilities must sum to 1, so need estimate only n-1 of these...

Estimating Parameters: *Y, X_i* discrete-valued

Maximum likelihood estimates (MLE's):

Example: Taking 10-601 or 10-301? P(G|F,B,U)

- G=1 iff you're taking 10-601 F=1 iff first year at CMU
-
-
- U=1 iff taking undergrad class B=1 iff Birthday is before July 1

What probability parameters must we estimate from training data?

Example: Taking 10-601 or 10-301? P(G|F,B,U)

- G=1 iff you're taking 10-601
-
- $P(G=1)$: P(F=1 | G=1) : $P(F=1 | G=0)$: $P(B=1 | G=1)$: P(B=1 | G=0) : $P(U=1 | G=1)$: $P(U=1 | G=0)$: P(G=0) : P(U=0 | G=0) :

• F=1 iff first year at CMU

• U=1 iff taking undergrad class • B=1 iff Birthday is before July 1

$$
P(G=0):
$$

\n
$$
P(F=0 | G=1):
$$

\n
$$
P(F=0 | G=0):
$$

\n
$$
P(B=0 | G=1):
$$

\n
$$
P(B=0 | G=0):
$$

\n
$$
P(U=0 | G=1):
$$

\n
$$
P(U=0 | G=0):
$$

$$
Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)
$$

$$
G^{new} \leftarrow \arg \max_{g_k \in \{0,1\}} P(G = g_k) P(F = f^{new} | G = g_k) P(B = b^{new} | G = g_k) P(U = u^{new} | G = g_k)
$$

Example: Taking 10-601 or 10-301? P(G|F,B,U)

- G=1 iff you're taking 10-601
- U=1 iff taking undergrad class
	- $P(G=1)$:
	- P(F=1 | G=1) :
	- $P(F=1 | G=0)$:
	- $P(B=1 | G=1)$:
	- $P(B=1 | G=0)$:
	- $P(U=1 | G=1)$:
	- $P(U=1 | G=0)$:

 $P(G=0)$: $P(F=0 | G=1)$: $P(F=0 | G=0)$: $P(B=0 | G=1)$: $P(B=0 | G=0)$: $P(U=0 | G=1)$: $P(U=0 | G=0)$:

• F=1 iff first year at CMU

• B=1 iff Birthday is before July 1

Naïve Bayes: Subtlety #1

Often the *X_i* are not really conditionally independent

- We use Naïve Bayes in many cases anyway, and it often works pretty well
	- often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated $P(Y|X)$?

 $-$ Extreme case: what if we add two copies: $X_i = X_k$

Extreme case: what if we add two copies: $X_i = X_k$

Naïve Bayes: Subtlety #2

- If unlucky, our MLE estimate for $P(X_i | Y)$ might be zero. (for example, X_i = *birthdate.* X_i = Jan 25 2002)
- Why worry about just one parameter out of many?

• What can be done to address this?

Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data $\mathcal D$

$$
\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} | \theta)
$$

• Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$
\hat{\theta} = \arg \max_{\theta} P(\theta | \mathcal{D})
$$

= arg max =
$$
\frac{P(\mathcal{D} | \theta)P(\theta)}{P(\mathcal{D})}
$$

Estimating Parameters: *Y*, *X_i* discrete-valued

Maximum likelihood estimates:

$$
\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}
$$

$$
\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \land Y = y_k\}}{\#D\{Y = y_k\}}
$$

MAP estimates (Beta, Dirichlet priors):

$$
\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\} + (\beta_k - 1)}{|D| + \sum_m (\beta_m - 1)}
$$
 Only difference:
"imaginary" examples

$$
\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \land Y = y_k\} + (\beta_k - 1)}{\#D\{Y = y_k\} + \sum_m (\beta_m - 1)}
$$

Learning to classify text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?

How shall we represent text documents for Naïve Bayes?

Baseline: Bag of Words Approach

Learning to classify document: P(Y|X) the "Bag of Words" model

- Y discrete valued. e.g., Spam or not
- $X = \langle X_1, X_2, \ldots X_n \rangle =$ document
- X_i is a random variable describing the word at position i in the document
- possible values for X_i : any word W_k in English
- Document = bag of words: the vector of counts for all w_{k} 's
	- like #heads, #tails, but we have many more than 2 values
	- assume word probabilities are position independent (i.i.d. rolls of a 50,000-sided die)

Naïve Bayes Algorithm – discrete X_i

• Train Naïve Bayes (examples) for each value *yk*

estimate $\pi_k \equiv P(Y=y_k)$

for each value x_i of each attribute X_i

estimate
$$
\theta_{ijk} \equiv P(X_i = x_j | Y = y_k)
$$

prob that word x_j appears
in position i, given $Y=y_k$

• Classify (*Xnew*)

$$
Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new}|Y = y_k)
$$

$$
Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}
$$

Additional assumption: word probabilities are position independent $\theta_{ijk} = \theta_{mik}$ for all i, m

MAP estimates for bag of words

Map estimate for multinomial

What *β*'s should we choose?

Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.guns

sci.space sci.crypt sci.electronics sci.med

Naive Bayes: 89% classification accuracy

Learning Curve for 20 Newsgroups

For code and data, see

www.cs.cmu.edu/~tom/mlbook.html click on "Software and Data"

What you should know:

- Training and using classifiers based on Bayes rule
- Conditional independence
	- What it is
	- Why it's important
- Naïve Bayes
	- What it is
	- Why we use it so much
	- Training using MLE, MAP estimates
	- Discrete variables and continuous (Gaussian)

Questions:

• How can we extend Naïve Bayes if just 2 of the X_i 's are dependent?

• What does the decision surface of a Naïve Bayes classifier look like?

- What error will the classifier achieve if Naïve Bayes assumption is satisfied and we have infinite training data?
- Can you use Naïve Bayes for a combination of discrete and real-valued X_i ?