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Decision tree learning:

One example of function approximation



Function approximation

Problem Setting:

« Set of possible instances X

* Unknown target function f: XY

* Set of candidate hypotheses H={ h | h: X2>Y }

superscript: ith training example
Input: ////

» Training examples {<x(",y(¥>} of unknown target function f
that is y¥ =f{ xV)

Output:
* Hypothesis & € H that best approximates target function f



Simple Training Data Set
Learn to predict PlayTennis?

Day Outlook Temperature Humidity Wind PlayTennis?

D1  Sunny Hot High  Weak No
D2 Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes
D10  Rain Mild Normal Weak Yes
D11  Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal Weak Yes
‘D14  Rain Mild High  Strong No



A Decision tree for
f: <Outlook, Temperature, Humidity, Wind> = PlayTennis?

< X X X Xy > Y
1 2 3 4
Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes

Each internal node: test one discrete-valued attribute X
Each branch from a node: selects one value for X
Each leaf node: predict Y (or P(Y | X € leaf))




Decision Tree Learning R

Rain

Problem Setting:
« Set of possible instances X
— each instance x in X is vector of discrete-valued features
X=<X5,X%X5..X,>
* Unknown target function f: X=2Y
— Y'is discrete-valued
« Set of function hypotheses H={ h | h : XY }

— each hypothesis / is a decision tree

Input:
« Training examples {<x(”,y(¥>} of unknown target function f

Output:
» Hypothesis & ¢ H that best approximates target function f



Decision Trees
Suppose X = <X,,... X,>
T

where X; are boolean-valued variables

How would you represent Y =X, X5? Y =X, Vv X;

How would you represent X, X; v X, X,(—X;)

ain



A Tree to Predict C-Section Risk
[Sims et al., 2000]

Learned from medical records of 1000 women

Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-
Previous_Csection = 0: [767+,81-] .90+ .10-
Primiparous = 0: [399+,13-] .97+ .03-
Primiparous = 1: [368+,68-] .84+ .16-
Fetal_Distress = 0: [334+,47-] .88+ .12-

| Birth_Weight < 3349: [201+,10.6-] .95+ .05-
| Birth_Weight >= 3349: [133+,36.4-] .78+ .22-
Fetal_Distress = 1: [34+,21-] .62+ .38-
Previous_Csection = 1: [65+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-




Top-Down Induction of Decision Trees

[ID3, C4.5, Quinlan]

node = Root
Main loop:
1.

o

-

ot

. Sort training examples to leaf nodes

. If training examples perfectly classified, Then

A + the “best” decision attribute for next node
Assign A as decision attribute for node

For each value of A, create new descendant of
node

STOP, Else iterate over new leaf nodes

Which attribute is best?

A1=7?
f

[21%,5-) (84, 30-] (18+,33-] [114,2-)



Sample Entropy -

Entropy(S)
o
N

00 0.5 1.0

e S is a sample of training examples
e p- is the proportion of positive examples in S
e p.. is the proportion of negative examples in S

e Entropy measures the impurity of S

Entropy(S) = H(S) = —pelogype — pelogy pe



Entropy # of possible

Entropy H(X) of a randomW values for X

ne—_
H(X)=-) P(X =1)logy P(X =)
i=1

H(X) is the expected number of bits needed to encode a
randomly drawn value of X (under most efficient code)

Why? Information theory:

* Most efficient possible code assigns -log, P(X=i) bits
to encode the message X=i

* S0, expected number of bits to code one random X is:

n

> P(X = i)(~logs P(X = 1))
=1



Entropy

# of possible
values for X

Entropy H(X) of a randomW

ne—_
H(X)=— Z P(X =1)logr P(X = 1)
=1

H(X) is the expected number of bits needed to encode a
randomly drawn value of X (under most efficient code)

Recall definition:

expected value Ep(x) [f(X)] of f(X) with respect to P(X)

Epx) (X)) = ) P(X =1i)£(i)

f X

possible values «

i) bits

m X IS:

Y P(X = i)(~logs P(X = 1))
=1




Entropy

Entropy H(X) of a random variable X

H(X) = — Z P(X = i)log, P(X = i)
1=1

Specific conditional entropy H(X/Y=v) of X given Y=v :

HX|Y =v) = - fj P(X =i|Y =v)logy P(X =Y = v)
=1

Conditional entropy H(X/Y) of X given Y :

H(X|Y) = > P(Y =v)H(X|Y = v)
vevalues(Y')

Mutual information (aka Information Gain) of X and Y:
I(X,Y)=H(X)-H(X|Y)=H(Y) — HY|X)



Also called Mutual

/ Information between AY

Information Gain, I5(A,Y), is the reduction in entropy of
target variable Y for data sample S, due to sorting on

variable A

Entropy of Y in sample S

AN

Entropy of Y in sample S
after sorting on value of A

1

Gain(S,A) = Is(A,Y) = Hg(Y) — Hs(Y |A)




Simple Training Data Set

Day Outlook Temperature Humidity Wind PlayTennis?

D1  Sunny Hot High Weak No
D2 Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes
D10  Rain Mild Normal Weak Yes
D11  Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal Weak Yes
‘D14  Rain Mild High  Strong No



Selecting the Next Attribute

Which attribute is the best classifier?

5 19+.5-)
H=0.940
High Normal
[3+4-]) [6+.1-]
H=0.985 H=0.592

Gaini(S, Humidiry |

= O30 - (7/14)985 - (7/14).592
=.151

S [9+4.5-)
H=0.940

Weak Strong
(0‘.2') [}"o"l
H=0.811 H=1.0

Gain(S. Wind)

= 940 - (814)81] - (/1)1 0
= (48



The Best Attribute is Outlook

Sty

{DI.D2DS.D9.D11)}

[2+.3-]

(D1.D2, .., D14}
[94.5~]

Outlook

Overcast

{(D3.D7.DI2.DI13)
[4+,0-]

Rain

{D4.D5.D6.D10.D 14}
[3+.2-]



Decision Stumps

A decision stump is simply a decision tree with
depth 1:

(D1,D2, ..., DIl4]}

[945~]
Outlook
Stunnry Overcast Ram\
{D1.D2DS.D9.DI11) (D3.D7.DI2.D13) {D4.D5.D6,D10.D 14}
[2+.3-] [4+,0-] [3+.2-]

No Yes Yes




(D1.D2, .., D14}

[945~]
Outlook
Stanny Overcast Rain
{DI1.D2D8.DI9DI11) {(D3.D7.DI2.D13) {D4.D5.D6,D10.D 14}
[2+.3-] [4+,0-] [3+.2-]

A

: :
/

Which attribute should be tested here?

Ssunmy = (D1.D2.D8DID11)

Gain (Ssyppy - Humidity) = 970 - (3/5)0.0 = (¥5)0.0 = .970
Gain (Sgunpy . Temperamre) = 970 = (2/5)0.0 = (25)1.0 = (1/5)0.0 = .570
Gain (Sgynpy. Wind) = 970 = (2/5)1.0 = (3/5) 918 = .019



Final Decision Tree for
f: <Outlook, Temperature, Humidity, Wind> = PlayTennis?

Outlook

Sunny Overcast Rain

Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes

Each internal node: test one discrete-valued attribute X

Each branch from a node: selects one value for X;

Each leaf node: predict Y



Which Tree Should We Output?

* |D3 performs heuristic
search through space

y
/?\F\ of decision trees
\ |t stops at smallest
}{R acceptable tree. Why?
/ \\
Occam's razor: prefer the
F(E, simplest hypothesis that
fits the data



Why Prefer Short Hypotheses? (Occam’ s Razor)

Arguments in favor:

Arguments opposed:



Why Prefer Short Hypotheses? (Occam’ s Razor)

Argument in favor:

 Fewer short hypotheses than long ones

—> a short hypothesis that fits the data is less likely to be
a statistical coincidence

- highly probable that some sufficiently complex
hypothesis will fit the data

Argument opposed:

« Also fewer hypotheses with prime number of nodes
and attributes beginning with “Z”

« What's so special about “short” hypotheses?



Day Owtlosk Tempersture Humbdicy Wiad  Plaoy Tesals™
DI Seawmy Hex Hgh Weak No

Overfitting in Decision Trees R

D4 Rain Mkl High Weak Yeu

D3 Ran Cood Norwal  Weak Yeu
Iw Ran Cood Norval  Stromg No
D7 Overcamt Cood Norwal  Stromg Yo
D8 Seany Mud High Weak No
D% Seany Cool Noemal  Weak Yeu
D10 Rain Mabd Noetual  Weak Yeu
DIl Seany Mkl Noewal  Strong Yeu
D12 Overcant Mabd High  Stromg Yeu
D13 Overcamt Hon Norval  Weak Yeu
D14 Ran Mubd High Stroag No

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Ourlook

o | P

)mn_v Overcast Rai\
Huunidity Yes Wind
High Normal Strong Weak

/ \ / A

No Yes No Yes



Overfitting

Consider a hypothesis # and its
 Error rate over training data: errorirqin(h)
 True error rate over all data: erroryy.(h)



Overfitting

Consider a hypothesis # and its
 Error rate over training data: erroriqqin(h)
 True error rate over all data: errorye(h)

We say / overfits the training data if

erToTrue(h) > €rrorirqin(h)

Amount of overfitting =
errorirue(h) — errorirqin(h)



Overfitting in Decision Tree Learning
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Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune



Reduced Error Pruning

« Split data into training set and validation set
« Train a tree to classify training set as well as possible

* Do until further pruning reduces validation set accuracy:

1. For each internal tree node, consider making it a leaf node
(pruning the tree below it)

2. Greedily chose the above pruning step that best improves error
over validation set

Produces smallest version of the most accurate pruned tree



Effect of Reduced-Error Pruning
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Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)



Continuous Valued Attributes

Create a discrete attribute to test continuous
e T'emperature = 82.5

o (Temperature > 72.3) =1t, f

'Temperaiure: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No



Converting A Tree to Rules

Outlook
Sunny Overcast Rm'n\
Humidity Yes Wind
High Normal Strong Weak

o \ / \

No Yes Neo Yes



Decision Forests

Key idea:
1. learn a collection of many trees
2. classify by taking a weighted vote of the trees

Empirically successful. Widely used in industry.
* human pose recognition in Microsoft kinect
* medical imaging — cortical parcellation

 classify disease from gene expression data

How to train different trees
1. Train on different random subsets of data
2. Randomize the choice of decision nodes



Decision Forests often use ensemble
of Decision Stumps

A decision stump is simply a decision tree with
depth 1:

(D1.D2, ... D14}
[94.5~]

Ourtlook

{DI1.D2.DS.D9.DI11) (D3.D7.D12.D13) {D4.D5.D6.DI10.D14)
[2+,3-] [4+,0-] [3+.2-]

No Yes Yes




You should know:

« Well posed function approximation problems:
— Instance space, X
— Sample of labeled training data { <x, y()>}
— Hypothesis space, H = {f: XY }

« Learning is a search/optimization problem over H

— Various objective functions to define the goal
* minimize training error (0-1 loss)
* minimize validation error (0-1 loss)
« among hypotheses that minimize error, select smallest (?)

* Decision tree learning
— Greedy top-down learning of decision trees (ID3, C4.5, ...)
— Overfitting and post-pruning
— Extensions... to continuous values, probabilistic classification
— Widely used commercially: decision forests



Further Reading...
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Questions to think about (0)

 How can we use decision trees to make
probabilistic predictions (ie., P(Y=1|X) instead
of simply predict that Y=1 or Y=07

[Hint: go back and look at the tree for predicting C-section birth risk]



Questions to think about

» Consider target function f. <x,,x,> =2y, where
X4 and X, are real-valued, y is Boolean (0 or 1)

— What is the set of decision surfaces describable with
decision trees that use each attribute at most once?



Questions to think about (2)

« |D3 and C4.5 are heuristic algorithms that
search through the space of decision trees.
Why not just do an exhaustive search over all

possible trees?



Questions to think about (3)

* Why use Information Gain to select attributes
In decision trees? What other criteria seem

reasonable, and what are the tradeoffs in
making this choice?



