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Today:

• Naïve Bayes
• Graphical models
• Bayes Nets:

• Representing 
distributions

• Conditional 
independencies

• Simple inference

Readings:

• Mitchell: Naïve Bayes and 
Logistic Regression 
http://www.cs.cmu.edu/~tom/mlb
ook/NBayesLogReg.pdf

• Directed Graphical Models 
(Bayes nets). Kevin P. Murphy 
(2014). Machine Learning: A 
Probabilistic Perspective. 
Chapter 10

https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=338


Naïve Bayes Algorithm – discrete Xi

• Train Naïve Bayes (examples)  
for each* value yk

estimate
for each* value xij of each attribute Xi

estimate

• Classify (Xnew)

* probabilities must sum to 1, so need estimate only n-1 of these...



Example: Taking 10-601 or 10-301?     P(G|F,B,U)
• G=1 iff you’re taking 10-601
• U=1 iff taking undergrad class

• F=1 iff first year at CMU
• B=1 iff Birthday is before July 1

P(G=1) :
P(F=1 | G=1) :
P(F=1 | G=0) :
P(B=1 | G=1) :
P(B=1 | G=0) :
P(U=1 | G=1) :
P(U=1 | G=0) :

P(G=0) :
P(F=0 | G=1) :
P(F=0 | G=0) :
P(B=0 | G=1) :
P(B=0 | G=0) :
P(U=0 | G=1) :
P(U=0 | G=0) :
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What if we have continuous Xi ?
Eg., we include real-valued Age as an Xi in our 

10-301 vs. 10-601 classifier

E.g., image classification: Xi is ith pixel



What if we have continuous Xi ?
image classification: Xi is ith pixel, Y = mental state

Still have:

Just need to decide how to represent P(Xi | Y)



What if we have continuous Xi ?
Eg., image classification: Xi is ith pixel

Gaussian Naïve Bayes (GNB): assume



Naïve Bayes Algorithm – discrete Xi

• Train Naïve Bayes (examples)  
for each* value yk

estimate
for each* value xij of each attribute Xi

estimate

• Classify (Xnew)

* probabilities must sum to 1, so need estimate only n-1 of these...



Gaussian Naïve Bayes Algorithm – continuous X
i 

(but still discrete Y)

• Train Naïve Bayes (examples)  

for each value yk

estimate*

for each attribute Xi estimate 

class conditional mean        , variance       

• Classify (Xnew)

*
probabilities must sum to 1, so need estimate only n-1 parameters...



Learning to classify text documents
• Classify which emails are spam?
• Classify which emails promise an attachment?
• Classify which web pages are student home pages?

How shall we represent text documents for Naïve Bayes?



Baseline: Bag of Words Approach

aardvark 0

about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0



Learning to classify document: P(Y|X)
the “Bag of Words” model

• Y discrete valued.  e.g., Spam or not
• X = <X1, X2, … Xn> = document

• Xi is a random variable describing the word at position i in 
the document

• possible values for Xi : any word wk in English

• Document = bag of words: the vector of counts for all 
wk’s
– like #heads, #tails, but we have many more than 2 values
– assume word probabilities are position independent 

(i.i.d. rolls of a 50,000-sided die)



Naïve Bayes Algorithm – discrete Xi

• Train Naïve Bayes (examples)  
for each value yk

estimate
for each value xj of each attribute Xi

estimate

• Classify (Xnew)

prob that word xj appears 
in position i, given Y=yk

* Additional assumption:  word probabilities are position independent



MAP estimates for bag of words

Map estimate for multinomial

What β’s should we choose? 

Observed
count for 
word m

Hallucinated
count for 
word m





For code and data, see
www.cs.cmu.edu/~tom/mlbook.html
click on “Software and Data”



What you should know:

• Training and using classifiers based on Bayes rule

• Conditional independence
– What it is
– Why it’s important

• Naïve Bayes
– What it is
– Why we use it so much
– Training using MLE, MAP estimates
– Discrete variables and continuous (Gaussian)



Questions:
• How can we extend Naïve Bayes if just 2 of the Xi‘s 

are dependent?

• What does the decision surface of a Naïve Bayes 
classifier look like?

• What error will the classifier achieve if Naïve Bayes 
assumption is satisfied and we have infinite training 
data?

• Can you use Naïve Bayes for a combination of 
discrete and real-valued Xi? 



Graphical Models



Graphical Models
• Key Idea: 

– Conditional independence assumptions useful  
– but Naïve Bayes is extreme!
– Graphical models express sets of conditional 

independence assumptions via graph structure
– Graph structure plus associated parameters define 

joint probability distribution over set of variables

• Two types of graphical models:
– Directed graphs (aka Bayesian Networks)
– Undirected graphs (aka Markov Random Fields)

our focus



Graphical Models – Why Care?
• Unify statistics, probability, machine learning

• Graphical models allow combining:
– Prior knowledge about dependencies/independencies
– Prior knowledge in form of priors over parameters
– Observed training data

• Principled and ~general methods for
– Probabilistic inference, Learning

• Useful in practice
– Diagnosis, help systems, text analysis, time series models, ...

• Increasingly, deep nets are also probabilistic models



Conditional Independence
Definition: X is conditionally independent of Y given Z, if the 

probability distribution governing X is independent of the value 
of Y, given the value of Z

Which we often write

or   

E.g., 



Marginal Independence
Definition: X is marginally independent of Y if

Equivalently, if

Equivalently, if

Which we may write as



1. Representing Joint Probability Distributions
using Bayesian Networks



The Joint Distribution

Joint distribution assigns a 
probability to each possible 
joint assignment of variables

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

A

B

C
0.05

0.25

0.10 0.050.05

0.10

0.10
0.30

P(A, B, C)



Bayesian Networks Definition

A Bayes network represents the joint probability distribution 
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of 
Conditional Probability Distributions (CPD’s)

• Each node denotes a random variable
• Edges denote dependencies
• For each node Xi its CPD defines P(Xi | Pa(Xi))
• The joint distribution over all variables is defined to be

Pa(X) = immediate parents of X in the graph



Bayesian Network

StormClouds

Lightning Rain

Thunder WindSurf

Nodes = random variables

A conditional probability distribution (CPD) 

is associated with each node N, defining   

P(N | Parents(N)).  For example:

The joint distribution over all variables:

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf



Bayesian Network

StormClouds

Lightning Rain

Thunder WindSurf

What can we say about conditional 
independencies in a Bayes Net?

One thing we can say:

Each node is conditionally independent 
of its non-descendents, given only its 
immediate parents.

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf



Some helpful terminology
Parents = Pa(X) = immediate parents of X

Antecedents = parents, parents of parents, ...
Children = immediate children

Descendents = children, children of children, ...



Bayesian Networks

• CPD for each node Xi
describes P(Xi | Pa(Xi))

Chain rule of probability says that in general:

But in a Bayes net:



What is the Bayes Net assuming no conditional independencies?

S

L R

T W

Chain rule of probability says that in general:



What is the Bayes Net assuming no conditional independencies?

S

L R

T W

Chain rule of probability says that in general:

S

L R

T W

versus



StormClouds

Lightning Rain

Thunder WindSurf

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf

How Many Parameters?

To define joint distribution in general?

To define joint distribution for this Bayes Net?



StormClouds

Lightning Rain

Thunder WindSurf

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf

Inference in Bayes Nets

P(S=1, L=0, R=1, T=0, W=1)  = ?



StormClouds

Lightning Rain

Thunder WindSurf

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf

Inference in Bayes Nets

P(S=1, L=0, R=1, T=0, W=1)  =

P(S=1) P(L=0|S=1) P(R=1|S=1) P(T=0|L=0) P(W=1|L=0, R=1)



StormClouds

Lightning Rain

Thunder WindSurf

Parents P(W|Pa) P(¬W|Pa)

L, R 0 1.0

L, ¬R 0 1.0

¬L, R 0.2 0.8

¬L, ¬R 0.9 0.1

WindSurf

Learning a Bayes Net

Consider learning when graph structure is given, and data = { <s,l,r,t,w> }

What is the MLE solution?  MAP?



Constructing a Bayes Network
• Choose an ordering over variables, e.g., X1, X2, ... Xn 

• For i=1 to n
– Add Xi to the network
– Select parents Pa(Xi) as minimal subset of X1 ... Xi-1 such that 

Notice this choice of parents assures
(by chain rule)

(by 
construction)



Example
• Attending class and Studying both cause you to Know 

the course material
• Knowing the course material determines whether you 

pass the Exam, and ace the HW



Example
• Attending class and Studying both cause you to Know 

the course material
• Knowing the course material determines whether you 

pass the Exam, and ace the HW

Study Attend

Know

Exam HW



What is the Bayes Network for Naïve Bayes?



What is the Bayes Net representing Naïve Bayes?

Y

Naïve Bayes assumes all pairs of inputs Xi and Xk
conditionally independent, given the label Y

X1 X3X2

Recall:

Each node is conditionally independent of its non-descendents, 
given only its immediate parents.



What do we do if variables are mix of discrete 
and real valued?



What do we do if variables are a mix of discrete 
and real valued?

Study

Exam 
score

No problem!   Just define CPD as appropriate!



What You Should Know

• Bayes nets are convenient representation for encoding 

dependencies / conditional independence

• BN = Graph plus parameters of CPD’s

– Defines joint distribution over variables

– Can calculate everything else from that

– Though inference may be intractable

• Reading conditional independence relations from the 

graph

– Each node is cond indep of non-descendents, given only its 

parents

– (Optional) D-Separation is a rule that gives a complete
accounting of all conditional independencies. (see optional 10 

minute video http://www.cs.cmu.edu/~tom/10701-

S20/VSV_GrMod_Representation.mp4 )


